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The supplementary material provided in this document is
organized as follows. In Section 1, we present the proofs for
the lemmas and propositions stated in the main manuscript.
In Section 2 our theoretical results are validated by perform-
ing experiments on real and synthetic data. Finally, in Sec-
tion 3, further experiments are provided to investigate the
performance of the proposed approach on several different
real datasets.

1. Proofs
Proof of Lemma 1: The inner product between data points
of am’s and v can be calculated as the elements of Av.
Taking the SVD ofA, we have A = UΣV T and

|Av| = |UΣV Tv| = σ1|u|.

Here, |.| means the element-wise absolute value operation.
Since ‖u‖2 = 1, there exist at least one element in u (de-
note as ui) for which |ui| ≥ 1√

M
. Therefore,

|vTai| ≥
σ1√
M
. (1)

This clearly leads to

max
m
|vTam| ≥

σ1√
M
. (2)

Proof of Proposition 1:
According to Lemma 1, there exists a data point i for

which (1) holds. Given that v has unit length and the rows
ofA are normalized we have

|ρi| =
|vTai|
||v||2||ai||2

≥ σ1√
M

=
σ1
‖A‖F

= ROM(A),

where ρi is the correlation between two vectors v and ai

and ‖A‖F =
√∑M

j=1 ||aT
j ||22 =

√
M . Accordingly,

max
m
|ρm| ≥ ROM(A). (3)

∗indicates shared first authorship.

Proof of Lemma 2:
First we compute the derivative of ith eigenvector in

terms of matrix C [5],

∂vi = (σ2
i I − C)+∂Cvi, (4)

where (.)+ indicates the MoorePenrose inverse operator.
Matrix σ2

i I − C is singular and its MoorePenrose inverse
can be written as follows,

(σ2
i I − C)+ = V ΣiV

T ,

where, diagonal elements of Σi is equal to 1/(λ − λi) ex-
cept the ith diagonal element which is equal to 0. Vector λ
includes the eigenvalues of C. Taking `2 norm from both
side of (4) we have

‖∂vi‖2 = ‖V ΣiV
T∂Cvi‖2

≤ ‖Σi‖F ‖∂C‖F =

√∑
j 6=i

1

(λi − λj)2
‖∂C‖F .

Note that V is unitary and vi is normalized and σ2
i = λi.

Proof of Proposition 2: Obviously λ1 > λ2 implies that
s1 < s2. Let us write the expansion of s1 and si for i > 2.

s1 =
1

(λ1 − λ2)2
+

1

(λ1 − λ3)2
+ · · ·

1

(λ1 − λi)2
+ · · ·+ 1

(λ1 − λN )2

si =
1

(λi − λ1)2
+

1

(λi − λ2)2
+ · · ·+ 1

(λi − λN )2

The (i − 1)th term of s1 is equal to the first term of si. As
eigenvalues are sorted in descending order, ith to N th terms
of s1 are less than ith to N th terms of si, correspondingly.
Thus it is sufficient to show that,

i−1∑
j=2

1

(λ1 − λj)2
<

i−1∑
j=2

1

(λj − λi)2
.

Which is immediately concluded if the gap between con-
secutive eigenvalues is decreasing.
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2. Validating the theoretical results

In this section, we demonstrate the theoretical bounds
derived in the main manuscript, and robustness of the pro-
posed algorithm to outliers. In addition, we verify that time
complexity of IPM is linear w.r.t. the number of original
data in real simulations.

