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1. Implementation Details of Our Video Pre-
diction/Reconstruction Models

In this section, we first describe the network architec-
ture of our video prediction model and then we illustrate
the training details. The network architecture and training
details of our video reconstruction model is similar, except
the input is different.

Recalling equation (1) from the main submission, the fu-
ture frame Ĩt+1 is given by,

Ĩt+1 = T
(
G
(
I1:t,F2:t

)
, It
)
,

where G is a general CNN that predicts the motion vectors
(u, v) conditioned on the input frames I1:t and the estimated
optical flow Fi between successive input frames Ii and Ii−1.
T is an operation that bilinearly samples from the most re-
cent input It using the predicted motion vectors (u, v).

In our implementation, we use the vector-based archi-
tecture as described in [5]. G is a fully convolutional U-
net architecture, complete with an encoder and decoder
and skip connections between encoder/decoder layers of the
same output dimensions. Each of the 10 encoder layers is
composed of a convolution operation followed by a Leaky
ReLU. The 6 decoder layers are composed of a deconvolu-
tion operation followed by a Leaky ReLU. The output of the
decoder is fed into one last convolutional layer to generate
the motion vector predictions. The input to G is It−1, It and
Ft (8 channels), and the output is the predicted 2-channel
motion vectors that can best warp It to It+1. For the video
reconstruction model, we simply add It+1 and Ft+1 to the
input, and change the number of channels in the first convo-
lutional layer to 13 instead of 8.

We train our video prediction model using frames ex-
tracted from short sequences in the Cityscapes dataset. We
use the Adam optimizer with β1 = 0.9, β2 = 0.999, and a
weight decay of 1×10−4. The frames are randomly cropped
to 256 × 256 with no extra data augmentation. We set the
batch size to 128 over 8 V100 GPUs. The initial learning

Table 1: Accumulated and non-accumulated comparison. The
numbers in brackets are the sample standard deviations.

Method Baseline Non-accumulated Accumulated

mIoU (%) 80.85 (±0.04) 81.35 (±0.03) 81.12 (±0.02)

rate is set to 1× 10−4 and the number of epochs is 400. We
refer interested readers to [5] for more details.

2. Non-Accumulated and Accumulated Com-
parison

Recalling Sec. 4.1 from the main submission, we have
two ways to augment the dataset. The first is the non-
accumulated case, where we simply use synthesized data
from timesteps±k, excluding intermediate synthesized data
from timesteps< |k|. For the accumulated case, we include
all the synthesized data from timesteps ≤ |k|, which makes
the augmented dataset 2k + 1 times larger than the original
training set.

We showed that we achieved the best performance at±3,
so we use k = 3 here. We compare three configurations:

1. Baseline: using the ground truth dataset only.

2. Non-accumulated case: using the union of the ground
truth dataset and ±3;

3. Accumulated case: using the union of the ground truth
dataset, ±3, ±2 and ±1.

For these experiments, we use boundary label relaxation
and joint propagation. We report segmentation accuracy on
the Cityscapes validation set.

We have two observations from Table 1. First, using the
augmented dataset always improves segmentation quality as
quantified by mIoU. Second, the non-accumulated case per-
forms better than the accumulated case. We suspect this
is because the cumulative case significantly decreases the
probability of sampling a hand-annotated training example



within each epoch, ultimately placing too much weight on
the synthesized ones and their imperfections.

3. Cityscapes
3.1. More Training Details

We perform 3-split cross-validation to evaluate our al-
gorithms, in terms of cities. The three validation splits are
{cv0: munster, lindau, frankfurt}, {cv1: darmstadt, dus-
seldorf, erfurt} and {cv2: monchengladbach, strasbourg,
stuttgart}. The rest cities will be in the training set, respec-
tively. cv0 is the standard validation split. We found that
models trained on cv2 split leads to higher performance on
the test set, so we adopt cv2 split for our final test submis-
sion. Using our best model, we perform multiscale infer-
ence on the ‘stuttgart 00’ sequence and generate a demo
video. The video is composed of both video frames and
predicted semantic labels, with a 0.5 alpha blending.

3.2. Failure Cases

We show several more failure cases in Fig. 1. First, we
show four challenging scenarios of class confusion. From
rows (a) to (d), our model has difficulty in segmenting: (a)
car and truck. (b) person and rider. (c) wall and fence (d)
terrain and vegetation.

