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1. Parameterization of HDM
We use multinomial distributions for initial and transition distributions. We use Poisson distribution for duration distribu-

tion. We assume the duration value is drawn only when entering a state. And then the state chain remains at the same state
for the drawn duration. A regular transition happens at the end of the duration. Using the notation introduced in the main
paper. The conditional probability are defined as follows.

P (Z1 = j) = πj (1)

P (Zt = j|Dt−1 = d′, Zt−1 = i) =

{
Aij , if d′ = 1

δ(i, j),otherwise
(2)

P (D1 = d|Z1 = i) , Cid =
τdi e
−τi

d!
(3)

P (Dt = d|Dt−1 = d′, Zt = i) =

{
Cid if d′ = 1

δ(d, d′ − 1),otherwise
(4)

where πj ≥ 0, Aij ≥ 0, τi > 0 and
∑Q
j=1 πj = 1,

∑Q
j=1,j 6=iAij = 1, Aii = 0,∀i = 1, ..., Q. δ(i, j) = 1 if i = j and 0

otherwise. We forbid self-transition i.e. Aii = 0 to disambiguate the duration count used during inference [8]. For emission
distribution, we use a mixture of Gaussian.

P (Xt = o|Zt = i) =

M∑
k=1

WikN (o|µik,Σik) (5)

where M is the number of mixtures and Wik is the weight of kth mixture under ith state with
∑M
k=1Wik = 1,Wik > 0,∀i =

1, ..., Q. µik ∈ RO, Σik ∈ RO×O are mean and covariance matrix of kth mixture under ith state respectively. We assume the
same number of mixtures under different states.

We place a conjugate prior for each parameter. For the multinomial parameters π,A and W, Dirichlet priors are used
with hyperparameters respectively η0 ∈ RQ+, η ∈ RQ×Q+ and v ∈ RQ+. For the Poisson parameters τ , we use Gamma
prior ξ = {a ∈ RQ+, b ∈ RQ+}. For emission mean µ and covariance Σ, Normal-Inverse-Wishart priors are used with
hyperparameters {µ0, κ0,Λ0, ν0}, where µ0 ∈ RO, κ0 > 0, Λ0 ∈ RO×O positive definite and ν0 > O − 1.
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Specifically, we have

P (π) = Dir(π|η0) ∝
Q∏
j=1

π
η0j−1
j (6)

P (Ai:) = Dir(Ai:|ηi) ∝
Q∏
j=1

A
ηij−1
ij , i = 1, ..., Q (7)

P (τi) = Gam(τi|ai, bi) ∝ τai−1i e−biτi , i = 1, ..., Q (8)

P (Wi:) = Dir(Wi:|v) ∝
M∏
k=1

W vk−1
ik , i = 1, ..., Q (9)

P (µik,Σik) = NIW (µik,Σik|µ0, κ0,Λ0, ν0) (10)

∝ |Σik|−(ν0+O)/2−1 exp
(
− 1

2
tr(Λ0Σ−1ik )− κ0

2
(µik − µ0)TΣ−1ik (µik − µ0)

)
,

i = 1, ..., Q, k = 1, ...,M

2. MAP-EM algorithm
The MAP-EM algorithm solves the following optimization problem on parameters θ given hyperparameters φ and a set of

observations {Xn}.

θ∗ = arg max
θ

∑
n

log
∑

Zn,Dn

P (Xn,Zn,Dn|θ) + logP (θ|φ) (11)

= arg max
θ

∑
n

logP (Xn|θ) + logP (θ|φ)

Due to the presence of hidden variables, the marginal likelihood must be evaluated by summing over all the hidden
variables {Zn,Dn}. We adopt Expectation-Maximization (EM) algorithm to handle the learning with hidden variables,
where we iterate between E-step, which computes a tight lower bound to the marginal log-likelihood and M-step, which
maximizes the lower bound with respect to model parameters. In our case, M-step needs to be modified to incorporate the
effect of prior distributions in a similar way to [3].

Specifically, for E-step, we compute Q(θ, θ̂) = EP (Z,D|X,θ̂)[logP (X,Z,D|θ)], where θ̂ is current estimate of parame-
ters. Given the parameterization as described in Section 1, the joint distribution P (X,Z,D|θ) belongs to the exponential
family. Then it can be shown that Q(θ, θ̂) can be decomposed into summation of expected sufficient statistics over individual
parameter. Leveraging on the chain structure and the explicit duration assumption, we can extend the forward-backward
algorithm used in HMM to efficiently compute the inquired expected sufficient statistics. Following the notation of [8], we
define the following quantities.

αt(i, d) = P (Zt = i,Dt = d,X1:t) (12)
βt(i, d) = P (Xt+1:T |Zt = i,Dt = d) (13)

For compactness, we define notation bi(ot) = P (Xt = ot|Zt = i). The forward messages α and backward messages β can
be computed using the following recursions.