Lower Bound:
To verify the lower bound stated in Proposition 1, we ran
experiment using 60,000 samples from MNIST handwritten
digits dataset. Figure 1 shows the correlation between the
selected sample at each selection iteration and the first right
singular vector. As it can be seen, ROM(Ã) is the lower
bound for max(|Ãv|). Our selection algorithm chooses
the sample point corresponding to the maximum correlation
of samples, with the first singular vector, i.e., max(|Ãv|),
and its lower bound indicated by ROM(Ã) in each iteration
of selection. Moreover, 60,000 random samples with rank
equal to 501 by the same dimension of MNIST are gener-
ated. The gap between the lower bound and the obtained
correlation of the selected sample is huge for the random
data. However, for the real structured samples of MNIST
dataset a tighter lower bound is obtained.
Effect of Outliers:
The influence of outliers on the eigenvectors of the auto-
correlation matrix is studied in Figure 2. The first, sec-
ond, and third eigenvectors using 5000 samples of MNIST
handwritten digit dataset. These eigenvectors are computed
again after adding outlier from MNIST fashion dataset con-
taminated with noise with PSNR of +15 dB. The correlation
between before and after adding outliers are calculated and
plotted in this figure. As it can be seen the first eigencevtor
is still 94% correlated after adding 2000 outliers, i.e., 40%
of inlier samples.

The sensitivity coefficient for the first 25 eigenvector of
MNIST handwritten dataset is shown in Figure 3. It is also
plotted for random rank-50 data in 784 dimensional space
for 60,000 synthesized samples. A small perturbation on
matrixC is added and the ratio of `2 norm of changes of vi
and Frobenius norm of changes of C is plotted. As Lemma
2 suggests, si is an upper bound for sensitivity. Moreover,
our simulations and theoretical results consistently indicate
that the first eigenvector is absolutely the most robust direc-
tion.

In this experiment, we analyze the correlation of the se-
lected submatrices before and after adding outliers for UCF
101 dataset. Projection error of data selection is reported in
Table 1. The selection is performed to select 5 samples out
of 2000 samples. The introduced cost function in Equation
(2) of the main manuscript is evaluated for the proposed
selection algorithm and three other methods and it is nor-
malized to Frobenius norm of the matrix of original data.

1 The rank of the matrix of all MNIST samples is approximately 50.
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Figure 1: The maximum correlation of the first singular vector
with sample points and its lower bound for MNIST handwritten
dataset and a random 784× 60, 000 matrix with rank-50.
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Figure 2: Robustness of the first Eigenvector to outliers.
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Figure 3: Sensitivity of eigenvectors w.r.t. changes in the auto-
correlation matrix.

Extracted features from the pre-trained Kinetics-400 are ex-
ploited for selection where each feature is 512 dimensional.
Random data from a 20 dimensional subspace are concate-
nated with the features as structured outliers. Our selec-
tion algorithm indicates the most accurate selection for both
clean and contaminated data. After adding outliers the se-
lection will be a different submatrix reduced from the orig-
inal data. The correlation of the reduced submatrix before
and after adding outliers are plotted in Figure 4. Correlation
of two matrices with the same size is computed by,

corr(A1,A2) = trace(AT
1A2)/(‖A1‖F ‖A2‖F ).

DS3 shows the most consistent selection after adding
outlier and IPM performs closely. However, IPM selects
more accurate subset in terms of projection error as Table
1 demonstrates even after adding outliers. Please note that
IPM is much faster than other algorithms. DS3 and SMRS
can not be performed for large number of samples.

Finally, Figure 5 shows the running time for selecting 5
representatives from M samples. This experiment is per-



Table 1: Effect of outliers on the normalized projection error for
selection of 5 representatives from extracted features of 2000 sam-
ples of UCF-101 dataset.

# Outliers 0 (clean) 100 200 300 400 500
K-mdoids 0.571 0.576 0.583 0.59 0.598 0.606
SMRS 0.638 0.643 0.649 0.655 0.661 0.669
DS3 0.603 0.608 0.614 0.621 0.628 0.639
IPM 0.557 0.569 0.582 0.598 0.615 0.627
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Figure 4: Correlation of the selected submatrices before and after
adding outliers.
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Figure 5: Running time comparison versus the number of sample
points in the dataset.

formed using Intel Xeon 3.7 GHz in Matlab 2018a. This
figure confirms that for large M the complexity of our al-
gorithm is linear while DS3 and SMRS are with complexity
of O(M3). K-medoids performs selection with complexity
order of O(KN(M −K)2) [8].

