# Supplementary Materials for Bayesian Hierarchical Dynamic Model for Human Action Recognition

Rui Zhao<sup>1</sup>, Wanru Xu<sup>2</sup>, Hui Su<sup>1,3</sup>, Qiang Ji<sup>1</sup> <sup>1</sup>RPI, <sup>2</sup>Beijing Jiaotong University, <sup>3</sup>IBM Research

{zhaorui.zju,bjtuxuwanru}@gmail.com, huisuibmres@us.ibm.com, qji@ecse.rpi.edu

# 1. Parameterization of HDM

We use multinomial distributions for initial and transition distributions. We use Poisson distribution for duration distribution. We assume the duration value is drawn only when entering a state. And then the state chain remains at the same state for the drawn duration. A regular transition happens at the end of the duration. Using the notation introduced in the main paper. The conditional probability are defined as follows.

$$P(Z_1 = j) = \pi_j \tag{1}$$

$$P(Z_t = j | D_{t-1} = d', Z_{t-1} = i) = \begin{cases} A_{ij}, & \text{if } d' = 1\\ \delta(i, j), \text{ otherwise} \end{cases}$$
(2)

$$P(D_1 = d | Z_1 = i) \triangleq C_{id} = \frac{\tau_i^d e^{-\tau_i}}{d!}$$

$$\tag{3}$$

$$P(D_t = d | D_{t-1} = d', Z_t = i) = \begin{cases} C_{id} & \text{if } d' = 1\\ \delta(d, d' - 1), \text{ otherwise} \end{cases}$$
(4)

where  $\pi_j \ge 0, A_{ij} \ge 0, \tau_i > 0$  and  $\sum_{j=1}^Q \pi_j = 1, \sum_{j=1, j \neq i}^Q A_{ij} = 1, A_{ii} = 0, \forall i = 1, ..., Q. \ \delta(i, j) = 1$  if i = j and 0 otherwise. We forbid self-transition *i.e.*  $A_{ii} = 0$  to disambiguate the duration count used during inference [8]. For emission distribution, we use a mixture of Gaussian.

$$P(X_t = \mathbf{o}|Z_t = i) = \sum_{k=1}^{M} W_{ik} \mathcal{N}(\mathbf{o}|\mu_{ik}, \Sigma_{ik})$$
(5)

where M is the number of mixtures and  $W_{ik}$  is the weight of  $k^{\text{th}}$  mixture under  $i^{\text{th}}$  state with  $\sum_{k=1}^{M} W_{ik} = 1, W_{ik} > 0, \forall i = 1, ..., Q. \mu_{ik} \in \mathbb{R}^{O}, \Sigma_{ik} \in \mathbb{R}^{O \times O}$  are mean and covariance matrix of  $k^{\text{th}}$  mixture under  $i^{\text{th}}$  state respectively. We assume the same number of mixtures under different states.

We place a conjugate prior for each parameter. For the multinomial parameters  $\pi$ , **A** and **W**, Dirichlet priors are used with hyperparameters respectively  $\eta_0 \in \mathbb{R}^Q_+, \eta \in \mathbb{R}^{Q \times Q}_+$  and  $v \in \mathbb{R}^Q_+$ . For the Poisson parameters  $\tau$ , we use Gamma prior  $\xi = \{a \in \mathbb{R}^Q_+, b \in \mathbb{R}^Q_+\}$ . For emission mean  $\mu$  and covariance  $\Sigma$ , Normal-Inverse-Wishart priors are used with hyperparameters  $\{\mu_0, \kappa_0, \Lambda_0, \nu_0\}$ , where  $\mu_0 \in \mathbb{R}^O$ ,  $\kappa_0 > 0$ ,  $\Lambda_0 \in \mathbb{R}^{O \times O}$  positive definite and  $\nu_0 > O - 1$ . Specifically, we have

