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This supplementary material contains:

1. Derivation of the objective (Sec. 1)

2. Details of optimization (Sec. 2)

3. Convergence of the proposed algorithm (Sec. 3)

4. Influence of feature dimension (Sec. 4)

5. Visualization of the learned representation (Sec. 5)

Table 1. Notations in the formulation
Name Description

original space
Su A set of segments without AU intensity annotation
Smu The m-th segment in Su
Xl A set of frames with AU intensity annotation
Yl The intensities of the frames Xl

learned space
B The basic vectors of the learned space
Φu The coefficients of frames of segments Su
Φm
u The coefficients of frames of the m-th segment Smu in Su

Φl The coefficients of the annotated frames Xl

w The parameters of the intensity estimator
auxiliary matrix

Γm A matrix with Γmi,i = 1, Γmi,i+1 = −1 and other elements being 0. It is used to represent the label ranking.
Γ A combined matrix Γ = diag([Γ1,Γ2, ...,ΓM ])

Cm The adjacent matrix of the m-th segment. Cm
i,j = 1 if |i − j| = 1. Otherwise, Cm

i,j = 0. It is used to
represent the label and feature smoothness.

Dm A diagonal matrix. The i-th diagonal element is Dm
i,i =

∑
j Cm

i,j .
Lm A matrix. Lm = Dm −Cm.
L A combined matrix L = diag([L1,L2, ...,LM ])

Table 2. Notations in the ADMM optimization
Name Description

Cl,Cu, Z1,Z2,Z3 Introduced variables in the scaled form of the augmented Lagrangian function
Λl, Λu, V1,V2,V3 The multipliers in the scaled form of the augmented Lagrangian function

1. Derivation of the Objective
In Section 3.5 and Section 3.6 of the main paper, we

describe the objective function and the algorithm for op-
timization, respectively. Here we present the details of the
derivation of the objective and the details of the optimiza-
tion. Involved notations are summarized in Table 1 and 2.

We consider an example, i.e.,

min
A
||X−AB||2F + λ||A||2,1 (1)

∗Corresponding author.

The equivalent problem is

min
A
||X−AB||2F + λ||C||2,1.

s.t. A = C. (2)

The augmented Lagrangian function is

Lρ(A, Λ̃) =||X−AB||2F + λ||C||2,1

+
ρ

2
||A−C||2F + tr

(
Λ̃T (A−C)

)
. (3)

Let Λ = Λ̃
ρ . We can get the scaled form of the augmented

Lagrangian function, i.e.,

Lρ(A,Λ) =||X−AB||2F + λ||C||2,1

+
ρ

2
||A−C + Λ||2F −

ρ

2
||Λ||2F . (4)

Then, we derive the scaled form of our problem. The
augmented Lagrangian function can be written as

Lρ1,ρ2,ρ3(Φl,Φu,B,w,C·, Λ̃·,Z·, Ṽ·)

=
1

2

∥∥∥ [Xl

Su

]
−
[
Φl

Φu

]
B
∥∥∥2
F

+ λ1

∥∥∥ [Cl

Cu

]T ∥∥∥
2,1

+ tr
([Λ̃l

Λ̃u

]T [
Φl −Cl

Φu −Cu

])
+
ρ1
2

∥∥∥ [Φl −Cl

Φu −Cu

] ∥∥∥2
F

+ I−(Z0) + tr(ṼT
0 (ΓΦuw − Z0)) +

ρ2
2
||ΓΦuw − Z0||2

+ I+(Z1) + tr(ṼT
1 (Φlw − Z1)) +

ρ3
2
||Φlw − Z1||2

+ I+(Z2) + tr(ṼT
2 (Φuw − Z2)) +

ρ3
2
||Φuw − Z2||2

+
λ0
2
||Φlw −Yl||2 + λ2w

TΦuL
TΦuw

+ λ3tr(ΦuL
TΦu), (5)

where Λ̃l, Λ̃u, Ṽ0, Ṽ2, and Ṽ2 are Lagrangian multipliers.
Cl, Cu, Z0, Z1, and Z2 are introduced variables.
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Let Λl = Λ̃l

ρ1
, Λu = Λ̃u

ρ1
, V0 = Ṽ0

ρ2
, V1 = Ṽ1

ρ3
, and

V2 = Ṽ2

ρ3
. The scaled form of the Lagrangian function can

be written as

Lρ1,ρ2,ρ3(Φl,Φu,B,w,C·,Λ·,Z·,V·) (6)

