
Appendix

A. Proof of Proposition 1

Proposition 1. When the cyclic order strategy is used, co-

ordinate descent method is guaranteed to converge to a

coordinate-wise minimum of Problem (10) that ∀i, y∗
i =

argmin
α≥L̂

L(y∗
i + αei).

Proof. Note that L(y) is continuous and {L(yj)} con-

verges monotonically. Assuming that it converges to L∗

with limj→∞ L(yj) = L∗, we obtain that ∀α, i = 1, ..,m:

L∗ = L(yj−1) = L(yj) ≤ L(yj−1 + αei). (12)

Therefore, the right-handed side in (12) attains it minimum

at both 0 and (yj)i− (yj−1)i. Combining with the fact that

the subproblem only contains one unique global solution,

we have (yj−1)i = (yj)i. Since the coordinate i is picked

using cyclic order, we have: yj−1 = yj = y∗ and y∗ is a

coordinate-wise minimum point.

B. Proof of Lemma 2

Lemma 2. (Sufficient Decrease Condition) It holds that:

f(xt+1)− f(xt) ≤
−θ‖xt+1−x

t‖2
2

(xt+1)TCxt+1 .

Proof. We let B be the working set in the t-th iteration and

N , {1, 2, ..., n} \ B. Since we solve Problem (3) in the

t-th iteration, we have:

(h(xt+1
B ,xt

N ) + θ
2‖x

t+1
B − xt

B‖
2
2) / g(x

t+1
B ,xt

N )

≤ (h(z,xt
N ) + θ

2‖z− xt
B‖

2
2) / g(z,x

t
N ), ∀z ∈ R

k.

We let z = xt
B and combine with the fact that xt+1

N = xt
N ,

we have:

(h(xt+1
B ,xt+1

N ) + θ
2‖x

t+1 − xt‖22) / g(x
t+1
B ,xt+1

N )

≤ (h(xt
B ,x

t
N ) + 0) / g(xt

B ,x
t
N ).

Noticing the fact that h(xt
B ,x

t
N ) = 1

2 (x
t)TAxt and

g(xt
B ,x

t
N ) = 1

2 (x
t)TCxt, we have:

((xt+1)TAxt+1 + θ‖xt+1 − xt‖22) / ((xt+1)TCxt+1)

≤ ((xt)TAxt) / ((xt)TCxt).

Moreover, using the structure of the objective function f(·),

we obtain: f(xt+1)−f(xt) = (xt+1)
T
Ax

t+1

(xt+1)TCxt+1 −
(xt)

T
Ax

t

(xt)TCxt
≤

−θ‖xt+1−x
t‖2

2

(xt+1)TCxt+1 . Thus, we finish the proof of this lemma.

C. Proof of Theorem 2

We now prove the convergence properties of Algorith-

m 1. The following supermartingale convergence result is

useful in our analysis [31].

Lemma 3. [31] Let vt , ut and αt be three sequences of

nonnegative random variables such that

E[vt+1 | Ft] ≤ (1 +αt)vt − ut, ∀t ≥ 0 a.s.

and
∑∞

t=0 αt < ∞ a.s., (13)

where Ft denotes the collections {v0, ...,vt, u0, ...,ut,

α0, ...,αt}. Then, we have limt→∞ vt = χ for a random

variable χ ≥ 0 a.s. and
∑∞

t=0 ut < ∞ a.s.

We now present our main results.

Theorem 2. Convergence Properties of Algorithm 1. As-

sume that the subproblem in (3) is solved globally, and there

exists a constant σ such that xtCxt ≥ σ > 0 for all t. We

have the following results.

(i) When the random strategy is used to find the working

set, we have limt→∞ E[‖xt+1 − xt‖] = 0 and Algorithm 1

converges to the block-k stationary point in expectation.

(ii) When the swapping strategy is used to find the work-

ing set with k ≥ 2, we have limt→∞ ‖xt+1 − xt‖ = 0
and Algorithm 1 converges to the block-2 stationary point

deterministically.

