Supplementary Material: Ray-Space Projection Model for Light Field Camera

Qi Zhang\(^1\), Jinbo Ling\(^1\), Qing Wang\(^1\), and Jingyi Yu\(^2\)

\(^1\)School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, P.R. China, qwang@nwpu.edu.cn
\(^2\)ShanghaiTech University, Shanghai 200031, P.R. China

As the supplementary material, we provide detailed derivation of the ray-space projection model in Sec. 3, the linear form and cost function in Sec. 4.

1. Equation

Before presenting the material, it helps to go over some equations involving cross product. If \(a = (a_1, a_2, a_3)^\top\) is a 3D column vector, one defines a corresponding skew-symmetric matrix as follows

\[
[a]_\times = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}.
\]

The cross product of two vectors \(a \times b\) is related to skew-symmetric matrices according to

\[
a \times b = [a]_\times b = -[b]_\times a. \tag{2}
\]

Let \(a, b\) and \(c\) be three vectors in \(\mathbb{R}^3\). The following associative law holds,

\[
a^\top (b \times c) = (a \times b)^\top c. \tag{3}
\]

1.1. Ray-Space Intrinsic Matrix (RSIM)

According to the homogeneous decoding matrix mentioned in the submission, we rewrite the decoding matrix as,

\[
\begin{aligned}
s &= k_i i, \\
t &= k_j j, \\
x &= k_u u + u_0, \\
y &= k_v v + v_0,
\end{aligned} \tag{4}
\]

where \((k_i, k_j, k_u, k_v, u_0, v_0)\) are intrinsic parameters of a light field camera. Eq. (4) represents the relationship between the light field \(L(i, j, u, v)\) recorded by the camera and the undistorted physical light field \(L(s, t, x, y)\). As mentioned in the submission, the moment vector and direction vector of the undistorted physical ray \(r = (s, t, x, y)\) are defined as,

\[
\begin{aligned}
\{ m = (s, t, 0)^\top \times (x, y, 1)^\top = (t, -s, sy - tx)^\top \\
q = (x, y, 1)^\top
\end{aligned}, \tag{5}
\]

where \((m^\top, q^\top)^\top\) are the Plücker coordinates of the ray. Substituting \(s, t, x, y\) by Eq. (4), Eq. (5) becomes,

\[
\begin{aligned}
m &= (k_j j, -k_i i, k_i i(k_u v + v_0) - k_j j(k_u u + u_0))^\top \\
&= (k_j j, -k_i i, k_i k_v (iv - ju) + k_v u_0 i - k_j u_0 j)^\top \tag{6}
\end{aligned}
\]

which needs to satisfy the condition \(k_i/k_j = k_i/k_j\). Meanwhile, the moment vector \(n\) and direction vector \(p\) of the ray \(l = (i, j, u, v)\) recorded by the light field camera are represented as \((i, j, 0)^\top \times (u, v, 1)^\top = (j, -i, iv - ju)^\top\) and \((u, v, 1)\) respectively. Then, the RSIM \(K\) is formulated as,

\[
\begin{bmatrix} m \\ q \end{bmatrix} = k \begin{bmatrix} k_j & 0 & 0 & 0 & 0 & 0 \\ 0 & k_i & 0 & 0 & 0 & 0 \\ -k_i u_0 & -k_i v_0 & k_i k_v & 0 & 0 & 0 \\ 0 & 0 & k_u & u_0 & 0 & 0 \\ 0 & 0 & 0 & k_v & v_0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n \\ p \end{bmatrix}. \tag{7}
\]

Fig. 1 illustrates the ray-space intrinsic transformations \(L_c = KL\) and \(L'_c = K'L'_c\).

1.2. Fundamental Matrix

There are two constraints of the Plücker coordinates in 3D projective space. The one is \(m^\top \cdot q = 0\), the other is generalized epipolar constraint \([4]\),

\[
m'^\top E q + q'^\top R m + m'^\top R q = 0,
\]

which is obtained from the theorem that two lines \((m, q_1)^\top\) and \((m_2, q_2)^\top\) are coplanar if and only if \(m_1^\top q_2 - q_1^\top m_2 = 0\).
0. \(R, t \) denote the rotation and translation between two light field cameras coordinates.

