Supplementary Material for
‘“ A Sufficient Condition for Convergences of Adam and RMSProp ”

In this supplementary we give the complete proof of our main results. Section A introduces the necessary lemmas for the
proof and Section B prove the maim propositions, theorems and corollaries. Section C describes the architectures of LeNet
and ResNet-18, and the statistics of the training datasets and validation datasets of MNIST and CIFAR-100.

Notations We use bold letters to represent vectors. The k-th component of a vector v, is denoted as v; ;. The inner
product between two vectors v; and wy is denoted as (vy, w;). Other than that, all computations that involve vectors shall be
understood in the component-wise way. We say a vector v; > 0 if every component of v, is non-negative, and v; > w; if
Vg > we forall k =1,2,...,d. The ¢, norm of a vector v, is defined as ||v;||; = 2221 |vg, k|- The €2 norm is defined
as HthQ = (vy,v4) = Zzzl |ve k|2, Given a positive vector 7, it will be helpful defining the following weighted norm:
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A. Key Lemmas

In this section we provide the necessary lemmas for the proof of the main theorem.

Lemma 15. Given Sy > 0 and a non-negative sequence {s;}, let Sy = Sy + 22:1 s; for t > 1. Then the following estimate
holds

T
; gt — log(So). (10)

Proof. The finite sum 23:1 st/ St can be interpreted as a Riemann sum Zthl (St — St—1)/S:. Since 1/x is decreasing on
the interval (0, 00), we have

a St y 5T
Z < [ Sdo = log(Sr) - log(S0).
The proof is finished. O

Lemma 16 (Abel’s Lemma - Summation by parts). Let {u;} and {s:} be two non-negative sequences. Let Sy = Zle s; for
t> 1. Then

T-1
Z ULSE = Z Up — Upy1)St + urSt. (11)
t=1
Proof. Let Sy = 0. Then

T T T-1 T-1
Z UL St = Z ut(St — S 1 Z ug Sy — Z Uf_l,_le +urSt = Z(Uf — ut+1)5t + urSt. (12)
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The proof is finished. O

Lemma 17. Let {0,} and {ay} satisfy the restrictions (R2) and (R3). For any i < t we have
Xt < Cox; and oy < Coa;. (13)

Proof. For any i < t, since the sequence {a;} is non-increasing, we have a; < a;. Hence,
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This proves the first inequality. On the other hand, since {6;} is non-decreasing,

V1—-10
a; < Cy T gt a; < Coa; = Coay.
The proof is finished. O
Let O = H] ir1 05 fori < tand ©(,) = 1 by convention.

Lemma 18. Fix a constant 0’ with 3> < 0’ < 0. Let Cy be as given as Eq. (6) in the main paper. For any i < t we have
Oy = C1(6) " (14)

Proof. For any i < t, Since §; > 0’ for j > N, and 0; < ¢’ for j < N, we have
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We take the constant C; = vazl (0;/6") where N is the maximum of the indices for which 6; < 6’. The proof is finished. [

Remark 19. If 0, = 0 is a constant, we have © (; ;) = 0t~ In this case we can take 0' = 0 and Cy = 1.
Lemma 20. Lety := 32/0'". We have the following estimate
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<
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vy, V. (15)

Proof. Let B ;) = H;ZiH B; fori < tand B = 1 by convention. By the iteration formula m; = Bim;_1 + (1 — f¢)g:
and mgy = 0, we have
t
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Similarly, by v; = 6;v;_1 + (1 — 6;)g? and vy = €, we have
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It follows by arithmetic inequality that
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Note that {6, } is non-decreasing by (R2), and B; ;) < B~% by (R1). By Lemma 18, we have
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The proof is finished. O

Let At =Tl — T = —O[tmt/\/’th. Let ’[}t = 9t’vt,1 + (1 — 015)0'? where 0'2 = Et I:th:I and let ’l”)t = Oét/\/’ITt.



Lemma 21. The following equality holds
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Combine Eq. (18) and Eq. (19), we then obtain the desired Eq. (16). The proof is finished.

Lemma 22. Let M; =

E [(Vf(:ct), Ay + L ||At||2} and x; = ay/+/1 — 0. Then for any t > 2, we have
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Proof. First, for t > 2 we have

E(V f(x:), As) = \/étz: ) E(V f(x:), A1) +E <Vf(-’/vt), Ap — \/%040[:1At1> .

