
Texture Mixer: A Network for Controllable Synthesis
and Interpolation of Texture

(Supplemental Material)

Ning Yu1,2,4 Connelly Barnes3,4 Eli Shechtman3 Sohrab Amirghodsi3 Michal Lukáč3

1University of Maryland 2Max Planck Institute for Informatics
3Adobe Research 4University of Virginia

ningyu@mpi-inf.mpg.de connelly@cs.virginia.edu {elishe, tamirgho, lukac}@adobe.com

1. Shuffling procedure visualization

We visualize our shuffling procedure in Figure 1.

2. Texture palette and brush examples

In order to diversify our applications, we, in addition,
collected a plant texture dataset from Adobe Stock and
randomly split it into 1, 074 training and 119 testing im-
ages. We show the texture palette and brush application
on the earth texture and plant texture datasets in Figure 2.
Furthermore, we show in Figure 3 a camouflage effect of
brush painting on the animal texture dataset, intentionally
given the background patterns similar to brush patterns. It
indicates the smooth interpolation over different textures.
The dynamic processes of drawing such paintings plus the
painting of Figure 1 in the main paper are demonstrated in
the videos at GitHub. The videos are encoded using MP4
libx265 codec at 60 frame rate and 16M bit rate.

3. Texture dissolve examples

We shows in Figure 4 additional sequences of video
frame samples with gradually varying weights on the earth
texture and plant texture datasets. The corresponding videos
plus the video for Figure 3 in the main paper are at GitHub.
Two of them are also attached with this material. The videos
are encoded using MP4 libx265 codec at 60 frame rate and
16M bit rate.

4. Animal hybridization details and examples

In Figure 5, we show and illustrate the pipeline to hy-
bridize a dog and a bear by interpolating their furs in the
hole for the transition region. Two additional results are
show in Figure 6.

Figure 1. Our shuffling procedure. On the top figure we visualize
the procedure example P0◦P1(T (z

l
i)), where zli is a 4×4 cell in a

2×2 grid framed in red. The procedure is composed of the random
swapping operations between a green strip and its subsequently
adjacent yellow strip in four directions: top-down, bottom-up, left-
to-right, and right-to-left. The swapping operations start at scale 2
(the 1st row) and then are repeated at scale 1 (the 2nd row). The
bottom figure (zoom-in to check) demonstrates the composition of
swapping operations at several scales applied to an identity matrix.
The resulting composed matrix can serve as a row permutation
matrix left-multiplied to T (zli). Another similar matrix can serve
as a column permutation matrix right-multiplied to T (zli). The
row and column permutation matrices are independently sampled
for each training iteration.

https://github.com/ningyu1991/TextureMixer.git
https://github.com/ningyu1991/TextureMixer.git


Figure 2. Texture interpolation and texture painting using our net-
work on the earth texture and plant texture datasets. The top part
shows a 1024× 1024 palette created by interpolating four source
textures at the corners outside the palette. The bottom part shows
a 512 × 2048 painting of letters with different textures sampled
from the palette. The letters are interpolated by our method with
the background, also generated by our interpolation.

5. Network architecture details

We set the texture image size to be 128 throughout our
experiments. The proposed El, Eg , Drec, and Ditp ar-
chitectures are employed or adapted from the discrimina-
tor architecture in [7], where layers with spatial resolutions
higher than 128 × 128 are removed. We also adopt their
techniques including pixel normalization instead of batch
normalization, and leaky ReLU activation. The minibatch
standard deviation channel is also preserved for Drec and
Ditp, but not for El and Eg . For El, we truncate the ar-
chitecture so that the output local latent tensor is m times

Figure 3. Texture interpolation and texture painting with camou-
flage effect using our network on the animal texture dataset. The
top part shows a 1024×1024 palette created by interpolating four
source textures at the corners outside the palette. The bottom part
shows a 512×2048 painting of letters with different textures sam-
pled from the palette. The letters are interpolated by our method
with the background, also generated by our interpolation.

smaller than the input texture, wherem = 4 in all our exper-
iments. We tried using deeper architectures but noticed this
does not favor reconstruction quality. For Eg , we truncate
the architecture at 1 × 1 resolution right before the fully-
connected layer, because we are doing encoding rather than
binary classification.