Proof. We use x∗ and x̄ to denote any optimal point and

any block-k stationary point of (1), respectively. We use the

notation ξt for the entire history of random index selection:

ξt = {B0, B1, ..., Bt}

(i) We notice that Bt is independent on the past Bt−1,

while xt fully depends on ξt−1. Taking the expectation

conditioned on ξt−1 for the sufficient descent inequality in

Lemma 2, we obtain:

E[f(xt+1)|ξt]− f(xt)

≤ −E[
θ‖xt+1−x

t‖2
2

(xt+1)TCxt+1 |ξ
t]

(a)

≤ − θ
σ
E[‖xt+1 − xt‖22|ξ

t]

= − θ
σ

1
Ck

n

∑Ck

n

i=1 ‖P(B(i), x
t)− xt

B(i)
‖22

(b)
= − θ

σ
· M(xt) (14)

step (a) uses the assumption that xtCxt ≥ σ > 0, ∀xt

which clearly holds since C is strictly positive and xt 6=
0; step (b) uses the definition of M(xt) in Definition 1.

Therefore, we have:

E[f(xt+1) | ξt]− f(x∗) ≤ f(xt)− f(x∗)− θM(xt)
σ

(15)
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Figure 6 Accuracy of different methods on different data sets for sparse PCA problem with varying the cardinalities.
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Figure 7 Accuracy of different methods on different data sets for sparse FDA problem with varying the cardinalities.
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Figure 8 Accuracy of different methods on different data sets for sparse CCA problem with varying the cardinalities.

Using the supermartingale convergence theorem given in

Lemma 3 with vt = E[f(xt+1) | ξt] − f(x∗) ≥ 0 and

ut =
θM(xt)

σ
, we have

limt→∞ f(xt)− f(x∗) = χ a.s.

for a certain random variable χ ≥ 0 and thus the sequence

f(xt) converges to a random variable F̄ = χ + f(x∗). In

addition, we have limt→∞ f(xt) − f(xt+1) = 0 almost

surely. From (14), we have

limt→∞ M(xt) = 0, limt→∞ ‖xt − xt+1‖ = 0.

Therefore, the algorithm converges to the block-k stationary

point. Summing the inequality in (14) over i = 0, 1, ..., t−
1, we have:

θ
σ
·
∑t

i=0 M(xi) ≤ f(x0)− f(xt).

Using the fact that f(x∗) ≤ f(xt), we obtain:

θ
σ

∑t

i=0 E[‖M(xi) | ξi] ≤ f(x0)− f(x∗)

⇒ mini=1,...,t E[M(xi) | ξi] ≤ σ(f(x0)−f(x∗))
tθ

.

We conclude that xt converges to the block-k stationary

point with mini=1,...,t E[M(xi) | xi] ≤ O(1/t).
(ii) We now prove the second part of this theorem. We

have the following inequalities:

f(xt+1)− f(xt) ≤ −
θ‖xt+1−x

t‖2
2

(xt+1)TCxt+1

≤ − θ
σ
‖xt+1 − xt‖22

Summing this inequality over i = 0, 1, ..., t− 1, we have:

θ
σ
·
∑t

i=0 ‖x
i+1 − xi‖22 ≤ f(x0)− f(xt)

⇒ mini=1,...,t ‖x
i+1 − xi‖22 ≤ σ

θ

f(x0)−f(x∗)
t

.

Using the fact that f(x∗) ≤ f(xt), we have

limt→∞ ‖xt+1 − xt‖ = 0. Therefore, Algorithm 1 is con-

vergent when swapping strategy is used.

We now prove that Algorithm 1 convergence to a block-2

stationary point x̄. Since Algorithm 1 is monotonically non-

increasing and converges to a stationary point x̄ such that

no decrease is made, we have Di,j ≥ 0 for (4). Therefore,

it holds that minα f(x̄ + αei − (x̄)jej) ≥ f(x̄), ∀i ∈
S̄(x̄), j ∈ Z̄(x̄). We have the following result: f(x̄) ≤
f(x̄+d), ∀d with ‖d− x̄‖0 = 2. Therefore, x̄ is a block-2

stationary point.

D. Additional Experiments

We demonstrate the experimental results on the random-

ized generated data sets for sparse PCA, sparse FDA, and

sparse CCA in Figure 6, 7 and 8, respectively. These results

further consolidate our conclusions drawn in Section 7.


