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1. Complexity Analysis for the Losses

Computational analysis for our sampling and inference
procedures are provided below. We look at the case
where the subject s; is fixed and we vary object for posi-
tive/negative pairings. The reverse case (object fixed, sub-
ject varies) has the same complexity. All sampling is con-
ducted on the entities of a single image per batch. The set
of entities include ground truth bounding boxes, as well as
any detector output with > 0.5 IOU to ground truth entities.

For the Class Agnostic Loss L1, the computational com-
plexity of the sampling procedure is O(N?), where N is the
upper bounded on number of sampled entities per image. In
practice, for each subject, we randomly sample at most K
non-related objects (negative pairings), which makes the ac-
tual complexity O(NK).

For the Entity Class Aware Loss Lo, the sampling pro-
cedure is the same as with L, except that we need to keep
only those non-related objects that are of class c, i.e., the
object class of the current o in the sampled (s, o) pair.
This involves a filtering operation on the K objects which
takes O(K) time, therefore the overall complexity is still
O(NK).

The analysis for the Predicate Class Aware Loss Lg is
similar to that of Lo, except that the filtering operation looks
at the predicate class e instead of the object class c. The
overall complexity is also O(NK).

We set N = 512 and K = 64 per batch in practice.

2. Full Results on VG and VRD

We present full experimental results compared with all
previous competitive methods on Visual Genome (VG) and
Visual Relation Detection (VRD) datasets in Table 1 and
Table 2. We also show results of the baseline RelDN with-
out our Graphical Contrastive Losses (Lq only).

On VG, we observe that our losses achieve smaller gains
over cross-entropy loss than it does on Openlmages_mini
(Table 1,2 in the main paper). The reasons are two-fold: 1)
One of the few dominant relationship types in VG is posses-
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Figure 1: The lateral connections for predicate CNN features. P2-
PS5 are fixed and used as entity detector features, while Q2-QS are
predicate features, which are trained to transform entity features
to features for predicates.

sive, e.g., “ear of man”, which has much less entity confu-
sion issues; 2) The Recall@k metric is less strict than mAP.
If there is an image with only one ground truth, then Re-
call@100 will always be 100% as long as this ground truth
target is within the top 100 model predictions, regardless of
the ranking of the 100 outputs. As such, the small improve-
ments in ranking the top 100 will not affect the score. Nev-
ertheless, the improvements by our loss is still non-trivial
and consistent on all metrics under different values of k.

For the interest of future work, we also show results us-
ing a better backbone, ResNeXt-101-FPN [8, 4] for the en-
tity detector in Table 1.

On VRD, the gap between L only and the full model
is smaller when pre-trained on ImageNet than on COCO
detection. We believe the stronger localization features
from pre-training on COCO is much easier for our proposed
model and losses to leverage.



Graph Constraint

No Graph Constraint

SGDET SGCLS PRDCLS SGDET SGCLS PRDCLS
Recall at 20 50 100 | 20 50 100 | 20 50 100 | 50 100 | 50 100 | 50 100
VRDI[5] - 03 05 - 11.8 14.1 - 279 350 - - - - - -
Associative Embedding[6] 65 8.1 82 | 182 218 226|479 541 554 | 97 113 ]265 300|680 752
Message Passing[9] - 34 42 - 21.7 244 - 448 53.0 - - - - - -
Message Passing+[12] 146 20.7 245|317 346 354|527 593 613|220 274|434 472|752 83.6
Frequency[12] 17.7 235 27.6 | 277 324 340|494 599 641|253 309|405 437|713 812
Frequency+Overlap[12] 20.1 262 30.1 | 293 323 329|536 606 622|286 344|390 434|757 829
MotifNet-NOCONTEXT[12] 21.0 262 29.0 | 319 348 355|570 637 656 |29.8 347|434 46.6 | 788 859
MotifNet-LeftRight[12] 214 272 303|329 358 365|585 652 671|305 358|445 47.7 | 8l.1 883
RelDN, L, only 208 28.1 325|361 367 367|667 683 683 |30.1 364|489 50.8 | 937 977
RelDN 21.1 283 327|361 368 368|669 684 684 | 304 367|489 50.8| 938 978
RelDN (X-101-FPN) 225 310 367|382 389 389|672 687 688|326 400|517 536|940 978

Table 1: Comparison with state-of-the-arts on VG. Lo only is the ReIDN without our losses. We also include results of our model with

ResNeXt-101-FPN as the backbone for future work reference.