3. Further Experiments
In this section, more experiments are provided to further

investigate the performance of the proposed approach and
to support the arguments presented in the main manuscript.
The implementation details are the same as in the main
manuscript, unless otherwise noted.

3.1. Finding Representatives for Multi-PIE Dataset

Figure 7 compares average projection error of different
selection algorithms for supervised selection of K samples
from each subject. Data are embedded into 200 dimensional
space using PCA before performing selection. The projec-
tion error is averaged over all 249 subjects. The average
error is divided by the average error of random selection in
order to emphasis the gain of each selection algorithm. As
it can be seen, our proposed algorithm achieves the lowest
normalized projection error. In other words, the selected

samples cover the space of each subject more accurately.
The running time of selection from Multi-PIE dataset is
shown in Figure 8. IPM performs up to 4 order of mag-
nitude faster than DS3 algorithm while its performance is
higher.

Next, an unsupervised experiment on Multi-PIE Face
Database is performed, in order to show superiority of our
proposed selection from a multi-class dataset, when the la-
bels are not given. 2600 data samples from the first 5 sub-
jects of Multi-PIE Face Database are put in a pool to select
20 samples. Figure 9 shows the number of selected samples
from each subject. IPM demonstrates the most uniform se-
lection from different subjects. Next, we consider a pool of
samples consisting of 2500 samples from 25 subject, i.e.,
100 samples from each subject. Figure 10 shows standard
deviation of number of selected samples from each subject.
IPM is the least biased algorithm toward a specific subject
and its selection is more uniform.

Finally, Figure 6 shows the generated images of two
more subjects in the testing set, using the trained network on
the reduced dataset, as well as using the complete dataset.
The implementation details are provided in Section 4.2.2
of the main manuscript. The network trained on samples
selected by IPM (fourth row) is able to generate more re-
alistic images, with fewer artifacts, compared to other se-
lection methods (rows 1-3). Furthermore, compared to the
results using all the data (row 5), it is clear that IPM-reduced
dataset generates the closest results to the complete dataset.

3.2. Finding Representatives for ImageNet Dataset

Figure 11 shows the selected samples using IPM and
K-medoids from different classes of the ImageNet train-
ing set. DS3 and SMRS are too computationally expen-
sive and do not generate results for ImageNet in a tractable
time. In this experiment, 5 images are selected as the
representatives from each class. The implementation de-
tails are the same as given in Section 4.2.4 in the main
manuscript. For each class, top row shows the images se-
lected by IPM and bottom row shows the images selected by
K-medoids. IPM-selected images are sorted by the order of
selection, left-most sample being the first selected sample.
Images selected by IPM are less cluttered with other ob-
jects and more representative of their corresponding classes.
This leads to better classification accuracy, when the IPM-
reduced representatives are used as the only labeled data
available. This is demonstrated and discussed in Table 4 of
the main manuscript. On the other hand, K-medoids, and
other diversity-based selection methods, may select outliers
or samples that may not be useful for classificaton task.

3.3. Finding Representatives for UCF-101 Dataset

Table 2 shows the classification accuracy of ResNet18
trained using the representatives selected by different meth-



Figure 6: Multi-view face generation results for two sample subjects in Multi-PIE [3] testing set using CR-GAN [7]. The network is
trained on reduced training set (9 images per subject) using random selection (first row), K-medoids (second row), DS3 [2] (third row),
and IPM (fourth row). The fifth row shows the results generated by the network trained on all the data (360 images per subject).