Our G is modified from the fully-convolutional genera-
tor architecture from Karras et al. [7] with three changes.
First, the architecture is truncated to accept an input spatial
resolution that is m = 4 times smaller than the texture size,
and to output the original texture size. Second, the local and
global latent tensor inputs are concatenated together along
the channel dimension after they are fed into G. A third im-
portant point is that since our goal is to interpolate a larger
texture image output, at the bottleneck layer the receptive
field should be large enough to cover the size of input im-
age. We do this by inserting a chain of five residual blocks
[4] in the generator after local and global latent tensor con-
catenation and before the deconvolution layers from [7].

6. Training details

Our training procedure again follows the progressive
growing training in [7], where El, Eg , G, Drec, and
Ditp simultaneously grow from image spatial resolution at
32× 32 to 128× 128. We repeatedly alternate between per-
forming one training iteration on Drec and Ditp, and then
four training iterations on El, Eg , and G. At each interme-
diate resolution during growth, the stabilization stage takes
1 epoch of training and the transition stage takes 3 epochs.



Figure 4. Sequences of dissolve video frame samples with size 1024 × 1024 on the earth texture and plant texture datasets, where each
frame is also with effect of interpolation.

After the growth is completed, we keep training the model
until a total of 20 epochs is reached.

We use Adam [8] as our optimization approach with no
exponential decay rate β1 = 0.0 for the first moment es-
timates and with the exponential decay rate for the sec-
ond moment estimates β2 = 0.99. The learning rate is
set to 0.001 before the model grows to the final resolu-
tion 128 × 128 and then is set to 0.0015 at 128 × 128.
The trainable weights of the autoencoder and discriminator
are initialized with the equalized learning rate technique
from [7]. We train and test all our models on 8 NVIDIA
GeForce GTX 1080 Ti GPUs with 12GB of GPU memory
each. Based on the memory available and the training per-
formance, we set the batch size at 64, and the training lasts
for 3 days.

The weights of losses is not sensitive to the dataset. We
simply set them to balance the order of magnitude of each
loss: λ1 = 100, λ2 = λ4 = 0.001, and λ3 = λ5 = 1.

7. Experimental evaluation details

Seam classifier. The architecture and training details of
seam classifier are almost the same as those of Drec and
Ditp except (1) we remove the minibatch standard devia-
tion channel, (2) we add a sigmoid activation layer after the
output layer for the binary cross-entropy loss computation,
and (3) we exclude the progressive growing process. We
directly use the sigmoid output of the classifier as the seam
score for each input image.

Repetition classifier. The architecture and training de-
tails of repetition classifier are almost the same as those of
the seam classifier except the input image size is 128× 256
instead of 128× 128, where the negative examples are ran-

dom crops of size 128 × 256 from real datasets and the
positive examples are horizontally tiled twice from random
crops of size 128× 128 from real datasets.

Inception model finetuning. Our inception scores are
computed from the state-of-the-art Inception-ResNet-v2 in-
ception model architecture [13] finetuned with our two
datasets separately.

8. Baseline method details
Naı̈ve α-blending. We split the output into 8 square

tiles, where the end textures are copied as-is, and the in-
tervening tiles (copies of the two boundaries) are linearly
per-pixel α-blended.

Image Melding [3]. We selected Image Melding in its
inpainting mode as a representative of patch-based methods.
We use the default setting of the official public implemen-
tation1.

