
Supplementary Material for R-MVSNet

1. Network Architecture
This section describes the network architecture of R-
MVSNet (Table 1). R-MVSNet constructs cost maps at dif-
ferent depths, and recurrently regularizes cost maps through
the depth direction. The probability volume need to be ex-
plicitly computed during the network training, but for test-
ing, we can sequentially retrieve the regularized cost maps
and all layers only require the GPU memory with size linear
to the input image resolution.

Output Layer Input Output Size
{Ii}Ni=1 N×H×W×3

Image Features Extration
2D 0 ConvBR,K=3x3,S=1,F=8 Ii H×W×8
2D 1 ConvBR,K=3x3,S=1,F=8 2D 0 H×W× 8
2D 2 ConvBR,K=5x5,S=2,F=16 2D 1 1⁄2H×1⁄2W×16
2D 3 ConvBR,K=3x3,S=1,F=16 2D 2 1⁄2H×1⁄2W×16
2D 4 ConvBR,K=3x3,S=1,F=16 2D 3 1⁄2H×1⁄2W×16
2D 5 ConvBR,K=5x5,S=2,F=32 2D 4 1⁄4H×1⁄4W×32
2D 6 ConvBR,K=3x3,S=1,F=32 2D 5 1⁄4H×1⁄4W×32
Fi Conv,K=3x3,S=1,F=32 2D 6 1⁄4H×1⁄4W×32

Differentiable Homography Warping
{Fi,Hi(d)}Ni=1 DH-Warping {Vi(d)}Ni=1

1⁄4H×1⁄4W×32
Cost Map Construction

{Vi(d)}Ni=1 Variance Cost Metric C0(d) 1⁄4H×1⁄4W×32
GRU Regularization

C(d) Conv,K=3x3,S=1,F=16 C0(d) 1⁄4H×1⁄4W×16
C0(d)&C1(d− 1) GRU, K=3x3, F=16 C1(d) 1⁄4H×1⁄4W×16
C1(d)&C2(d− 1) GRU, K=3x3, F=4 C2(d) 1⁄4H×1⁄4W×4
C2(d)&Cr(d− 1) GRU, K=3x3, F=1 Cr(d) 1⁄4H×1⁄4W×1

Probability Volume Construction
{Cr(d)}Dd=1 Softmax {Pr(d)}Nd=1

1⁄4H×1⁄4W×D

Table 1: R-MVSNet architecture. We denote the 2D con-
volution as Conv and use BR to abbreviate the batch nor-
malization and the Relu. K is the kernel size, S the kernel
stride and F the output channel number. N, H, W, D denote
input view number, image width, height and depth sample
number respectively

2. Depth Sample Number
Given the depth range [dmin, dmax], we sample depth val-
ues using the inverse depth setting:
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where i is the index of the depth sampling and D is the
depth sample number. To determine the sample number D,

we assume that the spatial image resolution should be the
same as the temporal depth resolution. Supposing X1 and
X2 are two 3D points by projecting the reference image
center (W2 ,

H
2 ) and its neighboring pixel (W2 +1, H2 ) to the

space at depth dmin, the spatial image resolution at depth
dmin is defined as ρ = ||X2−X1||2. Meanwhile, we define
the temporal depth resolution at depth dmin as d(2)− d(1).
Considering Equation 1, the depth sample number is calcu-
lated as:
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3. Variational Depth Map Refinement

We derive the iterative minimization procedure for Equation
8 in the main paper. Focusing on one pixel p1 in the refer-
ence image, we denote its corresponding 3D point in the
space as X = Π−11 (p1) · d1 + c1, where Π1, c1 and d1 are
the projection matrix, camera center of the reference camera
and the depth of pixel p1. The projection of X in the source
image is pi = Πi(X). For the photo-consistency term, we
assume C(I1(p1), Ii→1(p1)) = C(I1→i(pi), Ii(pi)) and
abbreviate it as C1→i(pi). The image reprojection error will
be changed as D1 deforms, and we take the derivative of the
photo-consistency term w.r.t. to depth d1:
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where Ji is the Jacobian of the projection matrix Πi.
∂C1→i(pi)

∂pi
is the derivative of the photo-metric measurement

w.r.t. the pixel coordinate. For computing the derivatives of
NCC and ZNCC, we refer readers to [3] for detailed imple-
mentations. Also, considering d1 = D1(p1), the derivative
of the smoothness term S(p,p′) = w(p1,p

′
1)(D1(p) −

1



D1(p
′))2 can be derived as:
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where w(p1,p
′
1) = exp(− (I1(p1)−I1(p′

1))
2

10 ) is the bilateral
smoothness weighting.