Samples per class 1 2 3 4 5 6 7 8 9 10
Random 54.6 64.7 69.2 70.5 72.9 74.0 76.0 75.6 76.0 77.0
K-medoids 61.0 67.7 69.4 70.9 71.7 72.0 72.5 75.2 73.6 73.5
DS3[2] 60.8 69.1 74.0 75.2 74.9 75.3 75.8 77.0 77.6 76.6
IPM 65.3 72.6 74.9 77.6 77.0 78.5 78.4 78.4 79.0 78.2

Table 2: Accuracy (%) of ResNet18 on UCF-101 dataset, trained using only the representatives selected by different methods. The
accuracy using the full training set (9537 samples) is 82.23%.
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Figure 7: The ratio of averaged projection error of selection us-
ing a selection algorithm to averaged projection error of random
selection for selecting K representative for each subject of Multi-
PIE Face Database. Ratios are averaged for all 249 subjects of the
database.
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Figure 8: Running time over Multi-PIE dataset for selecting 10
representatives from a pool of M samples.

ods (extended version of Table 3 in the main manuscript).
We compare IPM with DS3[2], K-medoids, and random se-
lection as the baseline. To achieve accuracy of 77%, the
closest competitor, i.e. DS3, requires 8 samples per class,
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Figure 9: The number of selected samples from each subject in
unsupervised selection.
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Figure 10: Standard deviation of number of selected samples
from each subject. In the case of exact equal number from each
subject, the standard deviation is zero.

while IPM achieves the same accuracy using half of that
data. IPM adds the samples that contain the most informa-
tion about the previously unseen space. This is because it
selects the samples that are maximally correlated with the
null space of currently selected samples. In contrast, meth-
ods such as K-medoids, that do not consider the current se-
lected samples fail to find the most critical samples, as we
collect more samples.



(a) Screwdriver (b) Siberian husky

(c) Cleaver (d) Hatchet

(e) Organ, pipe organ

Figure 11: Selected images by IPM (first row) and K-medoids (second row) from three sample classes of ImageNet [1]. Note that the
IPM-selected samples are less cluttered with other objects, making them better representatives of the class.

This can be illustrated by t-SNE [4] visualization of the
selection process. Figure 12(Left) shows the 2D embed-
ding of the points and the decision function learned by
an SVM of different randomly selected pairs of UCF-101
dataset. On the right, the decision function learned by the
same classifier, trained only on a few representatives, is
demonstrated. This experiment demonstrates the fact that
the representatives selected by IPM contain more informa-
tion about the structure of the data. Compared to other se-
lection methods and using the same number of samples, de-
cision function learned by the classifier trained on the IPM-
selected samples looks more similar to the decision function
learned from all the data. This results in more accurate clas-
sification, as reported in Table 2.

For a more qualitative investigation, Figure 13 shows
frames from the first selected representative by IPM (top
row) and DS3 (bottom row) for a few classes of UCF-101
dataset. In this experiment, the first selected representative
by K-medoids is the same as DS3 for all the classes. In
general, in the clip selected by IPM, the critical features of
the action, such as barbell, violin, kayak, and bow, are more
visible and/or the bounding box for the action is bigger.

3.4. Video Summarization on UT Egocentric
Dataset

The ROUGE score for video summarization task on UT
Egocentric dataset was reported in the main manuscript. As
reported Table 5 of the main manuscript, our selection al-
gorithm shows the closest performance to the summariza-
tion provided by human among unsupervised methods. This
section provides more detail of selection from the first video
of UT Egocentric dataset as an example. Figure 14 shows
24 selected scenes of the first video using IPM. The selected
scenes cover the story of the whole video which is about 4
hours. Figure 15 demonstrates the textual representation of
a summary created by IPM versus three different human-
provided reference summaries. It is worthwhile to mention
that the reference summaries contain sentences that are not
in the annotation. Thus, they do not contain repetitive sen-
tences and some of their sentences will never be selected by
any selection algorithm.
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Figure 12: t-SNE visualization [4] of different randomly selected
pairs of classes of UCF-101 dataset and their representatives se-
lected by different methods. (Left) Decision function learned by
using all the data. The goal of selection is to preserve the structure
with only a few representatives. (Right) Decision function learned
by using 2 (first column), 5 (second column), and 10 (third col-
umn) representatives per class, using K-medoids (first row), DS3
[2] (second row), and IPM (third row). IPM can capture the struc-
ture of the data better using the same number of selected samples.

