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1. Complexity Analysis for the Losses
Computational analysis for our sampling and inference

procedures are provided below. We look at the case
where the subject si is fixed and we vary object for posi-
tive/negative pairings. The reverse case (object fixed, sub-
ject varies) has the same complexity. All sampling is con-
ducted on the entities of a single image per batch. The set
of entities include ground truth bounding boxes, as well as
any detector output with > 0.5 IOU to ground truth entities.

For the Class Agnostic Loss L1, the computational com-
plexity of the sampling procedure is O(N2), where N is the
upper bounded on number of sampled entities per image. In
practice, for each subject, we randomly sample at most K
non-related objects (negative pairings), which makes the ac-
tual complexity O(NK).

For the Entity Class Aware Loss L2, the sampling pro-
cedure is the same as with L1, except that we need to keep
only those non-related objects that are of class c, i.e., the
object class of the current o in the sampled (s, o) pair.
This involves a filtering operation on the K objects which
takes O(K) time, therefore the overall complexity is still
O(NK).

The analysis for the Predicate Class Aware Loss L3 is
similar to that of L2, except that the filtering operation looks
at the predicate class e instead of the object class c. The
overall complexity is also O(NK).

We set N = 512 and K = 64 per batch in practice.

2. Full Results on VG and VRD
We present full experimental results compared with all

previous competitive methods on Visual Genome (VG) and
Visual Relation Detection (VRD) datasets in Table 1 and
Table 2. We also show results of the baseline RelDN with-
out our Graphical Contrastive Losses (L0 only).

On VG, we observe that our losses achieve smaller gains
over cross-entropy loss than it does on OpenImages mini
(Table 1,2 in the main paper). The reasons are two-fold: 1)
One of the few dominant relationship types in VG is posses-
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Figure 1: The lateral connections for predicate CNN features. P2-
P5 are fixed and used as entity detector features, while Q2-Q5 are
predicate features, which are trained to transform entity features
to features for predicates.

sive, e.g., “ear of man”, which has much less entity confu-
sion issues; 2) The Recall@k metric is less strict than mAP.
If there is an image with only one ground truth, then Re-
call@100 will always be 100% as long as this ground truth
target is within the top 100 model predictions, regardless of
the ranking of the 100 outputs. As such, the small improve-
ments in ranking the top 100 will not affect the score. Nev-
ertheless, the improvements by our loss is still non-trivial
and consistent on all metrics under different values of k.

For the interest of future work, we also show results us-
ing a better backbone, ResNeXt-101-FPN [8, 4] for the en-
tity detector in Table 1.

On VRD, the gap between L0 only and the full model
is smaller when pre-trained on ImageNet than on COCO
detection. We believe the stronger localization features
from pre-training on COCO is much easier for our proposed
model and losses to leverage.
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Graph Constraint No Graph Constraint
SGDET SGCLS PRDCLS SGDET SGCLS PRDCLS

Recall at 20 50 100 20 50 100 20 50 100 50 100 50 100 50 100
VRD[5] - 0.3 0.5 - 11.8 14.1 - 27.9 35.0 - - - - - -
Associative Embedding[6] 6.5 8.1 8.2 18.2 21.8 22.6 47.9 54.1 55.4 9.7 11.3 26.5 30.0 68.0 75.2
Message Passing[9] - 3.4 4.2 - 21.7 24.4 - 44.8 53.0 - - - - - -
Message Passing+[12] 14.6 20.7 24.5 31.7 34.6 35.4 52.7 59.3 61.3 22.0 27.4 43.4 47.2 75.2 83.6
Frequency[12] 17.7 23.5 27.6 27.7 32.4 34.0 49.4 59.9 64.1 25.3 30.9 40.5 43.7 71.3 81.2
Frequency+Overlap[12] 20.1 26.2 30.1 29.3 32.3 32.9 53.6 60.6 62.2 28.6 34.4 39.0 43.4 75.7 82.9
MotifNet-NOCONTEXT[12] 21.0 26.2 29.0 31.9 34.8 35.5 57.0 63.7 65.6 29.8 34.7 43.4 46.6 78.8 85.9
MotifNet-LeftRight[12] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1 30.5 35.8 44.5 47.7 81.1 88.3
RelDN, L0 only 20.8 28.1 32.5 36.1 36.7 36.7 66.7 68.3 68.3 30.1 36.4 48.9 50.8 93.7 97.7
RelDN 21.1 28.3 32.7 36.1 36.8 36.8 66.9 68.4 68.4 30.4 36.7 48.9 50.8 93.8 97.8
RelDN (X-101-FPN) 22.5 31.0 36.7 38.2 38.9 38.9 67.2 68.7 68.8 32.6 40.0 51.7 53.6 94.0 97.8