AdaIN [5]. Style transfer techniques can potentially be
leveraged for the interpolation task by using random noise
as the content image and texture sample as the style. We
interpolate the neural features of the two source textures
to vary the style from left to right. We consider AdaIN
as one representative of this family of techniques, as it can
run with arbitrary content and style images. However, with
the default setting of the official implementation2 and their
pre-trained model, AdaIN has some systematic artifacts as
it over-preserves the noise appearance. Therefore, we only
show qualitative results in Figure 4 in the main paper, and in
Figure 9 to Figure 13 here. We did not include this method
in the quantitative evaluation.

1https://www.ece.ucsb.edu/˜psen/melding
2https://github.com/xunhuang1995/AdaIN-style

https://www.ece.ucsb.edu/~psen/melding
https://github.com/xunhuang1995/AdaIN-style


Figure 5. Animal hybridization pipeline. (a) and (b) are two original images. (c) is the input to the pipeline, composed of the aligned
regions of (a) and (b) in the same image and the hole for the transition region. (d) shows that we rasterize the hole because Texture Mixer
works on square patches. The patch size is 128 × 128. (e) shows that we interpolate in the rasterized hole region using adjacent texture
patches, and then composite this back on top of the original image. This involves two details: (1) if a texture patch covers background,
those background pixels are replaced by foreground pixels using the Content-Aware Fill function in Photoshop; and (2) we blend latent
tensors between two images using spatially varying weights. (f) We use graph cuts [9] and standard Poisson blending [12] to postprocess
the boundaries.

WCT [10]. WCT is an advancement over AdaIN with
whitening and coloring transforms (WCT) as the stylization
technique and works better on our data. We use its official
public implementation3 with default setting and their pre-
trained model. By design, this method does not guarantee
accurate reconstruction of input samples.

DeepFill [14]. Texture interpolation can be considered
an instance of image hole-filling. The training code for the
most recent work in this area [11] is not released yet. We,

3https://github.com/Yijunmaverick/
UniversalStyleTransfer

therefore, tried another recent method called DeepFill [14]
with their official code4. We re-trained it for our two tex-
ture datasets separately with 256 × 256 input image size,
128 × 128 hole size, and all the other default settings. The
interpolation results suffered from two major problems: (i)
the method is not designed for inpainting wide holes (in our
experiment 128×768) because of lack of such wide ground
truth; (ii) even for a smaller hole with size 128 × 128, as
shown in the failure cases in Figure 4 in the main paper and

4https://github.com/JiahuiYu/generative_
inpainting

https://github.com/Yijunmaverick/UniversalStyleTransfer
https://github.com/Yijunmaverick/UniversalStyleTransfer
https://github.com/JiahuiYu/generative_inpainting
https://github.com/JiahuiYu/generative_inpainting


Figure 6. Two animal hybridization examples. The top image is in the size 2636× 3954 and the bottom image is in the size 2315× 2664.
Our interpolations between the two animal furs is smoother, has less ghosting, and is more realistic than those of the Naı̈ve α-blending.

in Figure 9 to Figure 13, this work systematically failed to
merge the two source textures gradually. We, therefore, ex-
cluded this method from our quantitative comparisons.

PSGAN [1]. The most closely related work to ours, PS-
GAN, learns a smooth and complete neural manifold that
favors interpolation. However, it only supports constraining
the interpolation in latent space, and lacks a mechanism to
specify end texture conditions using image examples. To
allow for a comparison, we have trained a PSGAN model
for each of our datasets separately, using the official code5

and default settings. Then, we optimize for the latent code
that corresponds to each of the end texture images by back-
propagating through L-BFGS-B [2]. We use the gradients
of the L1 reconstruction loss and the Gram matrix loss [6]
and initialize randomly the latent vectors. We use 100 dif-
ferent initializations and report the best result.

9. More qualitative comparisons

More qualitative comparisons are shown from Figure 9
to Figure 13. They are all used for quantitative comparison
and user study as reported in Table 1 in the main paper. In
addition, Figure 14 demonstrates one of our failure exam-
ples when dealing with strong structural textures.

