
Binary Ensemble Neural Network:
More Bits per Network or More Networks per Bit?

Supplementary Material

Shilin Zhu
UC San Diego

La Jolla, CA 92093
shz338@eng.ucsd.edu

Xin Dong
Harvard University

Cambridge, MA 02138
xindong@g.harvard.edu

Hao Su
UC San Diego

La Jolla, CA 92093
haosu@eng.ucsd.edu

1. Overview

In this document, we provide detailed analysis of BNN,
DNN and BENN in Sec. 2. The training algorithm of BENN
is provided in Sec. 3, and Sec. 4 presents network architec-
tures used in our main paper.

2. Detailed Analysis on DNN, BNN, and BENN

Given a full-precision real valued DNN fw with a set
of parameters w ∼ N(0, σ2

w), a BNN fwb with binarized
parameters wb, input vector x ∼ N(0, 1) (after Batch Nor-
malization) and perturbation ∆x ∼ N(0, σ2), and a BENN
fwbenn with K ensembles, we want to compare their robust-
ness w.r.t. the input perturbation. Here we analyze the vari-
ance of output change before and after perturbation, which
echoes Eq.1 in Sec.3 in the main paper. This is because the
output change has zero mean and its variance reflects the
distribution of output variation. More specifically, larger
variance means increased variation of output w.r.t. input
perturbation.

Assume fw, fwb , fwbenn are outputs before non-linear acti-
vation function of a single neuron in an one-layer network,
we have the output variation of real-value DNN:

fw(x+ ∆x)− fw(x) = w� (x+ ∆x)−w�x = w�∆x

whose distribution has variance σ2
r = |w|σ2

wσ
2, where

|w| denotes number of input connections for this neuron
and � denotes inner product. This is because summation
of multiple independent distributions (due to inner prod-
uct �) has variance summed as well. Some modern non-
linear activation function g(·) like ReLU will not change
the inequality of variances (i.e., if σ2

fa
(x) > σ2

fb
(x), then

σ2
g(fa(x)) > σ2

g(fb(x))), thus we can omit them in the analysis
to keep it simple.

2.1. Activation Binarization

Suppose w is real valued but only input binarized (denote
as f bw), the activation binarization (-1 and +1) has threshold
0, then the output variation is:

f bw(x+ ∆x)− f bw(x) = w� sign(x+ ∆x)−w� sign(x)

whose distribution has variance σ2
Ab

=
|w|σ2

wσ
2
sign(x+∆x)−sign(x). This is because sign(x) ∈

{−1,+1} so the inner product is just the summation
of |w| independent distributions, each having variance
σ2

sign(x+∆x)−sign(x). Note that γ = sign(x+ ∆x)− sign(x)
only has three possible values, namely, 0, -2 and +2. We
compute each of them as follows:

Pr(γ = 2) =Pr(x < 0 AND x+ ∆x > 0)

= Pr(∆x > −x|x < 0)Pr(x < 0)

=

∫ 0−

−∞
[

∫ ∞
−x

1√
2πσ

e−
(∆x)2

2σ2 d(∆x)]
1√
2π
e−

x2

2 dx

Pr(γ = −2) =Pr(x > 0 AND x+ ∆x < 0)

= Pr(∆x < −x|x > 0)Pr(x > 0)

=

∫ ∞
0+

[

∫ −x
−∞

1√
2πσ

e−
(∆x)2

2σ2 d(∆x)]
1√
2π
e−

x2

2 dx

Pr(γ = 0) = 1− Pr(γ = ±2)

and its variance can be computed by:

σ2
Ab

= |w|σ2
w

{
E[γ2]− E2[γ]

}
= |w|σ2

w

{
E[γ2]

}
since E[(sign(x+ ∆x)− sign(x))] = 0. Unfortunately this
integral is too complicated to be solved by analytical formula,
thus we use numerical method to obtain Pr(sign(x+ ∆x)−
sign(x) = ±2). Therefore, the variance is:

σ2
Ab

= B|w|σ2
w, σ

2
r = R|w|σ2

w

1

Table 1. Relation between B, R and σ

σ B R

1.5 1.25 2.25
1.0 1.0 1.0
0.5 0.59 0.25
0.1 0.13 0.01
0.01 0.013 0.0001
0.001 0.0013 0.000001

where B(= σ2
sign(x+∆x)−sign(x)) and R(= σ2) can be found

in Table 1. When σ < 1, robustness of BNN is worse than
DNN’s. As for BENN-Bagging with K (K > 1) ensembles,
the output change has variance:

σ2
benn = Kσ2

Ab
· 1

K2
=
σ2
Ab

K
=
B

K
|w|σ2

w < σ2
Ab

thus BENN-Bagging has better robustness than BNN. If

K >
σ2
Ab

σ2
r

= B
R , then BENN-Bagging can have even better

robustness than DNN.