Table 1: Comparison with state-of-the-arts on VG. L0 only is the RelDN without our losses. We also include results of our model with
ResNeXt-101-FPN as the backbone for future work reference.

Relationship Phrase Relationship Detection Phrase Detection
free k k = 1 k = 10 k = 70 k = 1 k = 10 k = 70

Recall at 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100
PPRFCN*[13] 14.41 15.72 19.62 23.75 - - - - - - - - - - - -
VTransE* 14.07 15.20 19.42 22.42 - - - - - - - - - - - -
SA-Full*[7] 15.80 17.10 17.90 19.50 - - - - - - - - - - - -
DR-Net*[1] 17.73 20.88 19.93 23.45 - - - - - - - - - - - -
ViP-CNN[2] 17.32 20.01 22.78 27.91 17.32 20.01 - - - - 22.78 27.91 - - - -
VRL[3] 18.19 20.79 21.37 22.60 18.19 20.79 - - - - 21.37 22.60 - - - -
CAI*[14] 20.14 23.39 23.88 25.26 - - - - - - - - - - - -
KL distilation[11] 22.68 31.89 26.47 29.76 19.17 21.34 22.56 29.89 22.68 31.89 23.14 24.03 26.47 29.76 26.32 29.43
Zoom-Net[10] 21.37 27.30 29.05 37.34 18.92 21.41 - - 21.37 27.30 24.82 28.09 - - 29.05 37.34
CAI + SCA-M[10] 22.34 28.52 29.64 38.39 19.54 22.39 - - 22.34 28.52 25.21 28.89 - - 29.64 38.39
RelDN, L0 only (ImageNet) 21.62 26.12 28.59 35.18 19.57 22.61 21.62 26.12 21.62 26.12 26.39 31.28 28.59 35.18 28.59 35.18
RelDN (ImageNet) 21.52 26.38 28.24 35.44 19.82 22.96 21.52 26.38 21.52 26.38 26.37 31.42 28.24 35.44 28.24 35.44
RelDN, L0 only (COCO) 26.67 32.55 33.29 41.25 24.30 27.91 26.67 32.55 26.67 32.55 31.09 36.42 33.29 41.25 33.29 41.25
RelDN (COCO) 28.15 33.91 34.45 42.12 25.29 28.62 28.15 33.91 28.15 33.91 31.34 36.42 34.45 42.12 34.45 42.12

Table 2: Comparison with state-of-the-art on VRD (− means unavailable / unknown). Same with Table 1, L0 only is the RelDN without
our losses. “Free k” means considering k as a hyper-parameter that can be cross-validated.

L0 L1 L2 L3 R@50 mAPrel mAPphr score mAP*
rel mAP*

phr score*

X 74.67 35.28 41.04 45.46 33.87 38.99 44.08
X X 75.06 44.18 50.19 52.76 35.24 40.30 45.23
X X 74.64 36.19 41.71 46.09 34.67 39.61 44.64
X X 74.88 34.80 40.47 45.08 34.92 40.01 44.95
X X X 75.03 35.10 41.18 45.52 35.09 40.22 45.13
X X X 75.30 43.96 49.61 52.49 34.89 39.87 44.96
X X X 75.00 35.83 41.32 45.86 34.62 39.70 44.73
X X X X 74.94 39.09 44.47 48.41 35.82 40.43 45.49

Table 3: Ablation Study on our losses with the official mAPrel,
mAPphr and score metrics. Metric marked with a * means the
predicate “under” and “hits” are excluded from evaluation. The
fluctuating numbers in mAPrel, mAPphr and score indicate that
the mAP metrics are unstable and unreliable, while when “under”
and “hits” are excluded, all the results become consistent with Ta-
ble 1 in the main paper.

