
A. Overview of the Supplemental Document
In this supplemental material, in Section B, we first give

explicitly our 6D representation for the 3D rotations. We
then prove formally in Section C that the formula of the
5D representation as defined in Case 4 of Section 4.2 sat-
isfies all of the properties of a continuous representation.
Next, we discuss quaternions in more depth. We present
in Section D a result that we elided from the main paper
due to space limitations: that the unit quaternions are also
a discontinuous representation for the 3D rotations. Then,
in Section E, we show how the continuous 5D and 6D rep-
resentations can interact with common discontinuous angle
representations such as quaternions. Next, we visualize in
Section F discontinuities that are present in some of the rep-
resentations. We finally present in Section G some addi-
tional empirical results.

B. 6D Representation for the 3D Rotations
The mapping from SO(3) to our 6D representation is:

gGS

 a1 a2 a3

 =

 a1 a2

 (14)

The mapping from our 6D representation to SO(3) is:

fGS

 a1 a2

 =

 b1 b2 b3

 (15)

bi =


N(a1) if i = 1

N(a2 − (b1 · a2)b1) if i = 2

b1 × b2 if i = n.

T (16)

C. Proof that Case 4 gives a Continuous Rep-
resentation

Here we show that the functions fP , gP presented in
Case 4 of Section 4.2 are a continuous representation. We
now prove some properties needed to show a continuous
representation: that gP is defined on its domain and contin-
uous, and that fP (gP (M)) = M for all M ∈ SO(n). In
these proofs, we use 0 to denote the zero vector in the ap-
propriate Euclidean space. We also use the same slicing no-
tation from the main paper. That is, if u is a vector of length
m, define the slicing notation ui:j = (ui, ui+1, . . . , uj), and
ui: = ui:m.

Proof that gP is defined on SO(n). Suppose M ∈
SO(n). The same as we did for Equation (10) in the main
paper, define a vectorized representation γ(M) by drop-
ping the last column of M : γ(M) = [MT

(1), . . . ,M
T
(n−1)],

whereM(i) indicates the ith column ofM . Following Equa-
tion (8), which defines the normalized projection, and Equa-
tion (10), let v = γn2−2n:/||γn2−2n:||. The only way that
gP (M) could not be defined is if the normalized projec-
tion P (v) is not defined, which requires v1 = 1. How-
ever, if v1 = 1, then because v is unit length, it follows that

γn2−2n+1: has length zero. But γn2−2n+1: is a column vec-
tor from M ∈ SO(n), and therefore has unit length. We
conclude that v1 6= 1 and gP is defined on SO(n).

Proof that gP is continuous. This case is trivial because
gP is the composition of functions that are continuous on
their domains and thus is also continuous on its domain.

Lemma 1. We claim that if u ∈ Rm and ||u2:|| = 1,
then Q(P (u)) = u. We now prove this. We have ||u|| =√

1 + u21. Then we find by Equation (8) that

||P (u)|| = 1

||u|| − u1
=

1√
1 + u21 − u1

(17)

Now let b = Q(P (u)). Components 2 through m of b
are P (u)/||P (u)||, but this is just u2:. Next, consider b1,
the first component of b:

b1 =
1

2

[
||P (u)|| − 1

||P (u)||

]
(18)

=
1

2

[
1− (1 + u21) + 2

√
1 + u21u1 − u21√

1 + u21 − u1

]
(19)

= u1 (20)

We find that b = u, so Q(P (u)) = u.
Proof that fP (gP (M)) = M for all M ∈ SO(n).

For the term fGS(A) of Equation (11), this is defined on
Rn(n−1) \ D. Here A is the matrix argument to fGS in
Equation (11), and D is the set where the dimension of
the span of A is less than n − 1. Let M ∈ SO(n).
The same as before, let γ(M) be the vectorized represen-
tation of M , which drops the last column. By Lemma 1,
Q(P (γn2−2n:)) = γn2−2n:. Thus by Equation (11), we
have fP (gP (M)) = fGS(γ(n×n−1)) = fGS(gGS(M)) =
M .