According to ray-space intrinsic matrix Eq. (7) and generalized epipolar constraint Eq. (8), we formulate the ray-ray transformation \(\{ \mathcal{L}' \} \leftrightarrow \{ \mathcal{L} \} \) as shown in Fig. 1.

\[
\mathcal{L}'^T K' \begin{bmatrix} 0_{3\times 3} & R' & E' \end{bmatrix} K \mathcal{L} = 0. \tag{9}
\]

\(F \) is the fundamental matrix. \(\mathcal{L}'^T F \mathcal{L} = 0 \) represents the ray-ray correspondences among two light fields.

1.3. The Relationship between Rays and Planes

According to the theorem [3], a Plücker line \((m^T, q^T)^T\) intersects with a plane in the point with homogeneous coordinate,

\[
X = (\pi \times m - d)q / |\pi^T q|, \tag{10}
\]

where the plane in 3D space can be expressed by a homogeneous vector \((\pi^T, d)^T\), \(\pi \in \mathbb{R}^3\), \(d \in \mathbb{R}\). Therefore, a point \(X_w\) in the world coordinates can be described as the intersection of the ray \(\mathcal{L}_w = (m_w^T, q_w^T)^T\) with the plane \(Z = Z_w(\text{i.e. } \pi_w = (0, 0, 1)^T, d_w = -Z_w)\),

\[
X_w = ([\pi_w] \times m_w + Z_w q_w) / |\pi_w^T q|. \tag{11}
\]

Then, Eq. (11) is extended by Eq. (1).

\[
\begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} m_w + \begin{bmatrix} Z_w & 0 & 0 \\ 0 & Z_w & 0 \\ 0 & 0 & Z_w \end{bmatrix} q_w. \tag{12}
\]

Being substituted by

\[
\begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} = \begin{bmatrix} 0 & 0 & X_w \\ 0 & 0 & Y_w \\ 0 & 0 & Z_w \end{bmatrix} q_w, \tag{13}
\]

Eq. (12) becomes

\[
\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} m_w + \begin{bmatrix} Z_w & 0 & 0 \\ 0 & Z_w & 0 \\ 0 & 0 & Z_w \end{bmatrix} q_w = 0. \tag{14}
\]

Then, Eq. (14) is simplified as

\[
\begin{bmatrix} 1 & 0 & 0 & 0 & -Z_w & -Y_w \\ 0 & 1 & 0 & 0 & 0 & X_w \end{bmatrix} \begin{bmatrix} m_w \\ q_w \end{bmatrix} = 0. \tag{15}
\]

1.4. Linear Form for the Calibration

As we have mentioned in the submission, we use the RSIM, ray-space extrinsic matrix and Eq. (15) to represent the relationship between a world point and its rays, \(i.e., \)

\[
M(X_w) \begin{bmatrix} R^T \\ 0_{3\times 3} \\ E^T \end{bmatrix} K \begin{bmatrix} n \\ p \end{bmatrix} = 0, \tag{16}
\]

where \(K \) is the RSIM which is abbreviated to a lower triangle matrix \(K_{ij} \) and a upper triangle matrix \(K_{uv} \). According to an essential assumption that the checkerboard is on the plane \(Z_w = 0 \) in the world coordinates, Eq. (16) is simplified as,

\[
\begin{bmatrix} 1 & 0 & -Y_w \\ 0 & 1 & X_w \end{bmatrix} H_s \begin{bmatrix} n \\ p \end{bmatrix} = 0, \tag{17}
\]

where \(H_s \) is the simplified ray-space projection matrix. We utilize the direct product operator to compute \(H_s \). Subsequently, \(H_s \) denotes a \(3 \times 6 \) matrix only using intrinsic and extrinsic parameters,

\[
H_s = \begin{bmatrix} h_1 & h_3 \\ h_2 & h_4 \\ 0_{3\times 3} & h_5 \end{bmatrix} = \begin{bmatrix} r_1^T & -r_1^T [t]_x & K_{ij} \\ r_2^T & -r_2^T [t]_x & 0_{3\times 3} \\ r_3^T & K_{uv} & 0_{3\times 3} \\ 0_{3\times 3} & K_{uv} \end{bmatrix}, \tag{18}
\]

where \(h_i \) denotes the row vector \((h_{i1}, h_{i2}, h_{i3})\).