@D (I

(22)

To estimate (I), by Schwartz inequality and the Lipschitz continuity of the gradient of f, we have
(Vf(®e), At—1) < (Vf(i1), Aro1) +(Vf(xe) = Vf(Ti-1), Ai1)
< (Vf(@i-1), Ar1) + Ly — || [| A1 ]| (23)
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Hence, we have
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To estimate (II), by Lemma 21, we have
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Note that 7j; is independent from g, and that E;[g:] = V f (). Hence, for the first term in the right hand side of Eq. (25), we
have
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To estimate (III), we have
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Note that o; < G. Therefore,
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On the other hand,
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By Lemma 20, we have
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Hence, we have
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where C% = (m + 1>. The last inequality is due to 3; /(1 — ;) < /(1 — ) as B; < j3. Therefore, we have
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Note that o? = E;[g?]. Hence,
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Combine Eq. (27), Eq. (33) and Eq. (34), we get
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The term (IV) is estimated similarly as term (III). First, we have
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where CY, is the constant defined above. We have
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Combine Eq. (22), Eq. (23), Eq. (25), Eq. (26), Eq. (35) and Eq. (37), we obtain that
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Let Cy denote the constant 2(C%)2. Then

2
02:2<6/<1—6>+1> |
Cl(l —7)91

We obtain Eq. (20) by adding the term LE [||At ||2] to both sides of Eq. (38).
When ¢t = 1, we have

amg 2 a1(1 = B1)g1 2
Mi=E|—-(V , LA =E|-(V , —— L|A . 39
1= B |- (Vi) ) pan | =B - (Vi) 2022 39
The same as what we did for term (I) in Lemma 21, we have
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Then the similar argument as Eq. (33) implies that
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Combine Eq. (39) and Eq. (41), and adding both sides by LE [||A|\ﬂ, we obtain Eq. (21). This finishes the proof. O
Lemma 23. The following estimate holds
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Proof. Note that v; > 6,v;_1, hence we have v; > (H it

C1(0")! v, for all i < t. On the other hand,
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Since a; = x¢vV1 — 0; < x¢v/1 — 0; for i < ¢, it follows that
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Hence,
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It follows that
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The proof is finished.
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Lemma 24. Ler M, = E [(Vf(mt), A+ L ||At||2}. For T > 1 we have
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Hence,
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Finally, by Lemma 23, we have
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Combine Eq. (51) and Eq. (52), we then obtain the desired estimate Eq. (47). The proof is finished. O

Lemma 25. The following estimate holds

t — 2 2 t
E|Y Vl\/vfg ] <d [log (1 + fd> +Zlog(0[1)] . (53)
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Proof. Let Wy =1and W, = H 07 Letwy, = Wy — W,y = (1 —6,) Ht.: 0; " = (1 — 6;)W;. We therefore have
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Note that vy = € and v; = 0;v;_1 + (1 — 0;)g;, hence Wyvy = € and Wyvy = Wy_1v;_1 + wg?. Hence, Wyv; =
Wovo + Y\, wig? = €+ S.\_, wig?. It follows that
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By Lemma 18, foreach k = 1,2,...,d,

t wig?y t L&
Z —L <log | e+ nggzk —log(e) = log (1 + - nggzk . (56)

=1 €T Z(f | Wegy g = =1



Hence,
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The second inequality is due to the convex inequality % ZZ:1 log (z;) < log (% ZZ:1 zl) Indeed, we have the more general

convex inequality that
Ellog(X)] < log E[X] (58)

for any positive random variable X . Taking X to be 1 + é 25:1 w; ||g;||? in the right hand side of Eq. (57), we obtain
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The last inequality is due to the following trivial inequality
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log(1 + ab) <log(l+a+ b+ ab) =log(l + a) + log(1 + b)

for non-negative a and b. It then follows that
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The proof is finished. O