D. The Unit Quaternions are a Discontinuous
Representation for the 3D Rotations

In Case 2 of Section 4, we showed that the quaternions
are not a continuous representation for the 3D rotations. We
intentionally used a simpler formulation for the quaternions,
which is easier to understand and also saves space in the
paper, due to its quaternions in general not being unit length.
However, an attentive reader might wonder what happens if
we use the unit quaternions: is the discontinuity removable?
However, we show here that the unit quaternions are also
not a continuous representation for the 3D rotations.

We use a mapping gu to map SO(3) to the unit quater-
nions, which we consider as the Euclidean space R4. We
use the formula by [2, 5]:

gu(M) =

 copysign( 1
2

√
1+M11−M22−M33,M32−M23)

copysign( 1
2

√
1−M11+M22−M33,M13−M31)

copysign( 1
2

√
1−M11−M22+M33,M21−M12)

1
2

√
1+M11+M22+M33


(21)
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Here copysign(a, b) = sgn(b)|a|. Now consider the fol-
lowing matrix in SO(3), which is parameterized by θ:

B(θ) =

[
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]
. (22)

By substitution, we can find the components of gu(B(θ))
as a function of θ. For example, as θ → π−, the third com-
ponent is

√
(1− cos(θ))/2 = 1. Meanwhile, as θ → π+,

the third component is −
√

(1− cos(θ))/2 = −1. We con-
clude that the unit quaternions are not a continuous repre-
sentation.

A similar representation is the Cayley transformation [1]
which has a different scaling to the unit quaternion, where
w = 1 and the vector (x, y, z) is the unit axis of rotation
scaled by tan(θ/2). The limit goes to infinity when ap-
proaching 180◦. Thus, it is not a representation for SO(3).

E. Interaction Between 5D and 6D Continuous
Representations and Discontinuous Ones

In some cases, it may be convenient to use a common
3D or 4D angle representation, such as the quaternions or
Euler angles. For example, the quaternions may be use-
ful when interpolating between two rotations in SO(3), or
when there is an existing neural network that already ac-
cepts quaternion inputs. However, as we showed in the main
paper Case 2 of Section 4.1, all 3D and 4D representations
for rotations are discontinuous.

One solution for the above conundrum is to simply con-
vert as needed from the continuous 5D and 6D representa-
tions that we presented in Case 3 and 4 of Section 4.2 to
the desired representation. For concreteness, suppose the
desired representation is the quaternions. Assume that any
conversions done in the network are only in the direction
that maps to the quaternions. Then the associated mapping
in the opposite direction (i.e. from quaternions to the 5D or
6D representation) is continuous. If losses are applied only
at points in the network where the representation is contin-
uous (e.g. on the 5D or 6D representations), then the learn-
ing should not suffer from discontinuity problems. One can
convert from the 5D or 6D representation to quaternions by
first applying Equation (5) or Equation (10) and then us-
ing Equation (4). Of course, one could also make a similar
argument for other discontinuous but popular angle repre-
sentations such as Euler angles.

F. Visualizing Discontinuities in 3D Rotations
Here we visualize any discontinuities that might occur in

the 3D rotation representations. We do this by forming three
continuous curves in SO(3), which we call the “X, Y, and Z
Rotations.” We map each of these curves to each represen-
tation, and then map the representation curve to 2D by re-
taining the top two components from Principal Components
Analysis (PCA). We call the first curve in SO(3) the “X Ro-
tations:” this curve is formed by taking the X axis (1, 0, 0),
and constructing a curve consisting of all rotations around

this axis as parameterized by angle. Likewise, we call the
second and third curves in SO(3) the “Y Rotations” and
“Z Rotations:” these curves are formed by rotating around
the Y and Z axes, respectively. We show the resulting 2D
curves in Figure 6.

G. Additional Empirical Results
In this section, we show some additional empirical re-

sults.