$$P(\pi) = Dir(\pi|\eta_0) \propto \prod_{j=1}^{Q} \pi_j^{\eta_{0j}-1}$$
(6)

$$P(\mathbf{A}_{i:}) = Dir(\mathbf{A}_{i:}|\eta_i) \propto \prod_{j=1}^{Q} A_{ij}^{\eta_{ij}-1}, \ i = 1, ..., Q$$
(7)

$$P(\tau_i) = Gam(\tau_i|a_i, b_i) \propto \tau_i^{a_i - 1} e^{-b_i \tau_i}, \ i = 1, ..., Q$$
(8)

$$P(\mathbf{W}_{i:}) = Dir(\mathbf{W}_{i:}|v) \propto \prod_{k=1}^{M} W_{ik}^{v_k - 1}, \ i = 1, ..., Q$$
(9)

$$P(\mu_{ik}, \Sigma_{ik}) = NIW(\mu_{ik}, \Sigma_{ik} | \mu_0, \kappa_0, \Lambda_0, \nu_0)$$

$$\propto |\Sigma_{ik}|^{-(\nu_0 + O)/2 - 1} \exp\left(-\frac{1}{2}tr(\Lambda_0 \Sigma_{ik}^{-1}) - \frac{\kappa_0}{2}(\mu_{ik} - \mu_0)^T \Sigma_{ik}^{-1}(\mu_{ik} - \mu_0)\right),$$

$$i = 1, ..., Q, k = 1, ..., M$$

$$(10)$$

#### 2. MAP-EM algorithm

The MAP-EM algorithm solves the following optimization problem on parameters  $\theta$  given hyperparameters  $\phi$  and a set of observations  $\{\mathbf{X}_n\}$ .

$$\theta^* = \arg\max_{\theta} \sum_{n} \log \sum_{\mathbf{Z}_n, \mathbf{D}_n} P(\mathbf{X}_n, \mathbf{Z}_n, \mathbf{D}_n | \theta) + \log P(\theta | \phi)$$
(11)  
= 
$$\arg\max_{\theta} \sum_{n} \log P(\mathbf{X}_n | \theta) + \log P(\theta | \phi)$$

Due to the presence of hidden variables, the marginal likelihood must be evaluated by summing over all the hidden variables  $\{\mathbf{Z}_n, \mathbf{D}_n\}$ . We adopt Expectation-Maximization (EM) algorithm to handle the learning with hidden variables, where we iterate between E-step, which computes a tight lower bound to the marginal log-likelihood and M-step, which maximizes the lower bound with respect to model parameters. In our case, M-step needs to be modified to incorporate the effect of prior distributions in a similar way to [3].

Specifically, for E-step, we compute  $Q(\theta, \hat{\theta}) = E_{P(\mathbf{Z}, \mathbf{D} | \mathbf{X}, \hat{\theta})}[\log P(\mathbf{X}, \mathbf{Z}, \mathbf{D} | \theta)]$ , where  $\hat{\theta}$  is current estimate of parameters. Given the parameterization as described in Section 1, the joint distribution  $P(\mathbf{X}, \mathbf{Z}, \mathbf{D} | \theta)$  belongs to the exponential family. Then it can be shown that  $Q(\theta, \hat{\theta})$  can be decomposed into summation of expected sufficient statistics over individual parameter. Leveraging on the chain structure and the explicit duration assumption, we can extend the forward-backward algorithm used in HMM to efficiently compute the inquired expected sufficient statistics. Following the notation of [8], we define the following quantities.

$$\alpha_t(i,d) = P(Z_t = i, D_t = d, X_{1:t})$$
(12)

$$\beta_t(i,d) = P(X_{t+1:T}|Z_t = i, D_t = d)$$
(13)

For compactness, we define notation  $b_i(o_t) = P(X_t = o_t | Z_t = i)$ . The forward messages  $\alpha$  and backward messages  $\beta$  can be computed using the following recursions.