=
1

2

∥∥∥ [Xl

Su

]
−
[
Φl

Φu

]
B
∥∥∥2
F

+ λ1

∥∥∥ [Cl

Cu

]T ∥∥∥
2,1

+
ρ1
2

∥∥∥ [Φl

Φu

]
−
[
Cl

Cu

]
+

[
Λl

Λu

] ∥∥∥2
F
− ρ1

2

∥∥∥ [Λl

Λu

] ∥∥∥2
F

+ I−(Z0) +
ρ2
2
||ΓΦuw − Z0 + V0||2 −

ρ2
2
||V0||2

+ I+(Z1) +
ρ3
2
||Φlw − Z1 + V1||2 −

ρ3
2
||V1||2

+ I+(Z2) +
ρ3
2
||Φuw − Z2 + V2||2 −

ρ3
2
||V2||2

+
λ0
2
||Φlw −Yl||2 + λ2w

TΦuL
TΦuw + λ3tr(ΦuL

TΦu).

2. Details of Optimization
In Eq.(6), Φuw and Φlw cannot be treated as new vari-

ables because Φu and Φl are also coupled with B and
tr(ΦuL

TΦu) involves only Φu. Hence, we optimize each
variable alternatively based on ADMM as follows. PCA [2]
is used to initialize B, Φl, and Φu. Cl = Φl and Cu = Φu,
while other variables are randomly initialized. Note that the
currently updated variable will be used to update other vari-
ables.

Optimizing B The subproblem with respect to B is

min
B∈B

1

2

∥∥∥ [Xl

Su

]
−
[
Φl

Φu

]
B
∥∥∥2
F
. (7)

Taking the derivative of B and setting it to 0, we have

B̃ = [ΦT
l Φl + ΦT

uΦu]−1[ΦT
l Xl + ΦT

uXu]. (8)

To project it into B = {b : ||b||2 = 1}, we normalize each
row of B̃, i.e., Bi· = B̃i·

||B̃i·||2
.

Optimizing Φl and Φl The subproblem with respect to
Φl is

min
Φl

1

2
||Xl −ΦlB||2 +

λ0
2
||Φlw −Yl||2 (9)

+
ρ1
2
||Φl −Cl + Λl||2 +

ρ3
2
||Φlw − Z1 + V1||2.

Taking the derivative of Φl and setting it to 0, we have the
closed-form solution

Φl =[XlB
T + λ0Ylw

T + ρ1(Cl −Λl) (10)

+ ρ3(Z1 −V1)wT ][BBT + (λ0 + ρ3)wwT + ρ1I]−1,

where I is an identity matrix. The subproblem with respec-
tive to Φu is

min
Φu

1

2
||Xu −ΦuB||2F +

ρ1
2
||Φu −Cu + Λu||2F

+
ρ2
2
||ΓΦuw − Z0 + V0||2 +

ρ3
2
||Φuw − Z2 + V2||2

+ λ2w
TΦT

uLΦuw + λ3tr(ΦT
uLΦu). (11)

The gradient of Φu is

∇u = Φu[BBT + ρ1I + ρ3wwT ] + λ3(L + LT )Φu

+ [λ2(L + LT ) + ρ2Γ
TΓ]ΦuwwT −XuB

T

− ρ1(Cu −Λu)− ρ3(Z2 −V2)wT

− ρ2ΓT (Z0 −V0)wT . (12)

Though it has a closed-form solution, the computation is
inefficient since it involves the inverse of a large matrix.
Instead we use a gradient-based method to update Φu, i.e.,

Φu ← Φu − α∇u, (13)

where the step size α is obtained by exact line search. α is
computed as α = t1

t2
, where

t1 = tr((ΦuB−Xu)T∇uB) + ρ1tr((Φu −Cu + Λu)T∇u)

+ [ρ2(ΓΦuw − Z0 + V0)TΓ + ρ3(Φuw − Z2 + V2)T ]∇uw
+ λ2w

TΦT
u (L + LT )∇uw + λ3tr(∇Tu (L + LT )Φu),

t2 = tr(BT∇Tu∇uB) + tr(∇Tu (ρ1I + 2λ3L)∇u)

+ wT∇Tu (ρ3I + 2λ2L + ρ2Γ
TΓ)∇uw. (14)