αt(i, d) = αt−1(i, d+ 1)bi(ot) +
(∑
j 6=i

αt−1(j, 1)Aji
)
bi(ot)Cid, ∀t > 1 (14)

βt(i, d) =

{
bi(ot+1)βt+1(i, d− 1), if d > 1∑
j 6=iAijbj(ot+1)

(∑
d≥1 Cjdβt+1(j, d)

)
, if d = 1

, ∀t < T (15)

with initial condition α1(i, d) = πibi(o1)Cid, βT (i, d) = 1. After computing the messages, we can compute the following



probabilities, which are used to compute expected sufficient statistics involved in Q.

γt(i) :=P (Zt = i|X) = P (Zt = i,X)/P (X) (16)

ζt(i, j) :=P (Zt−1 = i, Zt = j|X) = αt−1(i, 1)Aijbj(ot)
(∑
d≥1

Cjdβ(j, d)
)
/P (X) (17)

ωt(i, d) :=P (Zt = i, Zt−1 6= i,Dt = d|X) =
(∑
j 6=i

αt−1(j, 1)Aji
)
bi(ot)Cidβt(i, d)/P (X) (18)

where P (X) =
∑
i αt(i, d)βt(i, d),∀t. To compute γt(i), we use the following recursion.

γt(i) = γt+1(i) +
∑
j 6=i

(
ζt+1(i, j)− ζt+1(j, i)

)
, ∀t < T (19)

The recursion is result of the following equality

P (Zt = i|X)− P (Zt = i, Zt+1 6= i|X) = P (Zt+1 = i|X)− P (Zt 6= i, Zt+1 = i|X) (20)

The initial condition is γT (i) =
∑
d≥1 αT (i, d). To avoid numerical underflow. The forward-backward inference is per-

formed in log domain as suggested in [7].
For M-step, we compute the updates of parameters by solving the following problem.

θ̂ = arg max
θ
R(θ, θ̂) (21)

where R(θ, θ̂) = Q(θ, θ̂) + logP (θ|φ). Due to the hierarchical structure, initial state parameter π, transition parameter A,
duration parameter τ are different for different sequences. Thus they are updated for individual sequence. While emission
parameters {W, µ,Σ} are shared across sequences and updated once for all sequences.

Provided that we can compute expected sufficient statistics using Eq. (16)-(18) and we choose conjugate prior, the solution
for πn,An have closed-form solution similar to the results in HMM derived in [3]. τn can also be computed using a similar
derivation. The updates are as follows. 1

π∗ni =
P (Zn1 = i|Xn) + η0i∑

j η0j
(22)

A∗nij =

∑
t P (Znt = i, Znt+1 = j|Xn) + ηij∑

t

∑
j(P (Znt = i, Znt+1 = j|Xn) + ηij)

(23)

τ∗ni =

∑
t

∑
1≤d≤t P (Znt = i, Znt−1 6= i,Dn

t = d|Xn)d+ ai∑
t

∑
1≤d≤t P (Znt = i, Znt−1 6= i,Dn

t = d|Xn) + bi
(24)

We now consider the updates for emission parameters W, µ,Σ. We introduce another variableMn
t to indicate the mixture

component index for nth sequence tth frame. The update of Wik can be done in a similar way to temporal parameters.

Q(Wik, θ̂) =

N∑
n=1

Tn∑
t=1

P (Znt = i,Mn
t = k|Xn) (25)

R(Wik, θ̂) = Q(Wik, θ̂) + logDir(Wi|v) (26)

= Q(Wik, θ̂) +

M∑
k=1

(vk − 1) logWik + s

where s is a constant independent of Wik. Maximize R(Wik, θ̂) with respect to Wik subject to
∑M
k=1Wik = 1 yield 2

W ∗ik =

∑
n

∑
t P (Znt = i,Mn

t = k|Xn) + vk∑
n

∑
t

∑
k(P (Znt = i,Mn

t = k|Xn) + vk)
(27)

1We use posterior mean as estimate instead of the exact MAP estimate to ensure positive estimated values on parameters in case the expected sufficient
statistics are less than 1 due to data scarcity. For exact MAP estimate, we need to use substitution in Eq. (22)-(23) with η0i ← η0i − 1, ηij ← ηij − 1.

2Similar to Eq. (22)-(23), for exact MAP estimate, we need to use substitution in Eq. (27) with vk ← vk − 1.