2.2. Weight Binarization

If we binarize w to wb but keeping the activation real-
valued, the output variation follows:

fwb(x+ ∆x)− fwb(x) = sign(w)�∆x

with variance σ2
Wb

= |w|σ2
sign(w)σ

2 = |w|σ2. Thus whether
weight binarization will hurt robustness or not depends on
whether σ2

sign(w) = 1 > σ2
w holds or not. In particular, the

robustness will not decrease if σ2
w = 1. BENN-Bagging

has variance σ2
benn = 1

K |w|σ
2. So if K > 1

σ2
w

, then BENN-
Bagging is better than DNN.

2.3. Binarization of Both Weight and Activation

If both activation and weight are binarized (denote as
f bwb), the output variation:

f bwb(x+∆x)−f bwb(x) = sign(w)�[sign(x+∆x)−sign(x)]

has variance σ2
Eb

= |w|σ2
sign(w)(σ

2
sign(x+∆x)−sign(x)) =

B|w| which is just the combination of Sec. 2.1 and Sec. 2.2.
BENN-Bagging has variance σ2

benn = B
K |w|, which is more

robust than DNN when K >
σ2
Eb

σ2
r

= B
Rσ2

w
.

The above analysis results in the following theorem:

Theorem 1 Given a activation binarization, weight bina-
rization or extreme binarization one-layer network intro-
duced above, input perturbation is ∆x ∼ N(0, σ2), then the
output variation obeys:

1. If only activation is binarized, BNN has worse robust-
ness than DNN when perturbation σ < 1. BENN-
Bagging is guaranteed to be more robust than BNN.
BENN-Bagging with K ensembles is more robust than
DNN when K > B

R .

2. If only weight is binarized, BNN has worse robustness
than DNN when σw < 1. BENN-Bagging is guaranteed
to be more robust than BNN. BENN-Bagging with K
ensembles is more robust than DNN when K > 1

σ2
w

.

3. If both weight and activation are binarized, BNN has
worse robustness than DNN when σw < 1 and pertur-
bation σ < 1. BENN-Bagging is guaranteed to be more
robust than BNN. BENN-Bagging with K ensembles is
more robust than DNN when K > B

Rσ2
w

.

2.4. Multiple Layers Scenario

All the above analysis is for one layer models before
and after activation function. The same conclusion can be
extended to multiple layers scenario with Theorem 2.

Theorem 2 Given a activation binarization, weight bina-
rization or extreme binarization L-layer network (without
batch normalization for generalization) introduced above,
input perturbation is ∆x ∼ N(0, σ2), then the accumulated
perturbation of ultimate network output obeys:

1. For DNN, ultimate output variation is σ2
r ≤

σ2
∏L
l=1 |wl|σ2

wl
.

2. For activation binarization BNN, ultimate output varia-
tion is σ2

Ab
≤ B

∏L
l=1 |wl|σ2

wl
.

3. For weight binarization BNN, ultimate output variation
is σ2

Wb
≤ σ2

∏L
l=1 |wl|

4. For extreme binarization BNN, ultimate output varia-
tion is σ2

Eb
≤ B

∏L
l=1 |wl|.

5. Theorem 1 holds for multiple layers scenario.

People have not fully understood the effect of variance
reduction in boosting algorithms and some debates still exist
in literature [1, 3], given that classifiers are not independent
with each other. However, our experiments show that BENN-
boosting can also reduce variance in our situation, which is
consistent with [2, 3]. The theoretical analysis on BENN-
boosting is left for future work.

If we switch x and w, replace input perturbation ∆x with
parameter perturbation ∆w in the above analysis, then the
same conclusion holds for parameter perturbation (stability
issue). To sum up, BNN often can be worse than DNN in
terms of robustness and stability, and our method BENN can
cure these problems.

