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This supplementary material contains:
1. Derivation of the objective (Sec. 1)
2. Details of optimization (Sec. 2)
3. Convergence of the proposed algorithm (Sec. 3)
4. Influence of feature dimension (Sec. 4)
5

. Visualization of the learned representation (Sec. 5)

Table 1. Notations in the formulation

Name [ Description

original space

S. A set of segments without AU intensity annotation

S7 | The m-th segmentin S,,

X; A set of frames with AU intensity

Y, The intensities of the frames X;

learned space

The basic vectors of the learned space

The coefficients of frames of the rn-th segment S in S,

B
P, The coefficients of frames of segments S,,
@
P

1 The coefficients of the annotated frames X

W The parameters of the intensity estimator

auxiliary matrix

A matrix with I, = 1, T}, | = —1 and other elements being 0. It is used to represent the label ranking.

A combined matrix T' = diag([T, T%, .., TV])

The adjacent matrix of the m-th segment. C7; = 1if [i — j| = L. Otherwise, C7; = 0. It is used to
represent the label and feature smoothness.

A matrix. L™ = D™ — C".

T
T
C
D™ | A diagonal matrix. The i-th diagonal element is D}, = >°, CJ"".
L
L

A combined matrix L = diag([LT, L7, ..., L™])

Table 2. Notations in the ADMM optimization

Name Description

C1,Cu, Z1.Z5,Z3 | Introduced variables in the scaled form of the augmented Lagrangian function

A, Ay, Vi.Vo, Vs | The in the scaled form of the L: ian function

1. Derivation of the Objective

In Section 3.5 and Section 3.6 of the main paper, we
describe the objective function and the algorithm for op-
timization, respectively. Here we present the details of the
derivation of the objective and the details of the optimiza-
tion. Involved notations are summarized in Table 1 and 2.

We consider an example, i.e.,

min ||X — AB|[% + A[[All21 (1)

*Corresponding author.

The equivalent problem is
minl[X — ABJf} + A|[Clla,1
st. A=C. (2)
The augmented Lagrangian function is
Ly(A,A) =|IX — ABJ[} + A|[Cll21
+ g||A —ClZ+u(AT(A-C). 3
Let A = %. We can get the scaled form of the augmented
Lagrangian function, i.e.,
Ly(A,A) =|[X — AB|[} + \/[C]|2.
+ LA —C+ Al - LAl @

Then, we derive the scaled form of our problem. The
augmented Lagrangian function can be written as

Lpspops(®1, @, B,w,C, A, Z V)
1 [X] [®] o) c’
= 3l|s.) ~ &) Bl ]l |cl) |
2H |:Su:| |:¢u:| F +)\1 Cu 2,1
-~ T
Ay ¢, - C pi|| | ®—Cp| |2
+u [Au] [@u - Cu] )+ 5] {dm - CJ |
1 (Zo) + u(VE (PBuw — Z0)) + 2Dy w — Zo|
L (Z0) + 0V (@w — 24)) + 2| @w — 24
L (Z2) + 0(V] (@uw — 22)) + 2| @uw — 2o
A
+ EOHQ’IW ~Y/? + xwl®,L7®,w
+ Aste(®, L7 @), (5)

where 1~\l, Au, \70, \7'2, and \72 are Lagrangian multipliers.
C;, C,,Zy, Z1, and Z- are introduced variables.



Let Ay = & A, =24 Vg = Yo v, = Y1 and
P1 P1 P2 P3
Vo = ‘p’; The scaled form of the Lagrangian function can
be written as

Loy psps (@1, 20, B,w,C.,AZ.,V.) (6)
X (@]l c”
= Sl &) - e =l xS L
Pl | Py C; A2 po AP
+5 [@J - {CJ * [AJ =50 ) I,
+ 1 (Zo) + 2| T@,w — Zo + Vol 2 — 22|Vl
+ L (Z0) + Bl @w = Zy+ Vi = B[ VaP

L (Za) + | @uw — Zo 4 Vsl BVl

A
+ 7OH'I>[W ~ Y2+ Aow @, LT®,w + Astr(®, L7 D).

2. Details of Optimization

In Eq.(6), ®, w and ®;w cannot be treated as new vari-
ables because ®, and ®; are also coupled with B and
tr(®,LT®,,) involves only ®,,. Hence, we optimize each
variable alternatively based on ADMM as follows. PCA [2]
is used to initialize B, ®;, and ®,,. C; = ®;and C, = ¥,
while other variables are randomly initialized. Note that the
currently updated variable will be used to update other vari-
ables.

