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S1. More ablation study on ImageNet classifi-
cation

In this section, we continue the Sec. 4.3 in the main pa-
per to provide more comparative experiments. We define
more methods for comparison as follows: GBD vl: We
implement with the group-wise binary decomposition strat-
egy, where each base consists of one block. It corresponds
to the approach described in Eq. (5) and is illustrated in
Fig. S1 (a). GBD v2: Similar to GBD v1, the only differ-
ence is that each group base has two blocks. It is illustrated
in Fig. S1 (b) and is explained in Eq. (6). GBD v3: It is
an extreme case where each base is a whole network, which
can be treated as an ensemble of a set of binary networks.
This case is shown in Fig. S1 (d).

S1.1. Group space exploration

We are interested in exploring the influence of differ-
ent group-wise decomposition strategies. We present the
results in Table S1. We observe that by learning the soft
connections between each block results in the best perfor-
mance on ResNet-18. And methods based on hard connec-
tions perform relatively worse. From the results, we can
conclude that designing compact binary structure is essen-
tial for highly accurate classification. What’s more, we ex-
pect to further boost the performance by integrating with
the NAS approaches as discussed in Sec. S2.

S1.2. Effect of the number of bases

We further explore the influence of number of bases K
to the final performance in Table S2. When the number
is set to 1, it corresponds to directly binarize the original
full-precision network and we observe apparent accuracy
drop compared to its full-precision counterpart. With more
bases employed, we can find the performance steadily in-
creases. The reason can be attributed to the better fitting of
the floating-point structure, which is a trade-off between ac-
curacy and complexity. It can be expected that with enough

*C. Shen is the corresponding author.

bases, the network should has the capacity to approximate
the full-precision network precisely. With the multi-branch
group-wise design, we can achieve high accuracy while still
significantly reducing the inference time and power con-
sumption. Interestingly, each base can be implemented us-
ing small resource and the parallel structure is quite friendly
to FPGA/ASIC.

S2. More discussions

Relation to ResNeXt [8]: The homogeneous multi-branch
architecture design shares some spirit of ResNeXt and en-
joys the advantage of introducing a “cardinality” dimension.
However, our objectives are totally different. ResNeXt aims
to increase the capacity while maintaining the complex-
ity. To achieve this, it first divides the input channels into
groups and perform efficient group convolutions implemen-
tation. Then all the group outputs are aggregated to ap-
proximate the original feature map. In contrast, we first
divide the network into groups and directly replicate the
floating-point structure for each branch while both weights
and activations are binarized. In this way, we can recon-
struct the full-precision structure via aggregating a set of
low-precision transformations for complexity reduction in
the energy-efficient hardware. Furthermore, our structured
transformations are not restricted to only one block as in
ResNeXt.

Group-Net has strong flexibility: The group-wise approx-
imation approach can be efficiently integrated with Neural
Architecture Search (NAS) frameworks [3,4,7,12,13] to ex-
plore the optimal architecture. Based on Group-Net, we can
further add number of bases, filter numbers, connections
among bases into the search space. The proposed approach
can also be combined with knowledge distillation strategy
asin [6, 1 1]. The basic idea is to train a target low-precision
network alongside another pretrained full-precision guid-
ance network. An additional regularizer is added to min-
imize the difference between student’s and teacher’s inter-
mediate feature representations for higher accuracy. In this
way, we expect to further decrease the number of bases
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Figure S1: Illustration of several possible group-wise architectures. We assume the original full-precision network comprises four blocks. “FB” represents
the floating-point block. G(-) is defined in Sec. 2.2.2 in the main paper, which represents a binary block. We omit the skip connections for convenience.
(a): Each group comprises one block and we approximate each floating-point block with a set of binarized blocks. (b): Decompose the network into groups,
where each group contains two blocks. Then we approximate each floating-point group using a set of binarized groups. (c): Each group contains different
number of blocks. (d): An extreme case. We directly decompose the whole floating-point network into an ensemble of several binary networks.

Table S1: Comparisons between several group-wise decomposition strategies. Top-1 and Top-5 accuracy gap to the corresponding full-precision networks

are also reported.

Model Bases Top-1% Top-5% Top-1gap % Top-5 gap %
ResNet-18 Full-precision 1 69.7 89.4 - -
Group-Net 5 64.8 85.7 4.9 3.7
GBD vl 5 63.0 84.8 6.7 4.6
GBD v2 5 62.2 84.1 7.5 5.3
GBD v3 5 59.2 82.3 10.5 7.1

Table S2: Validation accuracy of Group-Net on ImageNet with different
number of bases. All cases are based on the ResNet-18 network with
binary weights and activations.

Model Bases Top-1% Top-5% Top-1gap % Top-5 gap %
Full-precision 1 69.7 89.4 - -
Group-Net 1 56.4 79.5 133 9.9
Group-Net 3 62.5 84.2 72 52
Group-Net 5 64.8 85.7 4.9 3.7

while maintaining the performance.

S3. More ablation study on semantic segmen-
tation

S3.1. Influence of dilation rates on full-precision
baselines

In this section, we explore the effect of dilation rates in
the last two blocks for full-precision baselines. We show
the mIOU change in Figure. S2. For dilation rates (1, 1), it
corresponds to the original FCN baseline [5] with no atrous
convolution applied. For both FCN-32s and FCN-16s, we
can observe that when using dilated convolution with rate =
4 and rate = 8 in the last two blocks respectively, we can
get the best performance.