2

3. Training Process of BENN

Algorithm 1: Training Process of BENN

1 Input: a full-precision neural net with L layers, f
elements in convolution kernel and learning rate η,
initial weight ui for each training example i and
number of ensemble rounds K. Initialize BNN with a
pre-trained XNOR-Net model [5]. Retrain each BNN
for maximally M epochs.

2 Ensemble Pass:
3 for k=1 to K do
4 Sampling a new training set given weight ui of

each example i;
5 for epoch=1 to M do
6 Forward Pass:
7 for l=1 to L do
8 for each filter in l-th layer do
9 al = 1

f ||w
l
t||l1;

10 bl = Sign(wlt);
11 wlb = albl

12 end
13 Compute activation al based on binary

kernel wlb and input al−1;
14 end
15 Backward Pass:
16 Compute gradient ∂J

∂wt
based on [5, 4];

17 Parameter Update:
18 Update wt to wt+1 with any update rules (e.g.,

SGD or ADAM)
19 end
20 Ensemble Update:
21 Pick the BNN when training converges;
22 Use either bagging or boosting algorithm to update

weight ui of each training example i;
23 end
24 Return: K trained base classifiers for BENN;

4. Network Architectures Used in the Paper
In this section we provide network architectures used in

the experiments of our main paper.

4.0.1 Self-Designed Network-In-Network (NIN)

Table 2. Self-Designed Network-In-Network (NIN)

Layer Index Type Parameters

1 Conv Depth: 192, Kernel Size: 5x5, Stride: 1, Padding: 2
2 BatchNorm ε: 0.0001, Momentum: 0.1
3 ReLU -
4 BatchNorm ε: 0.0001, Momentum: 0.1
5 Dropout p: 0.5
6 Conv Depth: 96, Kernel Size: 1x1, Stride: 1, Padding: 0
7 ReLU -
8 MaxPool Kernel: 3x3, Stride: 2, Padding: 1
9 BatchNorm ε: 0.0001, Momentum: 0.1
10 Dropout p: 0.5
11 Conv Depth: 192, Kernel Size: 5x5, Stride: 1, Padding: 2
12 ReLU -
13 BatchNorm ε: 0.0001, Momentum: 0.1
14 Dropout p: 0.5
15 Conv Depth: 192, Kernel Size: 1x1, Stride: 1, Padding: 0
16 ReLU -
17 AvgPool Kernel: 3x3, Stride: 2, Padding: 1
18 BatchNorm ε: 0.0001, Momentum: 0.1
19 Dropout p: 0.5
20 Conv Depth: 192, Kernel Size: 3x3, Stride: 1, Padding: 1
21 ReLU -
22 BatchNorm ε: 0.0001, Momentum: 0.1
23 Conv Depth: 192, Kernel Size: 1x1, Stride: 1, Padding: 0
24 ReLU -
25 BatchNorm ε: 0.0001, Momentum: 0.1
26 Conv Depth: 192, Kernel Size: 1x1, Stride: 1, Padding: 0
27 ReLU -
28 AvgPool Kernel: 8x8, Stride: 1, Padding: 0
29 FC Width: 1000

4.0.2 AlexNet

Table 3. AlexNet
Layer Index Type Parameters

1 Conv Depth: 96, Kernel Size: 11x11, Stride: 4, Padding: 0
2 ReLU -
3 MaxPool Kernel: 3x3, Stride: 2
4 BatchNorm -
5 Conv Depth: 256, Kernel Size: 5x5, Stride: 1, Padding: 2
6 ReLU -
7 MaxPool Kernel: 3x3, Stride: 2
8 BatchNorm -
9 Conv Depth: 384, Kernel Size: 3x3, Stride: 1, Padding: 1
10 ReLU -
11 Conv Depth: 384, Kernel Size: 3x3, Stride: 1, Padding: 1
12 ReLU -
13 Conv Depth: 256, Kernel Size: 3x3, Stride: 1, Padding: 1
14 ReLU -
15 MaxPool Kernel: 3x3, Stride: 2
16 Dropout p: 0.5
17 FC Width: 4096
18 ReLU -
19 Dropout p: 0.5
20 FC Width: 4096
21 ReLU -
22 FC Width: 1000