Optimizing w The subproblem with respect to w is

min
w

λ0
2
||Φlw −Yl||2 + λ2w

TΦT
uLΦuw

+
ρ2
2
||ΓΦuw − Z0 + V0||2 +

ρ3
2
||Φlw − Z1 + V1||2

+
ρ3
2
||Φuw − Z2 + V2||2. (15)

Taking the derivative of w and setting it to 0, we can obtain
the closed-form solution

w =
[
(λ0 + ρ3)ΦT

l Φl + ΦT
u [λ2(L + LT ) + ρ2Γ

TΓ

+ ρ3I]Φu

]−1[
λ0Φ

T
l Yl + ρ2Φ

T
uΓT (Z0 −V0)

+ ρ3Φ
T
l (Z1 −V1) + ρ3Φ

T
u (Z2 −V2)

]
. (16)

Optimizing Cl and Cu The subproblem with respect to
Cl and Cu is

min
Cl,Cu

λ1

∥∥∥ [Cl

Cu

]T ∥∥∥
2,1

+
ρ1
2

∥∥∥ [Φl

Φu

]
−
[
Cl

Cu

]
+

[
Λl

Λu

] ∥∥∥2
F
.



Let C = [Cl; Cu], Φ = [Φl; Φu], and Λ = [Λl; Λu]. The
problem can be decomposed into small problems, i.e.,

C·i = arg min
C·i

λ1||C·i||2 +
ρ1
2
||Φ·i −C·i + Λ·i||2F ,

where C·i is the i-th column of C, Φ·i is the i-th column of
Φ, and Λ·i is the i-th column of Λ. The solution is

C·i = Sλ1/ρ1(Φ·i + Λ·i), (17)

where Sk(a) = [1 − k
||a||2 ]+ � a and Sk(0) = 0. [·]+ =

max(·, 0). � represents pairwise product.

Optimizing Z0, Z1 and Z2 The subproblems with re-
spect to Z0, Z1 and Z2 are

min
Z0

I−(Z0) +
ρ2
2
||ΓΦuw − Z0 + V0||2F −

ρ2
2
||V0||2F ,

min
Z1

I+(Z1) +
ρ3
2
||Φlw − Z1 + V1||2F −

ρ3
2
||V1||2F ,

min
Z2

I+(Z2) +
ρ3
2
||Φuw − Z2 + V2||2F −

ρ3
2
||V2||2F .

The solutions are

Z0 = min{0,ΓΦuw + V0}, (18)
Z1 = max{0,Φlw + V1}, (19)
Z2 = max{0,Φuw + V2}. (20)

Optimizing Λl, Λu, V0, V1, and V2 The Lagrange mul-
tipliers can be updated as

Λl ←Λl + Φl −Cl, (21)
Λu ←Λu + Φu −Cu, (22)
V0 ←V0 + ΓΦuw − Z0, (23)
V1 ←V1 + Φlw − Z1, (24)
V2 ←V2 + Φuw − Z2. (25)

3. Convergence of the Proposed Algorithm

In Section 4.1, we briefly present the convergence of the
algorithm. Here, we present the testing performance in all
evaluation criteria as the iteration proceeds. Fig. 1(a) shows
the learning curve of AU12 on FERA 2015 under the sce-
nario that 6% of training frames are annotated. Fig. 1(b)
shows corresponding performance on the testing set at each
iteration. As shown in Fig. 1, the decrease of the primal
objective and the improvement of the performance happen
within in the first 10 steps. Then, the objective changes s-
lowly and converges within 30 iterations.
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Figure 1. Convergence of the algorithm. (a) The learning curve
of AU12 on FERA 2015. (b) The performance of AU12 on the
testing set at different iterations.
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Figure 2. Influence of the feature dimension.

4. Influence of Feature Dimension

In the main paper, the feature dimension K is treated
as a hyperparameter which can be selected though cross-
validation. Here we show the average performance under
different K values. The experiment is performed on FERA
2015 under the annotation rate of 6%. The results are shown
in Fig. 2. When the feature dimension is less than 60, the
performance is poor. The performance starts to decrease
when the feature dimension is larger than 120.

5. Visualization of Learned Representation

The comparison between the learned and original repre-
sentations of 3,000 test samples of AU12 in BP4D is shown
in Fig. 3. The feature dimension is 219D for the original
representation and 120D for the learned representation. We



use t-sne [1] to project high dimensional samples into a 2D
space. Samples with the same or close intensities are clus-
tered better in the learned space than in the original space.
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Figure 3. Comparison between the learned representation and the
original representation. Left: original representation. Right:
learned representation.
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