Supplementary Material
More Experiment Results

ImageNet classification accuracy before fine-tuning The accuracy gains are significant before fine-tuning as shown
in Figure[7]and Figure[8] For instance, on TX2 under the same 0.037 J energy budget, ECC achieves 17.5% higher accuracy
on MobileNet compared to NetAdapt. AMC has lower accuracies since it does not update DNN parameters in the RL
searching phase. Overall, we find that ECC is insensitive to additional fine-tuning while both NetAdapt and AMC require
extensive fine-tuning to improve accuracy. This is because ECC, through its constrained optimization process, inherently
performs compression and fine-tuning simultaneously.
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Figure 7: Top-1 accuracy of image classification on MobileNet@ImageNet before fine-tuning.
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Figure 8: Top-1 accuracy of image classification on AlexNet@ImageNet before fine-tuning.

Energy model prediction errors on other networks Figures|9and|10|show the results of the energy prediction models
as in Section
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Figure 9: Relative test error of energy prediction using the proposed bilinear model.

Layer (inverse) sparsity on other networks Figures [11]| shows the layer (inverse) sparsity of the complementary com-
pressed models of Figure|6| For MobileNet on GTX 1080 Ti, the lower bound of s(*) is set to be 0.35¢(%).
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Figure 10: Relative test error of energy prediction using an MLP model with different hidden layers.
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(a) MobileNet on GTX 1080 Ti.
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(d) ERFNet on GTX 1080 Ti.

Figure 11: Layer (inverse) sparsity after compressing.