4.0.3 ResNet-18

3

Table 4. ResNet-18
Layer Index Type Parameters

1 Conv Depth: 64, Kernel Size: 7x7, Stride: 2, Padding: 3
2 BatchNorm ε: 0.00001, Momentum: 0.1
3 ReLU -
4 MaxPool Kernel: 3x3, Stride: 2
5 Conv Depth: 64, Kernel Size: 3x3, Stride: 1, Padding: 1
6 BatchNorm ε: 0.00001, Momentum: 0.1
7 ReLU -
8 Conv Depth: 64, Kernel Size: 3x3, Stride: 1, Padding: 1
9 BatchNorm ε: 0.00001, Momentum: 0.1
10 Conv Depth: 64, Kernel Size: 3x3, Stride: 1, Padding: 1
11 BatchNorm ε: 0.00001, Momentum: 0.1
12 ReLU -
13 Conv Depth: 64, Kernel Size: 3x3, Stride: 1, Padding: 1
14 BatchNorm ε: 0.00001, Momentum: 0.1
15 Conv Depth: 128, Kernel Size: 3x3, Stride: 2, Padding: 1
16 BatchNorm ε: 0.00001, Momentum: 0.1
17 ReLU -
18 Conv Depth: 128, Kernel Size: 3x3, Stride: 1, Padding: 1
19 BatchNorm ε: 0.00001, Momentum: 0.1
20 Conv Depth: 128, Kernel Size: 1x1, Stride: 2
21 BatchNorm ε: 0.00001, Momentum: 0.1
22 Conv Depth: 128, Kernel Size: 3x3, Stride: 1, Padding: 1
23 BatchNorm ε: 0.00001, Momentum: 0.1
24 ReLU -
25 Conv Depth: 128, Kernel Size: 3x3, Stride: 1, Padding: 1
26 BatchNorm ε: 0.00001, Momentum: 0.1
27 Conv Depth: 256, Kernel Size: 3x3, Stride: 2, Padding: 1
28 BatchNorm ε: 0.00001, Momentum: 0.1
29 ReLU -
30 Conv Depth: 256, Kernel Size: 3x3, Stride: 1, Padding: 1
31 BatchNorm ε: 0.00001, Momentum: 0.1
32 Conv Depth: 256, Kernel Size: 1x1, Stride: 2
33 BatchNorm ε: 0.00001, Momentum: 0.1
34 Conv Depth: 256, Kernel Size: 3x3, Stride: 1, Padding: 1
35 BatchNorm ε: 0.00001, Momentum: 0.1
36 ReLU -
37 Conv Depth: 256, Kernel Size: 3x3, Stride: 1, Padding: 1
38 BatchNorm ε: 0.00001, Momentum: 0.1
39 Conv Depth: 512, Kernel Size: 3x3, Stride: 2, Padding: 1
40 BatchNorm ε: 0.00001, Momentum: 0.1
41 ReLU -
42 Conv Depth: 512, Kernel Size: 3x3, Stride: 1, Padding: 1
43 BatchNorm ε: 0.00001, Momentum: 0.1
44 Conv Depth: 512, Kernel Size: 1x1, Stride: 2
45 BatchNorm ε: 0.00001, Momentum: 0.1
46 Conv Depth: 512, Kernel Size: 3x3, Stride: 1, Padding: 1
47 BatchNorm ε: 0.00001, Momentum: 0.1
48 ReLU -
49 Conv Depth: 512, Kernel Size: 3x3, Stride: 1, Padding: 1
50 BatchNorm ε: 0.00001, Momentum: 0.1
51 AvgPool -
52 FC Width: 1000

References
[1] P. Bühlmann and T. Hothorn. Boosting algorithms: Regular-

ization, prediction and model fitting. Statistical Science, pages
477–505, 2007. 2

[2] Y. Freund, R. E. Schapire, et al. Experiments with a new
boosting algorithm. In Icml, volume 96, pages 148–156. Bari,
Italy, 1996. 2

[3] J. Friedman, T. Hastie, R. Tibshirani, et al. Additive logistic
regression: a statistical view of boosting (with discussion and
a rejoinder by the authors). The annals of statistics, 28(2):337–
407, 2000. 2

[4] G. Hinton. Neural networks for machine learning. In Coursera,
2012. 3

[5] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural
networks. In European Conference on Computer Vision, pages
525–542. Springer, 2016. 3

4

