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Abstract

In this supplemental material, we provide more quali-
tative results of optical flow estimation on the KITTI VO
dataset. Furthermore, on stationary scenes, we compare
our method with the conventional RANSAC method [2] in
fundamental matrix estimation on a subset of the KITTI
2012 training set.

1. Fundamental Matrix Recovery

Our method has the potential to recover a fundamental
matrix for a stationary scene. To evaluate our recovered fun-
damental matrix, we select several stationary scenes from
the KITTI 2012 training dataset and compare our results
with the fundamental matrices computed from ground truth
optical flows and the fundamental matrices computed from
sparse feature correspondences. To compute fundamental
matrix from ground truth optical flow, we first convert a
ground truth flow into matching point pairs and then use
the normalized eight-point algorithm to compute the corre-
sponding fundamental matrix. For sparse feature correspon-
dences based fundamental matrix, we detect SURF [1] fea-
tures and perform feature matching. The fundamental ma-
trix is computed with RANSAC + normalized eight-point
algorithm. We use MATLAB’s inbuilt function estimate-
FundamentalMatrix.

In Fig. 1, we illustrate our fundamental matrix estima-
tion performance under these two conditions. We report
our results based on the Gold Standard Method [3]. The left
column visualizes the epipolar line estimation from a small
forward movement while the right one from a large turn.
Our baseline model, which only uses image warping con-
straint, shows competitive performance in small motions
but has relatively large errors in large motions. Our methods
that enforce the epipolar constraint, i.e., Our-F, Our-low-
rank and Our-sub, share similar performance, with Our-sub
achieving the lowest re-projection error. Table | provides

quantitative results, comparing our recovered F against the
result of RANSAC [2].
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Ground truth RANSAC Our-warp Our-F Our-low-rank Our-sub
Re-projection error (px) 0.0104 0.3608 1.3557 1.0401 0.9753 0.9448

Table 1. Average re-projection error over five testing pairs. We evaluated various methods of computing fundamental matrix on the five
randomly selected pairs from the KITTI 2012 training set. The error is computed over all the valid pixels in the ground truth optical flows.
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Figure 1. Epipolar lines of a random subset of inliers. We randomly select 300 points from ground truth flow as a subset of inliers and
visualize their epipolar lines. The ground truth F' is computed from ground truth flow. The RANSAC represents the F' that computed from
normalized eight point algorithm with RANSAC (for 5000 iterations). We illustrate our F estimations of each method using Our-warp,
Our-F, Our-low-rank and Our-sub. The camera in the left scene moves forward while the right one turns sharply.