$$\alpha_t(i,d) = \alpha_{t-1}(i,d+1)b_i(o_t) + \left(\sum_{j \neq i} \alpha_{t-1}(j,1)A_{ji}\right)b_i(o_t)C_{id}, \ \forall t > 1$$
(14)

$$\beta_t(i,d) = \begin{cases} b_i(o_{t+1})\beta_{t+1}(i,d-1), & \text{if } d > 1\\ \sum_{j \neq i} A_{ij}b_j(o_{t+1}) \left(\sum_{d \ge 1} C_{jd}\beta_{t+1}(j,d)\right), & \text{if } d = 1 \end{cases}, \ \forall t < T$$

$$(15)$$

with initial condition  $\alpha_1(i,d) = \pi_i b_i(o_1) C_{id}, \beta_T(i,d) = 1$ . After computing the messages, we can compute the following

probabilities, which are used to compute expected sufficient statistics involved in Q.

$$\gamma_t(i) := P(Z_t = i | \mathbf{X}) = P(Z_t = i, \mathbf{X}) / P(\mathbf{X})$$
(16)

$$\zeta_t(i,j) := P(Z_{t-1} = i, Z_t = j | \mathbf{X}) = \alpha_{t-1}(i,1) A_{ij} b_j(o_t) \left(\sum_{d \ge 1} C_{jd} \beta(j,d)\right) / P(\mathbf{X})$$
(17)

$$\omega_t(i,d) := P(Z_t = i, Z_{t-1} \neq i, D_t = d | \mathbf{X}) = \left(\sum_{j \neq i} \alpha_{t-1}(j,1) A_{ji}\right) b_i(o_t) C_{id} \beta_t(i,d) / P(\mathbf{X})$$
(18)

where  $P(\mathbf{X}) = \sum_{i} \alpha_t(i, d) \beta_t(i, d), \forall t$ . To compute  $\gamma_t(i)$ , we use the following recursion.

$$\gamma_t(i) = \gamma_{t+1}(i) + \sum_{j \neq i} \left( \zeta_{t+1}(i,j) - \zeta_{t+1}(j,i) \right), \ \forall t < T$$
(19)

The recursion is result of the following equality

$$P(Z_t = i | \mathbf{X}) - P(Z_t = i, Z_{t+1} \neq i | \mathbf{X}) = P(Z_{t+1} = i | \mathbf{X}) - P(Z_t \neq i, Z_{t+1} = i | \mathbf{X})$$
(20)

The initial condition is  $\gamma_T(i) = \sum_{d \ge 1} \alpha_T(i, d)$ . To avoid numerical underflow. The forward-backward inference is performed in log domain as suggested in [7].

For M-step, we compute the updates of parameters by solving the following problem.

$$\hat{\theta} = \arg\max_{\theta} R(\theta, \hat{\theta}) \tag{21}$$

where  $R(\theta, \hat{\theta}) = Q(\theta, \hat{\theta}) + \log P(\theta|\phi)$ . Due to the hierarchical structure, initial state parameter  $\pi$ , transition parameter  $\Lambda$ , duration parameter  $\tau$  are different for different sequences. Thus they are updated for individual sequence. While emission parameters { $\mathbf{W}, \mu, \Sigma$ } are shared across sequences and updated once for all sequences.

Provided that we can compute expected sufficient statistics using Eq. (16)-(18) and we choose conjugate prior, the solution for  $\pi_n$ ,  $\mathbf{A}_n$  have closed-form solution similar to the results in HMM derived in [3].  $\tau_n$  can also be computed using a similar derivation. The updates are as follows.<sup>1</sup>

$$\pi_{ni}^{*} = \frac{P(Z_{1}^{n} = i | \mathbf{X}_{n}) + \eta_{0i}}{\sum_{i} \eta_{0i}}$$
(22)