(a) Clean and Jerk

(b) Kayaking

(c) Playing Violin

(d) Breast Stroke

(e) Archery

Figure 13: Frames of the selected video clips by IPM (top row)
and DS3[2] (bottom row), for a few sample classes of UCF-101
dataset[6]. Different actions are more visible and/or less cluttered,
in the clip selected by IPM.



restaurant transit restaurant transit at the mall at home
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Figure 14: Two minutes summarization of the first video of UTE Egocentric dataset. The summarized annotations capture the story of
the original video which is 232 minutes long. 24 clips each being 5 seconds long are selected.

Reference 1 Reference 2 Reference 3 IPM

restaurant
(39 minutes)

My friend and I sat at the table and 
ate a meal together. I opened the 
laptop. My friend and I sat at the 
table and talked.

I waited in line with my friend. I 
used the card machine to pay. I 
walked through the grocery 
store with my friend. My friend 
and I sat at the table and ate a 
meal together. My friend and I 
sat at the table and talked. 

I waited in line with my friend. My 
friend and I sat at the table and 
ate a meal together. I walked 
down the street with my friend.

I watched my friend eat. My friend and I 
sat at the table and ate a meal together 
(x2). 

transit
(11 minutes)

I walked outside. I went down 
the escalator. I drove the car. I 
walked into the store. I walked 
through a cafe. 

I walked through the store with 
my friend. I walked through the 
parking garage. I drove the car. I 
walked into the store.

I drove the car. 

restaurant
(59 minutes)

I used the laptop. I dipped my tea 
bag. I looked at the tablet. I wrote on 
my notepad. I drank tea.

I looked at my laptop while 
talking to my friend. My friend 
and I sat at the table and 
talked. I wrote on my notepad. I 
sat at the table with my friend 
and drank tea. 

I put my things down on the table. 
I looked down at my laptop. I paid 
for items at the register. I sat at a 
table with my friend and looked 
at a paper. My friend and I sat at 
the table and talked.

I sat in front of my laptop. I talked to my 
friend and looked at my laptop and 
phone. I wrote on my notepad. My 
friend and I sat at the table and talked
(x3). I looked at the cell phone. 

transit
(18 minutes)

I drove the car. I drove the car. I parked the car. I 
walked into the mall.

I drove the car.  

at the mall
(31 minutes)

I walked into the mall. I looked at 
shoes on the wall. I looked at 
sunglasses. I watched children 
bounce on the trampoline. I looked at 
the games.

I walked into the mall. I looked 
at shoes on the wall. My friend 
and I looked at the sunglasses. I 
walked through the mall with 
my friend. I watched children 
bounce on the trampoline. I 
walked through the video game 
store. 

I walked through the mall and 
talked to my friend. My friend and 
I walked around the mall.

I looked at shoes on the wall. I walked 
in the store. I looked at the booth of 
glasses. I looked at the people on the 
bungee cords. I looked at DVDs. 

at home
(68 minutes)

I used the rice cooker. I cut onions. I 
peeled a potato. I added a new 
ingredient to the cooking pot. I stirred 
the ingredient into the cooking pot. I 
sliced the cucumber. I chopped up 
the green onions. I added some 
spices to the cooking pot. I put some 
rice into the bowl. I added some food 
to my bowl. I watched television 
while eating my meal.

I washed dishes. I sliced onions. 
I peeled the potato. 

I washed the dishes. I filled the 
pot with water from the sink and 
placed it on the counter. I 
chopped up vegetables with a 
knife. I stirred the ingredient into 
the cooking pot. I added some 
food to my bowl with the 
chopsticks. I washed the dishes in 
the sink.

I sliced onions. I peeled a potato. I 
removed the anchovies from the pot 
with a fork. I ate my meal. I used the 
television remote. I picked up some 
wipes. I rinsed the debris in the sink 
down the drain. 

Figure 15: The details of subjective textual summarization by three Reference subjects versus the summarized annotations using IPM.
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