3. Results Under the Official mAP metrics

In our main paper, we use a class-frequency weighted
mAP (wmAP) for model comparison, with the aim of de-
emphasizing the classes with only a handful of test exam-
ples (specifically “under” and “hits”). This is because their
small sample size resulted in extremely large variances be-
tween runs. Here, we show our ablation studies using the of-
ficial uniform-class-weighting evaluation metrics, mAPrel,
mAPphr and score, as defined in Section 6.1 in the main pa-

per. We also include mAP*
rel, mAP*

phr and score*, which is
the standard mAP and score excluding “under” and “hits”
in the evaluation. Table 3 presents ablation study results on
loss components, corresponding to Table 1 in the paper. Ta-
ble 4 shows comparison between the L0-only model against
the model with our losses on the 100 selected images, corre-
sponding to Table 2 in the paper. In Table 3 the variation of
numbers using mAP and score demonstrates the necessity
of de-emphasizing the extremely infrequent classes. Note
that the mAP*-based columns show a similar trend to our
wmAP-based results from the paper. In Table 4, the model
with our losses is still better than the L0-only model by a
non-trivial margin, mainly because the former outperform
the latter on almost every per-class AP metric for those 5
selected classes. Note that since “under” and “hits” are not
in the 100 image subset, there is no need to evaluate with
mAP*

rel, mAP*
phr and score*.

4. An Alternative for the Predicate CNN

We want to answer a natural question about the predicate
CNN branch: can we use a less expensive feature extractor
for predicates instead of a full CNN branch? We follow
the idea of FPN [4] and add laterally connected layers to



R@50 mAPrel mAPphr score
L0 61.72 25.20 35.37 36.57

L0 + L1 + L2 + L3 62.65 26.77 36.79 37.95

Table 4: Comparison of our model with Graphical Contrastive
Loss vs. without the loss on 100 images containing the 5 classes
that suffer from the two aforementioned confusions, selected via
visual inspection on a random set of images. The metrics are the
official mAPrel, mAPphr and the score. The “under” and “hits”
predicates are not in this 100 image subset.

R@50 wmAPrel wmAPphr scorewtd

ImageNet init 74.82 34.93 37.96 44.12
entity detector 74.85 35.06 38.15 44.25
obj transform 75.03 35.21 38.12 44.34
fully trained 74.94 35.54 38.52 44.61

Table 5: Predicate branch comparison on OI mini. “obj transform”
means using the lateral connected layers as the predicate feature
extractor. All other abbreviations are the same with Table 5 in the
main paper.

the entity detector’s CNN layers, which are trained to trans-
form entity features to predicate-relevant features. Figure 1
illustrates these layers.

Table 5 shows that using lateral connections to trans-
form entity features is better than using fixed entity features,
but still inferior than the separate predicate CNN, which
demonstrates necessity of the latter.

5. Qualitative Results

In Figure 2 we provide four example images where our
losses correct the false predictions made by the L0 only
model. Both the Entity Instance Confusion and the Proxi-
mal Relationship Ambiguity issues are included here. In the
fourth row, the L0 only model is confused between two en-
tity instances, i.e., which person is holding the microphone,
while our losses manage to refer to the correct one. In the
third row the relationship between the guitar player and the
drum is ambiguous. Here, the L0 only model fails by pre-
dicting a false-positive, but our model trained with all losses
correctly detects no relationship there.

6. Examples of the 100 Image Subset

Figure 3 shows several examples, randomly selected
from the 100 image subset that we use to demonstrate the
advantage of our losses (described in Section 6.2 of the
main paper). These images contain very challenging rela-
tionships such as two women holding two cellphones while
sitting very closely to each other, or three men interacting
with (riding on) three horses where two of them are oc-
cluded since they are very close.
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(a) ground truth (b) L0 only (c) all losses

Figure 2: Example images where RelDN with only L0 predicts incorrectly while our loss succeeds. For each image we check the number
of its ground truth relationships, then we output the same number of top predictions from a model to see its ranking accuracy. Red boxes in
(b) highlight the false predictions from RelDN with L0 only and green boxes in (c) highlight the correct ones from RelDN with all losses.



Figure 3: Example images of the 100 image subset with ground truth relationships. The subset contains five predicates where the Entity
Instance Confusion and Proximal Relationship Ambiguity commonly occur.


