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1. Outputs of Stacked Network

Below we present the intermediate outputs of our Stack-
VMPHN. Figure 1 shows that the performance is optimized
level by level, which is consistent with the behaviour of
Stack-DMPHN. We also provide more instances for Stack-
DMPHN to demonstrate its process in Figure 2.
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Figure 1. The outputs for different sub-models of Stack(3)-
VMHPN. From left to right are the outputs of M; to M.
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Figure 2. The outputs for different sub-models of Stack(3)-

DMHPN. From left to right are the outputs of M; to M.

2. Extension to Saliency Detection

We perform saliency detection with our proposed model
to investigate the generalization ability on different tasks.
Our proposed model is evaluated on the MSRA-B dataset.
This dataset consists of 3000 images for training and 2000
images for testing. Note that all current deep methods of
saliency detection highly depend on VGG or ResNet pre-
trained on ImageNet and these methods often will not con-
verge without pre-training on ImageNet. By contrast, our
network can be easily trained from scratch. It outperforms
all conventional methods and it is real-time. We evaluated
single VMPHN for quantitative analysis. To make our net-
work compatible with the saliency detection task, the output
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Figure 3. Instances of saliency detection on the MSRA-B dataset.

channel is modified to 1 for gray image generation, and the
residual connection between input and output at level 1 is
disabled in VMPHN. Figure 3 and Table 1 show our results.

Table 1. Quantitative analysis of saliency detection on MSRA-B.

For Fjg, higher scores are better. For MAE, lower scores are better.
Model | [2] [4] [3] [1] [5] | OURS
Fs 728 | 751 | 723 | 717 | 713 | .768
MAE | .123 | .117 | .121 | .144 | .161 | .107
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