$$A_{nij}^{*} = \frac{\sum_{t} P(Z_{t}^{n} = i, Z_{t+1}^{n} = j | \mathbf{X}_{n}) + \eta_{ij}}{\sum_{t} \sum_{j} (P(Z_{t}^{n} = i, Z_{t+1}^{n} = j | \mathbf{X}_{n}) + \eta_{ij})}$$
(23)

$$\tau_{ni}^{*} = \frac{\sum_{t} \sum_{1 \le d \le t} P(Z_{t}^{n} = i, Z_{t-1}^{n} \ne i, D_{t}^{n} = d | \mathbf{X}_{n}) d + a_{i}}{\sum_{t} \sum_{1 \le d \le t} P(Z_{t}^{n} = i, Z_{t-1}^{n} \ne i, D_{t}^{n} = d | \mathbf{X}_{n}) + b_{i}}$$
(24)

We now consider the updates for emission parameters  $\mathbf{W}, \mu, \Sigma$ . We introduce another variable  $M_t^n$  to indicate the mixture component index for  $n^{\text{th}}$  sequence  $t^{\text{th}}$  frame. The update of  $W_{ik}$  can be done in a similar way to temporal parameters.

$$Q(W_{ik}, \hat{\theta}) = \sum_{n=1}^{N} \sum_{t=1}^{T_n} P(Z_t^n = i, M_t^n = k | \mathbf{X}_n)$$
(25)

$$R(W_{ik},\hat{\theta}) = Q(W_{ik},\hat{\theta}) + \log Dir(\mathbf{W}_i|v)$$
(26)

$$= Q(W_{ik}, \hat{\theta}) + \sum_{k=1}^{M} (v_k - 1) \log W_{ik} + s$$

where s is a constant independent of  $W_{ik}$ . Maximize  $R(W_{ik}, \hat{\theta})$  with respect to  $W_{ik}$  subject to  $\sum_{k=1}^{M} W_{ik} = 1$  yield <sup>2</sup>

$$W_{ik}^{*} = \frac{\sum_{n} \sum_{t} P(Z_{t}^{n} = i, M_{t}^{n} = k | \mathbf{X}_{n}) + v_{k}}{\sum_{n} \sum_{t} \sum_{k} (P(Z_{t}^{n} = i, M_{t}^{n} = k | \mathbf{X}_{n}) + v_{k})}$$
(27)

<sup>&</sup>lt;sup>1</sup>We use posterior mean as estimate instead of the exact MAP estimate to ensure positive estimated values on parameters in case the expected sufficient statistics are less than 1 due to data scarcity. For exact MAP estimate, we need to use substitution in Eq. (22)-(23) with  $\eta_{0i} \leftarrow \eta_{0i} - 1$ ,  $\eta_{ij} \leftarrow \eta_{ij} - 1$ .

<sup>&</sup>lt;sup>2</sup>Similar to Eq. (22)-(23), for exact MAP estimate, we need to use substitution in Eq. (27) with  $v_k \leftarrow v_k - 1$ .

For MoG parameters, we have

$$Q(\mu_{ik}, \Sigma_{ik}, \hat{\theta}) = \sum_{n=1}^{N} \sum_{t=1}^{T_n} P(Z_t^n = i, M_t^n = k | \mathbf{X}_n) \log P(X_t^n, D_t^n = 1, Z_t^n = i, M_t^n = k | \mu_{ik}, \Sigma_{ik})$$
(28)

$$=\sum_{n=1}^{N}\sum_{t=1}^{T_n} P(Z_t^n = i, M_t^n = k | \mathbf{X}_n) \left[ -\frac{1}{2} \log |\Sigma_{ik}| - \frac{1}{2} tr(X_t^n (X_t^n)^T \Sigma_{ik}^{-1}) + \mu_{ik}^T \Sigma_{ik}^{-1} X_t^n - \frac{1}{2} \mu_{ik}^T \Sigma_{ik}^{-1} \mu_{ik} \right] + s$$