Furthermore, we show three cases where it could be chal-
lenging even for a human to label. In Fig. 1 (e), it is very
hard to tell whether it is a bus or train when the object is
far away. In Fig. 1 (f), it is also hard to predict whether it
is a car or bus under such strong occlusion (more than 95%
of the object is occluded). In Fig. 1 (g), there is a bicy-
cle hanging on the back of a car. The model needs to know
whether the bicycle is part of the car or a painting on the car,
or whether they are two separate objects, in order to make
the correct decision.

Finally, we show two training samples where the anno-
tation might be wrong. In Fig. 1 (h), the rider should be on
a motorcycle, not a bicycle. In Fig. 1 (i), there should be a
fence before the building. However, the whole region was
labelled as building by a human annotator. In both cases,
our model predicts the correct semantic labels.

3.3. More Synthesized Training Samples

We show 15 synthesized training samples in the demo
video to give readers a better understanding. Each is a 11-
frame video clip, in which only the 5th frame is the ground
truth. The neighboring 10 frames are generated using the
video reconstruction model. We also show the comparison
to using the video prediction model and FlowNet2 [4]. In
general, the video reconstruction model gives us the best
propagated frames/labels in terms of visualization. It also
works the best in our experiments in terms of segmentation
accuracy. Since the Cityscapes dataset is recorded at 17Hz

Table 2: Per-class mIoU results on CamVid. Comparison with
recent top-performing models on the test set. ‘SS’ indicates single-
scale inference, ‘MS’ indicates multi-sclae inference. Our model
achieves the highest mIoU on 8 out of 11 classes (all classes but
tree, sky and sidewalk). This is expected because our synthesized
training samples help more on classes with small/thin structures.

Method Build. Tree Sky Car Sign Road Pedes. Fence Pole Swalk Cyclist mIoU

RTA [3] 88.4 89.3 94.9 88.9 48.7 95.4 73.0 45.6 41.4 94.0 51.6 62.5
Dilate8 [7] 82.6 76.2 89.0 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3
BiSeNet [6] 83.0 75.8 92.0 83.7 46.5 94.6 58.8 53.6 31.9 81.4 54.0 68.7

VideoGCRF [1] 86.1 78.3 91.2 92.2 63.7 96.4 67.3 63.0 34.4 87.8 66.4 75.2
Ours (SS) 90.9 82.9 92.8 94.2 69.9 97.7 76.2 74.7 51.0 91.1 78.0 81.7
Ours (MS) 91.2 83.4 93.1 93.9 71.5 97.7 79.2 76.8 54.7 91.3 79.7 82.9

[2], the motion between frames is very large. Hence, prop-
agation artifacts can be clearly observed, especially at the
image borders.

4. CamVid

4.1. Class Breakdown

We show the per-class mIoU results in Table 2. Our
model has the highest mIoU on 8 out of 11 classes (all
classes but tree, sky and sidewalk). This is expected because
our synthesized training samples help more on classes with
small/thin structures. Overall, our method significantly out-
performs previous state-of-the-art by 7.7% mIoU.

4.2. More Synthesized Training Samples

For CamVid, we show two demo videos of synthe-
sized training samples. One is on the validation sequence
‘006E15’, which is manually annotated every other frame.
The other is on the training sequence ‘0001TP’, which
has manually annotated labels for every 30th frame. For
‘006E15’, we do one step of forward propagation to gen-
erate a label for the unlabeled intermediate frame. For
‘0001TP’, we do 15 steps of forward propagation and 14
steps of backward propagation to label the 29 unlabeled
frames in between. For both videos, the synthesized sam-
ples are generated using the video reconstruction model
trained on Cityscapes, without fine-tuning on CamVid. This
demonstrates the great generalization ability of our video
reconstruction model.

5. Demo Video

We present all the video clips mentioned above at
https://nv-adlr.github.io/publication/
2018-Segmentation.
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Figure 1: Failure cases (in yellow boxes). From left to right: image, ground truth, prediction and their difference. Green boxes are zoomed
in regions for better visualization. Row (a) to (d) show class confusion problems. Our model has difficulty in segmenting: (a) car and
truck. (b) person and rider. (c) wall and fence (d) terrain and vegetation. Row (e) to (f) show challenging cases when the object is far
away, strongly occluded, or overlaps other objects. The last two rows show two training samples with wrong annotations: (h) mislabeled
motorcycle to bicycle and (i) mislabeled fence to building.
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