For MoG parameters, we have

Q(µik,Σik, θ̂) =

N∑
n=1

Tn∑
t=1

P (Znt = i,Mn
t = k|Xn) logP (Xn

t , D
n
t = 1, Znt = i,Mn

t = k|µik,Σik) (28)

=

N∑
n=1

Tn∑
t=1

P (Znt = i,Mn
t = k|Xn)

[
− 1

2
log |Σik| −

1

2
tr(Xn

t (Xn
t )TΣ−1ik ) + µTikΣ−1ik X

n
t −

1

2
µTikΣ−1ik µik

]
+ s

where tr(A) is the trace of matrix A. s is a constant that does not depend on µik,Σik. Then

R(µik,Σik, θ̂) = Q(µik,Σik, θ̂) + logNIW (µik,Σik|κ0, µ0, ν0,Λ0) (29)

= Q(µik,Σik, θ̂)−
κ0
2

(µik − µ0)TΣ−1ik (µik − µ0)− ν0 +O + 2

2
log |Σik| −

1

2
tr(Λ0Σ−1ik ) + s

where s is a constant that does not depend on µik,Σik. Set the gradient of R(µik,Σik, θ̂) with respect to µik and Σik to zero,
we can obtain the updates for µik and Σik as follows.

µ∗ik =

∑N
n=1

∑Tn

t=1 P (Znt = i,Mn
t = k|Xn)Xn

t + κ0µ0∑N
n=1

∑Tn

t=1 P (Znt = i,Mn
t = k|Xn) + κ0

=
m̃ik

Ñik
(30)

Σ∗ik =

∑N
n=1

∑Tn

t=1 P (Znt = i,Mn
t = k|Xn)(Xn

t − µ∗ik)(Xn
t − µ∗ik)T + κ0(µ0 − µ∗ik)(µ0 − µ∗ik)T + Λ0

Ñik − κ0 + ν0 +O + 2
(31)

=
ÑikS̄ik − m̃ikm̃

T
ik + Ñik(κ0µ0µ

T
0 + Λ0)

Ñik(Ñik − κ0 + ν0 +O + 2)

where

Ñik =

N∑
n=1

Tn∑
t=1

P (Znt = i,Mn
t = k|Xn) + κ0 (32)

m̃ik =

N∑
n=1

Tn∑
t=1

Xn
t P (Znt = i,Mn

t = k|Xn) + κ0µ0 (33)

S̄ik =

N∑
n=1

Tn∑
t=1

Xn
t (Xn

t )TP (Znt = i,Mn
t = k|Xn) (34)

3. MLE estimate of hyperparameters
For η0, η, ξ, v, they are solved by maximizing the likelihood of corresponding Dirichlet distribution. We use a fixed-

point update proposed in [5]. For ξ, maximum likelihood estimate of corresponding Gamma distribution is computed using
gradient based update proposed in [6]. For emission hyperparameters, we set the κ0 = 1 and ν0 = O + 2 as fixed and solve
for µ0,Λ0 by maximizing the corresponding Normal-Inverse-Wishart distribution, where closed-form solution exists with
fixed κ0 and ν0.

4. Computing the total covariance
Here we prove the first equality of Eq. (9) in the main paper.

V [y|X] = E[yyT |X]− E[y|X]E[y|X]T

= Eθ[E[yyT |X, θ]]− Eθ[E[y|X, θ]]Eθ[E[y|X, θ]]T

= Eθ[E[yyT |X, θ]]− Eθ[E[y|X, θ]E[y|X, θ]T ]

+ Eθ[E[y|X, θ]E[y|X, θ]T ]− Eθ[E[y|X, θ]]Eθ[E[y|X, θ]]T

= Eθ[V [y|X, θ]] + Vθ[E[y|X, θ]]



5. More results of uncertainty analysis
Here we compare the confusion matrix of classification with the corresponding covariance matrix C of the categorical

distribution of label vector. The diagonal entries of the covariance matrix reflect the within-class uncertainty level. The
higher the value, the more uncertainty. The off-diagonal entries of the covariance matrix reflect the pair-wise between-class
uncertainty. The value should be close to 0 if the between-class uncertainty is low. Here we report the average covariance
over all testing data. For example, as shown in Figure 1, the four actions draw x, draw circle, draw circle counter-clockwise,
and draw triangle have both high within-class uncertainty and high between-class uncertainty. This is consistent with the
confusion matrix where draw circle counter-clockwise are mostly confused with draw triangle. Similarly in Figure 2, we
observe hand catch, high throw, and draw x are likely to be confused with each other. In Figure 3, one action aim and fire
gun has high within-class uncertainty and high between-class uncertainty with a few other actions. The classification results
also show confusion of aim and fire gun with these actions. Similarly in Figure 4, the action tennis forehand has the highest
within class uncertainty and tend to be confused with actions like golf swing, baseball pitch. Based on these results, we argue
it is important to consider the uncertainty level before making a classification prediction.
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(a) Confusion matrix

(b) Label distribution covariance

Figure 1. More results on UTD dataset [2].



(a) Confusion matrix

(b) Label distribution covariance

Figure 2. More results on MSRAction3D dataset [4].



(a) Confusion matrix

(b) Label distribution covariance

Figure 3. More results on G3D dataset [1].



(a) Confusion matrix

(b) Label distribution covariance

Figure 4. More results on Penn dataset [9].