Relationship Phrase Relationship Detection Phrase Detection
free k k=1 k=10 k=70 k=1 k=10 k=70

Recall at 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100
PPRFCN*[13] 1441 1572 19.62 23.75 - - - - - - - - - - - -
VTransE* 14.07 1520 1942 2242 - - - - - - - - - - - -
SA-Full*[7] 15.80 17.10 17.90 19.50 - - - - - - - - - - - -
DR-Net*[1] 17.73  20.88 19.93 2345 - - - - - - - - - - - -
ViP-CNN[2] 17.32 20.01 2278 2791 | 17.32 20.01 - - - - 22778 2791 - - - -
VRLI[3] 18.19 20.79 21.37 22.60 | 18.19 20.79 - - - - 21.37 22.60 - - - -
CAT*[14] 20.14 2339 23.88 25.26 - - - - - - - - - - - -
KL distilation[11] 22.68 31.89 2647 29.76 | 19.17 2134 2256 29.89 22.68 31.89 | 23.14 24.03 2647 29.76 2632 29.43
Zoom-Net[10] 21.37 2730 29.05 37.34 | 1892 2141 - - 21.37 2730 | 24.82  28.09 - - 29.05 37.34
CAI + SCA-M[10] 2234 2852 29.64 38.39 | 19.54 2239 - - 2234 2852 | 2521 28.89 - - 29.64 38.39
RelDN, L, only (ImageNet) 21.62 26.12 2859 35.18 | 19.57 22.61 21.62 26.12 21.62 26.12 |26.39 31.28 2859 3518 2859 35.18
RelDN (ImageNet) 21.52 2638 2824 3544 | 19.82 2296 21.52 2638 2152 2638|2637 31.42 2824 3544 2824 3544
RelDN, L only (COCO) 26.67 3255 3329 4125|2430 2791 2667 3255 26.67 3255 |31.09 3642 3329 4125 3329 41.25
RelDN (COCO) 28.15 3391 3445 4212 | 2529 28.62 28.15 3391 2815 3391 | 31.34 3642 3445 42.12 3445 42.12

Table 2: Comparison with state-of-the-art on VRD (— means unavailable / unknown). Same with Table 1, Lo only is the Re]lDN without
our losses. “Free k” means considering k as a hyper-parameter that can be cross-validated.

Ly Li L, L3|R@50 mAP,;, mAP,, score mAP,, mAP;,”, score”
v 7467 3528 4104 4546 3387 3899 4408
Vv 7506 4418 5019 5276 3524 4030 4523
v v 7464 3619 4171 4609 3467  39.61 4464
v v | 7488 3480 4047 4508 3492 4001 4495
VARV 7503 3510 4118 4552 3509 4022 4513
v v v | 7530 4396 4961 5249 3489  39.87  44.96
v Vv | 7500 3583 4132 4586 3462 3970  44.73
VOV v V| 7494 3909 4447 4841 3582 4043 4549
Table 3: Ablation Study on our losses with the official mAP,..,

mAP,;, and score metrics. Metric marked with a * means the
predicate “under” and “hits” are excluded from evaluation. The
fluctuating numbers in mAP;..;, mAP,;, and score indicate that
the mAP metrics are unstable and unreliable, while when “under”
and “hits” are excluded, all the results become consistent with Ta-
ble 1 in the main paper.