where tr(A) is the trace of matrix A. s is a constant that does not depend on  $\mu_{ik}, \Sigma_{ik}$ . Then

$$R(\mu_{ik}, \Sigma_{ik}, \hat{\theta}) = Q(\mu_{ik}, \Sigma_{ik}, \hat{\theta}) + \log NIW(\mu_{ik}, \Sigma_{ik} | \kappa_0, \mu_0, \nu_0, \Lambda_0)$$

$$= Q(\mu_{ik}, \Sigma_{ik}, \hat{\theta}) - \frac{\kappa_0}{2} (\mu_{ik} - \mu_0)^T \Sigma_{ik}^{-1} (\mu_{ik} - \mu_0) - \frac{\nu_0 + O + 2}{2} \log |\Sigma_{ik}| - \frac{1}{2} tr(\Lambda_0 \Sigma_{ik}^{-1}) + s$$
(29)

where s is a constant that does not depend on  $\mu_{ik}$ ,  $\Sigma_{ik}$ . Set the gradient of  $R(\mu_{ik}, \Sigma_{ik}, \hat{\theta})$  with respect to  $\mu_{ik}$  and  $\Sigma_{ik}$  to zero, we can obtain the updates for  $\mu_{ik}$  and  $\Sigma_{ik}$  as follows.

$$\mu_{ik}^{*} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T_{n}} P(Z_{t}^{n} = i, M_{t}^{n} = k | \mathbf{X}_{n}) X_{t}^{n} + \kappa_{0} \mu_{0}}{\sum_{n=1}^{N} \sum_{t=1}^{T_{n}} P(Z_{t}^{n} = i, M_{t}^{n} = k | \mathbf{X}_{n}) + \kappa_{0}} = \frac{\tilde{m}_{ik}}{\tilde{N}_{ik}}$$
(30)

$$\Sigma_{ik}^{*} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T_n} P(Z_t^n = i, M_t^n = k | \mathbf{X}_n) (X_t^n - \mu_{ik}^*) (X_t^n - \mu_{ik}^*)^T + \kappa_0 (\mu_0 - \mu_{ik}^*) (\mu_0 - \mu_{ik}^*)^T + \Lambda_0}{\tilde{N}_{ik} - \kappa_0 + \nu_0 + O + 2}$$
(31)

$$=\frac{\tilde{N}_{ik}\bar{S}_{ik}-\tilde{m}_{ik}\tilde{m}_{ik}^{T}+\tilde{N}_{ik}(\kappa_{0}\mu_{0}\mu_{0}^{T}+\Lambda_{0})}{\tilde{N}_{ik}(\tilde{N}_{ik}-\kappa_{0}+\nu_{0}+O+2)}$$

where

$$\tilde{N}_{ik} = \sum_{n=1}^{N} \sum_{t=1}^{T_n} P(Z_t^n = i, M_t^n = k | \mathbf{X}_n) + \kappa_0$$
(32)

$$\tilde{m}_{ik} = \sum_{n=1}^{N} \sum_{t=1}^{T_n} X_t^n P(Z_t^n = i, M_t^n = k | \mathbf{X}_n) + \kappa_0 \mu_0$$
(33)

$$\bar{S}_{ik} = \sum_{n=1}^{N} \sum_{t=1}^{T_n} X_t^n (X_t^n)^T P(Z_t^n = i, M_t^n = k | \mathbf{X}_n)$$
(34)

#### 3. MLE estimate of hyperparameters

For  $\eta_0, \eta, \xi, v$ , they are solved by maximizing the likelihood of corresponding Dirichlet distribution. We use a fixedpoint update proposed in [5]. For  $\xi$ , maximum likelihood estimate of corresponding Gamma distribution is computed using gradient based update proposed in [6]. For emission hyperparameters, we set the  $\kappa_0 = 1$  and  $\nu_0 = O + 2$  as fixed and solve for  $\mu_0, \Lambda_0$  by maximizing the corresponding Normal-Inverse-Wishart distribution, where closed-form solution exists with fixed  $\kappa_0$  and  $\nu_0$ .