S3.2. Full-precision baselines with multiscale dila-
tions

In Sec. 4.4 in the paper, we have shown that Group-Net
with BPAC can accurately fit the full-precision model while
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Figure S2: Illustration of the influence of different dilation rates in the
last two blocks for the floating-point baseline models.

saving considerable computational complexity. To explore
the effect of multiscale dilations on full-precision models,
we replace the last two blocks as the same structure of
BPAC. Specifically, we use K homogeneous floating-point
branches in the last two blocks while each branch is dif-
ferent in dilation rate. We set ' = 5 here. Because of
this modification, the FLOPs for full-precision ResNet-18,
ResNet-34 and ResNet-50 increases by 2.79x, 3.14x and
3.13x, respectively. As shown in Table S3, the multiple
dilations design improves the performance of full-precision



Table S3: Performance on PASCAL VOC 2012 validation set.

Model mIOU
Full-precision (multi-dilations) 67.6
ResNet-18, FCN-32s Full-precision 64.9
Group-Net + BPAC 63.8
Full-precision (multi-dilations) | 70.1
ResNet-18, FCN-16s Full-precision 67.3
Group-Net + BPAC 66.3
Full-precision (multi-dilations) | 75.0
ResNet-34, FCN-32s Full-precision 72.7
Group-Net + BPAC 71.2
Full-precision (multi-dilations) | 75.5
ResNet-50, FCN-32s Full-precision 73.1
Group-Net + BPAC 70.4

baselines but at a cost of huge computational complexity
increase. In contrast, Group-Net + BPAC does not increase
the computational complexity compared with using Group-
Net only. This proves the flexibility of the proposed Group-
Net which can effectively borrow task-specific properties to
approximate the original floating-point structure. And this
is one of the advantages for employing structured binary
decomposition.

S4. Extending Group-Net to binary weights
and low-precision activations

In the main paper and in Sec. S1 to Sec. S3, all the ex-
periments are based on binary weights and binary activa-
tions. To make a tradeoff between accuracy and computa-
tional complexity, we can add more bases as discussed in
Sec. S1.2. However, we can also increase the bit-width of
activations for better accuracy according to actual demand.
We conduct experiments on the ImageNet dataset and report
the accuracy in Table S4, Table S5 and Table S6.

S4.1. Fixed-point Activation quantization

We apply the simple uniform activation quantization in
the paper. As the output of the ReLU function is un-
bounded, the quantization after ReLU requires a high dy-
namic range. It will cause large quantization errors es-
pecially when the bit-precision is low. To alleviate this
problem, similar to [2, 10], we use a clip function h(y) =
clip(y, 0, 8) to limit the range of activation to [0, 5], where
B (not learned) is fixed during training. Then the trun-
cated activation output y is uniformly quantized to K -bits

(K > 1) and we still use STE to estimate the gradient:
F d:y d( 2" — 1) b
orward : y = roun . .
y y 3 oK _ 1’

Backward : % = %

Since the weights are binary, the multiplication in convo-
lution is replaced by fixed-point addition. One can simply
replace the uniform quantizer with other non-uniform quan-
tizers for more accurate quantization similar to [1,9].

6]

S4.2. Implementation details

For data preprocessing, it follows the same pipeline as
BNNs. We also quantize the weights and activations of all
convolutional layers except that the first layer and the last
layer are full-precision. For training ResNet with fixed-
point activations, the learning rate starts at 0.05 and is di-
vided by 10 when it gets saturated. We use Nesterov mo-
mentum SGD for optimization. The mini-batch size and
weight decay are set to 128 and 0.0001, respectively. The
momentum ratio is 0.9. We directly learn from scratch
since we empirically observe that fine-tuning does not bring
further benefits to the performance. The convolution and
element-wise operations are in the order: Conv — BN —
ReLU — Quantize.

S4.3. Evaluation on ImageNet

For experiments in Table S4 and Table S5, we use 5 bases
(i.e., K = 5). From Table S4, we can observe that with
binary weights and fixed-point activations, we can achieve
highly accurate results. For example, by also referring to
Table 2 in the main paper, we can find the Top-1 accuracy
drop for Group-Net on ResNet-50 with tenary and binary
activations are 1.5% and 6.5%, respectively. Furthermore,
our approach still works well on plain network structures
such as AlexNet in Table S5. We also provide the compari-
son with different number of bases in Table S6.

Table S4: Validation accuracy of different binary decomposition strate-
gies on ImageNet with different choices of W and A. “W’ and ‘A’ refer to
the weight and activation bitwidth, respectively.

Model W A Top-1% Top-5% Top-1gap % Top-5gap %

ResNet-18 Full-precision 32 32 69.7 89.4 - -

Group-Net 1 2 69.6 89.0 0.1 0.4

Group-Net 1 32 70.4 89.8 -0.7 -0.4

GBD vl 1 4 69.2 88.5 0.5 0.9

GBD v2 1 4 68.3 87.9 1.4 1.5

GBD v3 1 4 64.5 85.0 52 4.4

LBD 1 4 60.1 82.2 9.6 7.2
ResNet-50 Full-precision 32 32 76.0 92.9 - -

Group-Net 1 2 74.5 91.5 1.5 1.4

Group-Net 1 4 76.0 92.7 0.0 0.2

Table S5: Accuracy of AlexNet on ImageNet validation set. All cases use
binary weights and 2-bit activations.

Model  Full-precision LBD GBDvl Group-Net
Top-1 % 57.2 54.2 573 57.8
Top-5 % 80.4 77.6 80.1 80.9
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