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This document supplements our paper entitled 3D Point-
Capsule Networks by providing further quantitative and
qualitative insights into the results.

1. Semi-supervised Classification
We begin by showing semi-supervised classification re-

sults in Tab. 1. Note that our network can generate predic-
tions that are on par with or better than FoldingNet [1].

Table 1. Part segmentation on ShapeNet-Part by learning on lim-
ited training data. The table shows the accuracies obtained by
FoldingNet [1] and our approach for different amount of training
data.

1% 2% 5% 20% 100%

FoldingNet 56.15 67.05 75.97 84.06 88.41
Ours 59.24 67.67 76.49 84.48 88.91

2. Part Segmentation
We first give a small summary of the part association

network for optional supervision. The input to this one-
layer architecture is the latent capsules combined with one-
hot vector of the object category. The output is the part
prediction of each capsule. We use the cross entropy loss
as our loss function and Adam as the optimizer with the
learning rate of 0.01. The network structure is shown in
Fig. 1.

Then we utilize the pre-trained decoder to reconstruct
the object with the labeled capsules. Fig. 3 depicts further
visualizations for different objects from the ShapeNet-Part
dataset [2]. Our results are also qualitatively comparable to
ground truth.

3. Part Interpolation
We first show an overview of how we perform part inter-

polation. While this part has been thoroughly explained in
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Figure 1. Supervising the 3d point capsule networks for part pre-
diction. Instead of performing a point-wise part labeling, we use a
capsule-wise association requiring less data annotation efforts.

the paper, we have omitted this architecture illustration due
to space considerations. We now provide this in Fig. 4.

Next we show, the part interpolation results on differ-
ent objects. In this qualitative evaluation, we are given two
shapes and the goal is to interpolate the source part towards
the target. To do that we find the matching capsules that rep-
resent the part of interest in both shapes. We then linearly
interpolate from the capsule(s) of the source to the one(s)
of the target. This generates visually pleasing intermediate
shapes, which our network has never seen before. Here we
see that the learned embedding resemble a Euclidean space
where linear latent space arithmetic is possible. It is also
visible that such interpolation scheme can handle topologi-
cal changes such as merging or branching legs. In the end
of interpolation a new shape is generated in which the part
is replaced completely with the target’s. That brings us to
our second and interesting application, part replacement.
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4. Part Replacement
We now supplement our paper by presenting additional

qualitative results on the task of part replacement. Fig. 6
shows numerous object pairs where a part-of-interest is se-
lected in both and exchanged by the help of latent space
capsule arithmetic. Analogous to the ones in the paper we
also show a cut-and-paste operation that is a mere exchange
of the parts in 3D space, obviously resulting in undesired
disconnected shapes. Thanks to our decoder’s capability in
generating high fidelity shapes, our capsule-replacement re-
spects the overall coherence of the resulting point cloud.

5. Ablation Study
In order to show the prosperity of the dynamic routing,

we compare the reconstruction result by replacing the DR
with PointNet-like set of convolutional layers. In this abla-
tion study, the primary point capsules (1024× 16) are con-
sidered as 1024 point-features and each point has the fea-
ture dimension of 16. We utilize a shared MLP to increase
the feature dimension from 16 to 64. After conducting max
pooling, we can obtain a vector of length 64. With multiple
MLPs and max-pooling, we are able to generate 64 vectors
which have the same dimensions as the latent capsules pro-
duced by dynamic routing. The structure of this comparison
module is shown in Fig. 2. To carry out our fair evaluation,
we re-train the whole AE with this module. The result of
the reconstruction is shown in Fig. 5 of the main paper.
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Figure 2. The structure of the comparison module that operates on
the primary point capsules and generates a set of vectors having
the same dimensionality as the latent capsule output of DR.

6. A Discussion on the Local Spatial Attention
Our network consists of multiple MLPs acting on a sin-

gle capsule. It encodes the part information inside that cap-
sule rather than the MLPs themselves. For that reason, the
local attention stems from both the organization of primary
point capsules (in our case obtained by dynamic routing)
and potentially the decoder (see Fig. 5 of the main pa-
per). Thus, we are able to control and represent the shape
instantiation in the latent space as shown in part interpo-

lation/replacement evaluations. Contrarily, AtlasNet recon-
structs different local patches with different MLPs from the
same latent vector. This embeds the part knowledge into
the MLPs, making it challenging to control the shape prop-
erties.
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Figure 3. Part segmentation on limited amount of training data.
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Figure 4. Our interpolation / replacement pipeline.



Source Capsule Interpolation of a Single Part on the Source Shape Target

Figure 5. Visualization of part interpolation from source shape part to target. By simple linear interpolation on the correspondent capsule(s),
smooth intermediate topologies could be generated.
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Figure 6. Part replacement visualization and comparison. By operating in the latent space, more natural replacement results could be
obtained, without suffering from the detachment problems as with simple Cut & Paste method.