### 4. Computing the total covariance

Here we prove the first equality of Eq. (9) in the main paper.

$$\begin{split} V[y|\mathbf{X}] &= E[yy^{T}|\mathbf{X}] - E[y|\mathbf{X}]E[y|\mathbf{X}]^{T} \\ &= E_{\theta}[E[yy^{T}|\mathbf{X},\theta]] - E_{\theta}[E[y|\mathbf{X},\theta]]E_{\theta}[E[y|\mathbf{X},\theta]]^{T} \\ &= E_{\theta}[E[yy^{T}|\mathbf{X},\theta]] - E_{\theta}[E[y|\mathbf{X},\theta]E[y|\mathbf{X},\theta]^{T}] \\ &+ E_{\theta}[E[y|\mathbf{X},\theta]E[y|\mathbf{X},\theta]^{T}] - E_{\theta}[E[y|\mathbf{X},\theta]]E_{\theta}[E[y|\mathbf{X},\theta]]^{T} \\ &= E_{\theta}[V[y|\mathbf{X},\theta]] + V_{\theta}[E[y|\mathbf{X},\theta]] \end{split}$$

#### 5. More results of uncertainty analysis

Here we compare the confusion matrix of classification with the corresponding covariance matrix C of the categorical distribution of label vector. The diagonal entries of the covariance matrix reflect the within-class uncertainty level. The higher the value, the more uncertainty. The off-diagonal entries of the covariance matrix reflect the pair-wise between-class uncertainty. The value should be close to 0 if the between-class uncertainty is low. Here we report the average covariance over all testing data. For example, as shown in Figure 1, the four actions *draw x, draw circle, draw circle counter-clockwise*, and *draw triangle* have both high within-class uncertainty and high between-class uncertainty. This is consistent with the confusion matrix where *draw circle counter-clockwise* are mostly confused with *draw triangle*. Similarly in Figure 2, we observe *hand catch, high throw*, and *draw x* are likely to be confused with each other. In Figure 3, one action *aim and fire gun* has high within-class uncertainty and high between-class uncertainty with a few other actions. The classification results also show confusion of *aim and fire gun* with these actions. Similarly in Figure 4, the action *tennis forehand* has the highest within class uncertainty and tend to be confused with actions like *golf swing, baseball pitch*. Based on these results, we argue it is important to consider the uncertainty level before making a classification prediction.

## References

- V. Bloom, D. Makris, and V. Argyriou. G3d: A gaming action dataset and real time action recognition evaluation framework. In *CVPR Workshop*, 2012.
- [2] C. Chen, R. Jafari, and N. Kehtarnavaz. Utd-mhad: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor. In *ICIP*, 2015.
- [3] J.-L. Gauvain and C.-H. Lee. Maximum a posteriori estimation for multivariate gaussian mixture observations of markov chains. *TSAP*, 1994.
- [4] W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3d points. In CVPR Workshop, 2010.
- [5] T. Minka. Estimating a dirichlet distribution, 2000.
- [6] T. P. Minka. Estimating a gamma distribution. Microsoft Research, Cambridge, UK, Tech. Rep, 2002.
- [7] K. P. Murphy. Hidden semi-markov models (hsmms). 2002.
- [8] S.-Z. Yu and H. Kobayashi. An efficient forward-backward algorithm for an explicit-duration hidden markov model. *Signal processing letters*, 2003.
- [9] W. Zhang, M. Zhu, and K. G. Derpanis. From actemes to action: A strongly-supervised representation for detailed action understanding. In *ICCV*, 2013.





(b) Label distribution covariance

Figure 1. More results on UTD dataset [2].











(b) Label distribution covariance

Figure 3. More results on G3D dataset [1].





(b) Label distribution covariance

Figure 4. More results on Penn dataset [9].