Optimizing B The subproblem with respect to B is

2
5| R AL G
Taking the derivative of B and setting it to 0, we have
B=[®® +®'®,] '[®/X;+®TX,]. (8
To project it into B = {b : [|b|[> = 1}, we normalize each

B,

row of B, ie., B;. = B
i []2

Optimizing ®; and ®; The subproblem with respect to
‘I’z is

1 A
min - S[[X; — ®B|[* + 3| @rw — Y[ ©
+ BH1® = G+ AP + Bl @w — 20+ VA2

Taking the derivative of ®; and setting it to O, we have the
closed-form solution

P, :[XlBT + )\oYlWT + Pl(Cl — Al) (10)

+p3(Zy — Vi)W |[BBT + (Ao + ps)ww’ + pi 1] 7,

where I is an identity matrix. The subproblem with respec-
tive to ®,, is

o1 2, P 2
rglun §||Xu ®.B|[r + ?H‘I)u Cu+Aullp
+ 20, w— 2o+ Vol[* + £|®,w — 2y + Vs ?
+ 0w ®ILe,w + \tr(BILD,,). (11)
The gradient of ®,, is

V.= ®,BBT +pi I+ psww’] + \3(L+ L@,
+ M2 (L +LT) + poI' ' T @, ww! — X, BT
- pl(Cu - Au) - pS(Z2 - V2)WT
— poT7(Zo — Vo)w'. (12)
Though it has a closed-form solution, the computation is

inefficient since it involves the inverse of a large matrix.
Instead we use a gradient-based method to update ®,,, i.e.,

P, — P, —aV,, 13)

where the step size « is obtained by exact line search. « is

computed as a = {L, where

t; = t((®,B — X,)'V,B) + p1tr((®, — Cy + AW) V)
+ [p2(T® W — Zo + V) T + p3(®,w — Zo + Vo) [V, W
+ Aowl @I (L + LTV, w + \str(VE(L + LT)®,,),

t2 = tr(BTVIV,B) + (VL (p: I+ 2\3L)V,)

+ wIVT (psI 4 2),L 4 poT'TT)V, w. (14)

Optimizing w The subproblem with respect to w is

A
min 70||<I’lw — Y2+ owT T Le,w
W
n %HI"IJUW — Zo+ Vo2 + %H@lw 7y + V|
+%||<I>uw—zg+vg|\2. (15)

Taking the derivative of w and setting it to 0, we can obtain
the closed-form solution

w =[(Ao + p3) @] ®; + . [A2(L + L") + poT'T
+p31]®,] T M@ Y, + pa®TTT(Zo — Vi)
+p3®] (Zy — V1) + p3®L (Zo — V3)].  (16)

Optimizing C; and C,, The subproblem with respect to
C;and C, is

T
. C, & P, _ C; A '2



Let C = [C}; C,], ® = [®; P, ], and A = [A;; A,]. The
problem can be decomposed into small problems, i.e.,

C.i = argmin M| Cl |2 + 5H1@. — C.i+ A

where C.; is the i-th column of C, ®_; is the i-th column of
®, and A ; is the i-th column of A. The solution is

C.i =5\ /p (@i +Ay), a7

1 - £-]4 ®aand Sg(0) = 0. []+ =

lall2
max(+,0). @ represents pairwise product.

where S (a) =

Optimizing Z,, Z; and Z,
spect to Zg, Z; and Z, are

The subproblems with re-

minI_(Zo) + 2|[T®,w — Zo + Vo2 — 22(|Vy|12,
Zo 2 2
minLy (Z0) + 2 |@w = Zo + Vi = 2 va I3,

1

min L (Z) + 22 @uw — Zo + Val [} = Va3
2

The solutions are

Zy =min{0,T'®,w + Vo }, (18)

Z; =max{0,®;w + V1 }, (19)

Z>; = max{0, P, w + Vo }. (20)

Optimizing A;, A, Vo, Vi,and V,  The Lagrange mul-
tipliers can be updated as

AN +P,—Cy, 2D

Ay A, +P,—C,, (22)

Vo Ve +T®,w—7Z, (23)

Vi<V, +®w-—7Z, (24)

Vo Vo +d,w—Zs. (25)

3. Convergence of the Proposed Algorithm

In Section 4.1, we briefly present the convergence of the
algorithm. Here, we present the testing performance in all
evaluation criteria as the iteration proceeds. Fig. 1(a) shows
the learning curve of AU12 on FERA 2015 under the sce-
nario that 6% of training frames are annotated. Fig. 1(b)
shows corresponding performance on the testing set at each
iteration. As shown in Fig. 1, the decrease of the primal
objective and the improvement of the performance happen
within in the first 10 steps. Then, the objective changes s-
lowly and converges within 30 iterations.
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Figure 1. Convergence of the algorithm. (a) The learning curve
of AU12 on FERA 2015. (b) The performance of AU12 on the
testing set at different iterations.
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Figure 2. Influence of the feature dimension.
4. Influence of Feature Dimension

In the main paper, the feature dimension K is treated
as a hyperparameter which can be selected though cross-
validation. Here we show the average performance under
different K values. The experiment is performed on FERA
2015 under the annotation rate of 6%. The results are shown
in Fig. 2. When the feature dimension is less than 60, the
performance is poor. The performance starts to decrease
when the feature dimension is larger than 120.

5. Visualization of Learned Representation

The comparison between the learned and original repre-
sentations of 3,000 test samples of AU12 in BP4D is shown
in Fig. 3. The feature dimension is 219D for the original
representation and 120D for the learned representation. We



use t-sne [ 1] to project high dimensional samples into a 2D
space. Samples with the same or close intensities are clus-
tered better in the learned space than in the original space.
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Figure 3. Comparison between the learned representation and the
original representation. Left: original representation. Right:
learned representation.
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