G.1. Visualization of Inverse Kinematics Test Result
In Figure 7, we visualize the worst two frames with

the highest pose errors generated by the network trained
on quaternions, along with the corresponding results from
the network trained with 6D representations. Likewise,
we show the two frames with highest pose errors gener-
ated by the network trained on our 6D representation, along
with the corresponding results from the network trained on
quaternions. This shows that for the worst error frames, the
quaternion representation introduces bad qualitative results
while the 6D one still creates a pose that is reasonable.

G.2. Additional Sanity test
In the main paper, Section 5.1, we show the sanity test re-

sult of the network trained with L2 loss between the ground-
truth and the output rotation matrices. Another option for
training is using the geodesic loss. Besides, the networks
in the main paper are trained and tested using a uniform
sampling of the axis and the angle which is not a uniform
sampling on SO(3) [26]. We present the sanity test result
of using the geodesic loss and the two sampling methods
in Figure 8. They are both similar to the result in the main
paper.

Additional representations. In addition to common
rotation representations like Euler angles, axis-angles and
quaternions, we investigated a few other rotation represen-
tations used in recent work including a 3D Rodriguez vector
representation, and quaternions that are constrained to one
hemisphere as given by Kendall et al. [20]. The 3D Ro-
driguez vector is given as R = ωθ, where ω is a 3D unit
vector and θ is the angle [7]. We will not provide the proofs
for the discontinuity in these representations, but we show
their empirical results in Figure 8. We find that the errors
are significantly worse than our 5D and 6D representations.
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Figure 6. Visualization of discontinuities in 3D rotation represen-
tations. In the three columns, we show three different curves in
SO(3): the “X, Y, and Z Rotations,” which consist of all rotations
around the corresponding axis. We map each curve in SO(3) to
each of the rotation representations in the different rows (plus the
top row, which stays in the original space SO(3)), and then map
to 2D using PCA. We use the hue to visualize the rotation angle
in SO(3) around each of the three canonical axes X, Y, Z. If the
representation is continuous then the curve in 2D should be home-
omorphic to a circle, and similar colors should be nearby spatially.
We can clearly see that the topology is incorrect for the unit quater-
nion, axis-angle, and Euler angle representations.

Worst Two Frames using Quaternion 
Groundtruth Quaternion 6D

Groundtruth Quaternion 6D

Groundtruth Quaternion 6D

Groundtruth Quaternion 6D

Worst Two Frames using the 6D representation 

Figure 7. At top, we show IK results for the two frames with high-
est pose error from the test set for the network trained using quater-
nions, and the corresponding results on the same frames for the
network trained on the 6D representation. At bottom, we show
the two worst frames for the 6D representation network, and the
corresponding results for the quaternion network.
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Sanity Test – Geodesic Loss and Uniform Sampling on Axis and Angle 

a. Mean errors during iterations. b. Percentile of errors at 500k iteration. c. Errors at 500k iteration.

Mean(°) Max(°) Std(°)

6D 0.54 1.82 0.26

5D 0.59 1.93 0.29

Quat 2.4 176.9 6.81

Quat-hemi 2.72 179.55 7.03

AxisA 2.89 175.53 6.77

Euler 9.12 179.93 24.01

Rodriguez 4.74 179.45 17.84

d. Mean errors during iterations. e. Percentile of errors at 500k iteration. f. Errors at 500k iteration.

Sanity Test – Geodesic Loss and Uniform Sampling on SO(3)

Mean(°) Max(°) Std(°)

6D 0.45 2.33 0.29

5D 0.52 3.19 0.33

Quat 2.02 180.0 6.08

Quat-hemi 3.47 179.22 6.72

AxisA 2.0 179.58 5.43

Euler 7.45 179.87 21.87

Rodriguez 4.17 180.0 17.78

Figure 8. Additional Sanity test results. “Quat” refers to quaternions, “Quat-hemi” refers to quaternions constrained to one hemisphere[20],
“AxisA” refers to axis angle and “Rodriguez” refers to the 3D Rodriguez-vector.
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