3. Results Under the Official mAP metrics

In our main paper, we use a class-frequency weighted
mAP (wmAP) for model comparison, with the aim of de-
emphasizing the classes with only a handful of test exam-
ples (specifically “under” and “hits”). This is because their
small sample size resulted in extremely large variances be-
tween runs. Here, we show our ablation studies using the of-
ficial uniform-class-weighting evaluation metrics, mAP, ..,
mAPpy,, and score, as defined in Section 6.1 in the main pa-

%

per. We also include mAP,,, mAP;hT and score”, which is
the standard mAP and score excluding “under” and “hits”
in the evaluation. Table 3 presents ablation study results on
loss components, corresponding to Table 1 in the paper. Ta-
ble 4 shows comparison between the Ly-only model against
the model with our losses on the 100 selected images, corre-
sponding to Table 2 in the paper. In Table 3 the variation of
numbers using mAP and score demonstrates the necessity
of de-emphasizing the extremely infrequent classes. Note
that the mAP*-based columns show a similar trend to our
wmAP-based results from the paper. In Table 4, the model
with our losses is still better than the Lj-only model by a
non-trivial margin, mainly because the former outperform
the latter on almost every per-class AP metric for those 5
selected classes. Note that since “under” and “hits” are not
in the 100 image subset, there is no need to evaluate with

mAP,__;, mAPphr and score .

4. An Alternative for the Predicate CNN

We want to answer a natural question about the predicate
CNN branch: can we use a less expensive feature extractor
for predicates instead of a full CNN branch? We follow
the idea of FPN [4] and add laterally connected layers to



[ R@50 mAP,q mAP,,, score

Lo 61.72 25.20 3537  36.57
Lo+ Ly +Ly+ Lz | 62.65  26.77 36.79  37.95

Table 4: Comparison of our model with Graphical Contrastive
Loss vs. without the loss on 100 images containing the 5 classes
that suffer from the two aforementioned confusions, selected via
visual inspection on a random set of images. The metrics are the
official mAP,..;, mAP,, and the score. The “under” and “hits”
predicates are not in this 100 image subset.

[ R@50 wmAP,o; WMmAP,u,  SCOTeuwq

ImageNet init | 74.82 34.93 37.96 44.12
entity detector | 74.85 35.06 38.15 44.25
obj transform | 75.03 35.21 38.12 44.34

fully trained | 74.94 35.54 38.52 44.61

Table 5: Predicate branch comparison on Ol_mini. “obj transform”
means using the lateral connected layers as the predicate feature
extractor. All other abbreviations are the same with Table 5 in the
main paper.

the entity detector’s CNN layers, which are trained to trans-
form entity features to predicate-relevant features. Figure 1
illustrates these layers.

Table 5 shows that using lateral connections to trans-
form entity features is better than using fixed entity features,
but still inferior than the separate predicate CNN, which
demonstrates necessity of the latter.

5. Qualitative Results

In Figure 2 we provide four example images where our
losses correct the false predictions made by the Ly only
model. Both the Entity Instance Confusion and the Proxi-
mal Relationship Ambiguity issues are included here. In the
fourth row, the Ly only model is confused between two en-
tity instances, i.e., which person is holding the microphone,
while our losses manage to refer to the correct one. In the
third row the relationship between the guitar player and the
drum is ambiguous. Here, the Ly only model fails by pre-
dicting a false-positive, but our model trained with all losses
correctly detects no relationship there.

6. Examples of the 100 Image Subset

Figure 3 shows several examples, randomly selected
from the 100 image subset that we use to demonstrate the
advantage of our losses (described in Section 6.2 of the
main paper). These images contain very challenging rela-
tionships such as two women holding two cellphones while
sitting very closely to each other, or three men interacting
with (riding on) three horses where two of them are oc-
cluded since they are very close.
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Figure 2: Example images where RelDN with only Lo predicts incorrectly while our loss succeeds. For each image we check the number
of its ground truth relationships, then we output the same number of top predictions from a model to see its ranking accuracy. Red boxes in
(b) highlight the false predictions from RelDN with L only and green boxes in (c) highlight the correct ones from RelDN with all losses.
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Figure 3: Example images of the 100 image subset with ground truth relationships. The subset contains five predicates where the Entity
Instance Confusion and Proximal Relationship Ambiguity commonly occur.