We iteratively minimize the total image reprojection er-
ror E by gradient descent with a descending step size of
λ(t) = 0.9 · λ(t − 1) and λ(0) = 10. The reference depth
map D1 and all reprojected images {I1→i}Ni=2 will be up-
dated at each step. The refinement iteration is fixed to 20
for all our experiments.

4. Sliding Window 3D CNNs
One concern about R-MVSNet is that whether the proposed
GRU regularization could be simply replaced by streaming
the 3D CNNs regularization in the depth direction. To ad-
dress this concern, we conduct two more ablation studies.
For DTU dataset, we divide the cost volume C (D = 256)
into sub-volumes (Dsub = 64) along the depth direction.
To better regularize the boundary voxels, we set the over-
lap between two adjacent sub-volumes to Doverlap = 32,
so in this way C is divided into 7 subsequent sub-volumes
{Ci}6i=0. We then sequentially apply 3D CNNs (except for
the softmax layer) on {Ci}6i=0 to obtain the regularized sub-
volumes. Then, we generate the final depth map by two
different fusion strategies:

• Volume Fusion First concatenate the regularized sub-
volumes (truncated withDtrunc = 16 to fit the overlap
region) in depth direction. Then apply softmax and
soft argmin to regress the final depth map.

• Depth Map Fusion First regress 7 depth maps and
probability maps from the regularized sub-volumes.
Then fuse the 7 depth maps into the final depth map
by winner-take-all selection on probability maps.

Qualitative and quantitative results are shown in Fig. 2.
Both sliding strategies produce errors higher than GRU and
3D CNNs. Also, sliding strategies take∼ 10s to infer depth
map (H ×W ×D = 1600× 1184× 256), which is ∼ 2×
slower than MVSNet and R-MVSNet.

The sliding window 3D CNNs regularization is a depth-
wise divide-and-conquer algorithm and there are two ma-
jor limitations: 1) One is the discrepancies among sub-
volumes, as sub-volumes are not regularized as a whole. 2)
The second is the limited size of the sub-volume, which is
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Figure 2: Sliding window 3D CNNs. (a) and (b) are depth
map results of the proposed two fusion strategies in A1.

far less than the actual receptive field size of the multi-scale
3D CNNs (∼ 2563). As a result, such strategies cannot be
fully benefit from the powerful 3D CNNs regularization.

5. Post-processing
We show in Fig. 1 the qualitative point cloud results of DTU
evaluation set [1] using different post-processing settings.
The photo-metric filtering and the geometric filtering are
able to remove different kinds of outliers and produce vi-
sually clean point clouds. Depth map refinement and depth
map fusion have little influence on the qualitative results,
however, they are able to reduce the overall score for the
quantitative evaluation (Table 3 in the main paper).

6. Point Cloud Results
This section presents the point cloud reconstructions of
DTU dataset [1], Tanks and Temples benchmark [2] and
ETH3D benchmark [4] that have not been shown in the
main paper. The point cloud results of the three datasets
can be found in Fig. 3, Fig. 4 and Fig. 5 respectively.
R-MVSNet is able to produce visually clean and complete
point cloud for all reconstructions.
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Figure 1: Point cloud reconstructions of DTU dataset [1] with different post-processing settings
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Figure 3: Point cloud reconstructions of DTU evaluation set [1]



Figure 4: Point cloud reconstructions of Tanks and Temples dataset [2]

Figure 5: Point cloud reconstructions of ETH3D low-res dataset [4]