5https://github.com/zalandoresearch/psgan

10. User study details

Our user study webpage is shown in Figure 7. To guaran-
tee the accuracy of users’ feedback, we insert sanity check
by comparing our interpolation results with another naive
baseline results where the transition regions are filled with
constant pixel values. The constant value is computed as
the mean value of the two end texture pixels, as shown in
Figure 8. The preference should be obvious and determin-
istic without subjective variance. In our statistics, only two
users made a mistake once on the sanity check questions.
We then manually checked their answers to other real ques-
tions but didn’t notice any robot or laziness style. We there
trust and accept all users’ feedback.

References
[1] U. Bergmann, N. Jetchev, and R. Vollgraf. Learning texture

manifolds with the periodic spatial GAN. In Proceedings
of the 34th International Conference on Machine Learning,
pages 469–477, 2017. 5

[2] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory
algorithm for bound constrained optimization. SIAM Journal
on Scientific Computing, 16(5):1190–1208, 1995. 5

[3] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and
P. Sen. Image melding: Combining inconsistent images us-
ing patch-based synthesis. ACM Trans. Graph., 31(4):82–1,
2012. 3

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-

https://github.com/zalandoresearch/psgan


Figure 7. User study webpage design.

Figure 8. A user study with sanity check where the preference should be obvious and deterministic without subjective variance.

ference on computer vision and pattern recognition, pages
770–778, 2016. 2

[5] X. Huang and S. J. Belongie. Arbitrary style transfer in real-
time with adaptive instance normalization. In ICCV, pages
1510–1519, 2017. 3

[6] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In European
Conference on Computer Vision, pages 694–711. Springer,
2016. 5

[7] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive
growing of gans for improved quality, stability, and variation.
arXiv preprint arXiv:1710.10196, 2017. 2, 3

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. 3

[9] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.
Graphcut textures: image and video synthesis using graph
cuts. ACM Transactions on Graphics (ToG), 22(3):277–286,
2003. 4



[10] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang.
Universal style transfer via feature transforms. In Advances
in Neural Information Processing Systems, pages 386–396,
2017. 4

[11] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and
B. Catanzaro. Image inpainting for irregular holes using par-
tial convolutions. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018. 4

[12] P. Pérez, M. Gangnet, and A. Blake. Poisson image edit-
ing. ACM Transactions on graphics (TOG), 22(3):313–318,
2003. 4

[13] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In AAAI, volume 4, page 12, 2017.
3

[14] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang.
Generative image inpainting with contextual attention. arXiv
preprint arXiv:1801.07892, 2018. 4



Figure 9. Qualitative demonstrations and comparisons of horizontal interpolation in the size of 128 × 1024 on the earth texture samples.
We use the two side crops with the orange background for SPD measurement, and the center crop with the light yellow background for the
other proposed quantitative evaluations.



Figure 10. Qualitative demonstrations and comparisons of horizontal interpolation in the size of 128× 1024 on the earth texture samples.
We use the two side crops with the orange background for SPD measurement, and the center crop with the light yellow background for the
other proposed quantitative evaluations.



Figure 11. Qualitative demonstrations and comparisons of horizontal interpolation in the size of 128×1024 on the animal texture samples.
We use the two side crops with the orange background for SPD measurement, and the center crop with the light yellow background for the
other proposed quantitative evaluations.



Figure 12. Qualitative demonstrations and comparisons of horizontal interpolation in the size of 128×1024 on the animal texture samples.
We use the two side crops with the orange background for SPD measurement, and the center crop with the light yellow background for the
other proposed quantitative evaluations.



Figure 13. Qualitative demonstrations and comparisons of horizontal interpolation in the size of 128×1024 on the animal texture samples.
We use the two side crops with the orange background for SPD measurement, and the center crop with the light yellow background for the
other proposed quantitative evaluations.



Figure 14. A qualitative demonstration of one of our failure examples. When dealing with strong structural source texture on the right, our
full method didn’t outperform ours without random shuffling during training, and didn’t outperform Image Melding either.