\[
\begin{aligned}
&h_1 = r_1^T K_{ij}, \\
&h_2 = r_2^T K_{ij}, \\
&h_3 = ([t]_x r_1)^T K_{uv}, \\
&h_4 = ([t]_x r_2)^T K_{uv}, \\
&h_5 = r_3 K_{uv}. \\
\end{aligned} \tag{19}
\]

Then, we utilize the orthogonality of \(r_1 \) and \(r_2 \) and the Cholesky factorization \(1 \) to obtain the estimated intrinsic matrix \(\hat{K}_{ij} \) which is determined up to an unknown scale factor. The effect of the scale factor is eliminated by calculating the ratio of elements. Therefore, we compute the intrinsic matrix \(\hat{K}_{ij} \). Note that the matrix \(H_s \) occurring in Eq. (17) may be changed by multiplication by an arbitrary non-zero scale factor without altering the projective transformation. According to the last formula of Eq. (19) and unit norm of \(r_i \), we calculate a scale factor
The distance between L_1 and L_2. The common perpendicular L_{\perp} intersects two lines at X_1 and X_2 respectively.

$$\tau = 1/||\hat{K}_{uv}^{-}\mathbf{h}_3^\top||.$$ Adopting Eq. (2) to Eq. (19), it can be rewritten as,

$$\begin{cases}
-|r_1|, & \tau = \hat{K}_{uv}^{-}\mathbf{h}_3^\top \\
-|r_2|, & \tau = \hat{K}_{uv}^{-}\mathbf{h}_4^\top.
\end{cases}$$

These equations can be solved by linear least-squares techniques to obtain the translation t, i.e.

$$\begin{align}
t & = (G^\top G)^{-1}(G^\top g), \\
G & = (-|r_1| \times, -|r_2| \times)^\top, \\
g & = (\tau \hat{K}_{ij}^{-}\mathbf{h}_3^\top, \tau \hat{K}_{ij}^{-}\mathbf{h}_4^\top)^\top.
\end{align}$$

1.5. Ray-to-Ray Cost Function

In the submission, a ray-to-ray cost function is established for non-linear optimization. The ray-to-ray cost is described as the distance between rays, as shown in Fig. 2. It illustrates the distance between $L_1 = (m_1^\top, q_1^\top)^\top$ and $L_2 = (m_2^\top, q_2^\top)^\top$. The lines L_1 and L_2 are not parallel to each other. Referring to Fig. 2, the plane Π containing X_2 and m_{21} is orthogonal to L_{\perp} and parallel to L_1. m_{21} is the moment vector of L_2 about a point X_1 on L_1. This moment is defined as,

$$m_{21} = (X_2 - X_1) \times q_2 = m_2 - X_1 \times q_2. \quad (22)$$

In Fig. 2, α is the angle of rotation from q_1 to q_2. We can obtain $|\sin \alpha| = ||q_1 \times q_2||/(||q_1|| \cdot ||q_2||)$. Since $m_{21} \perp q_2$, we drive,

$$\begin{align}
q_1^\top m_{21} & = ||m_{21}|| \cdot ||q_1|| \cos(\alpha - \pi/2), \\
& = ||m_{21}|| \cdot ||q_1|| \sin \alpha. \quad (23)
\end{align}$$

The above yields the distance between L_1 and L_2,

$$d = ||X_2 - X_1|| = \frac{||m_{21}||}{||q_2||} = \frac{|q_1^\top m_{21}|}{||q_1|| \cdot ||q_2|| \sin \alpha}$$

$$= \frac{|q_1^\top (m_2 - X_1 \times q_2)|}{||q_1 \times q_2||}$$

$$= \frac{|q_1^\top m_2 - (q_1 \times X_1)^\top q_2|}{||q_1 \times q_2||}$$

$$= \frac{|q_1^\top m_2 + m_3 \cdot q_2|}{||q_1 \times q_2||} \quad (24)$$

References