Lemma 26. We have the following estimate
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Proof. For simplicity of notations, let w; := H 7@—\/%9,5 ,and ) := 22:1 w;. Note that x; < Cpya,. Hence,
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By Lemma 16, we have
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Let S; := log (1 + ) + 3" log(6; ). By Lemma 25, we have
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Since {a;} is a non-increasing sequence, we have a; — a;+1 > 0. By Eq. (63), we have
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Note that a; < x¢. Combining Eq. (62), Eq. (63) and Eq. (65), we have
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Note that log(1 + x) < z for all z > —1, it follows that
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Note that y; = a;/+/1 — ;. Hence, by Eq. (62) and Eq. (65), we have
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The proof is finished. O

Lemma 27. Let 7 be randomly chosen from {1,2, ..., T} with equal probabilities p. = 1/T. We have the following estimate
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Notice that vy = 6;v;_1 + (1 — 0;)g?, and vy = € and E; [gﬂ < G2, it is straightforward to prove by induction that
E[||v:]|;] < G* + ed. Hence,
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By Egq. (70), Eq. (71) and Eq. (72), we obtain
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The lemma is followed by
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The proof is finished. .

B. Proof of the main results
In this section, we provide the detailed proof of propositions, theorems and corollaries in the main body.

B.1. Proof of Proposition 3

Proposition. Algorithm 1 and Algorithm 2 are equivalent.

Proof. 1t suffices to show that Algorithm 1 can be realized as Algorithm 2 with a particular choice of parameters, and vice
versa. Note that for Algorithm 1, it holds that
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While for Algorithm 2, we have
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It follows that Eq. (77) becomes Eq. (76). Conversely, given the parameters w; of Algorithm 2, we take §; = W;_, /W,. Then
Eq. (76) becomes Eq. (77). The proof is completed. O

Hence, given the parameters 6, in Algorithm 1, we take w; = (1 — ;) []"



B.2. Proof of Theorem 4

Theorem. Let {x:} be a sequence generated by Generic Adam for initial values x1, my = 0 and vy = €. Assume that [ and
stochastic gradients g; satisfy assumptions (Al)-(A4). Let T be randomly chosen from {1,2, ... T} with equal probabilities
pr = 1/T. We have the following estimate
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Proof. By the L-Lipschitz continuity of the gradient of f and the descent lemma, we have
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Let M; == E {(Vf(:ct),A,Q +L HAtHz] In particular, we have E[f(x:11)] < E[f(x:)] + M,;. Taking sum for ¢t =
1,2,...,T, we obtain that
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Note that f(z) is bounded from below by f*, hence, E[f(xr41)] > f*. Applying the estimate of Lemma 24, we have
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where constant Cj is the constant given in Lemma 24. It follows by applying the estimates in Lemma 25 and Lemma 27 for
the second and third terms in the right hand side of Eq. (81), and appropriately rearranging the terms. Then we get

(& [|vsan) ")) < Co/Cred [zwm ]

= (1 B)Tar <f(m1) Free ;Xt Vo D (82)

< 200V G? + ed
- (1-B)Tar

C+C' N /16

TCYT

. G2\ C3Cd <&
f(x1) — f* 4+ C3Cod x1 log 1—&-5 — Zatm

0
)

where

2oV G2 ¥ ed G2

¢ = VTR p) — fr 4 CyCod xalog (14 =

1-p ed
202C3dVG? + ed

(1—p)6x
The proof is finished. O
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B.3. Proof of Main Theorem 5
In this section we give a complete proof of the main Theorem 5. For readers’ convenience we restate the theorem here.

Theorem. Let {x;} be a sequence generated by Generic Adam for initial values x1, my = 0 and vy = €. Assume that [ and
stochastic gradients g; satisfy assumptions (Al)-(A4). Let T be randomly chosen from {1,2, ... T} with equal probabilities
pr = 1/T. Then for any § > 0, the following bound holds with probability at least 1 — §%/3:

C+C' N a6,
5TO(T

IV f(z)]? < .= Bound(T), (83)

where the constants C and C' are given by
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in which the constant Cs is given by

Proof of the Theorem. Denote the right hand side of Eq. (78) as C(T)). Let ¢ = ||Vf(z,)||°. By Theorem 4 we have
E [|¢|?/3] < C(T)*3. Let P denote the probability measure. By Chebyshev’s inequality, we have

C(T23\ _E[IC)]

2/3 2/3

P <|C| /3> s ) S capr =9 . (84)
52/3

Namely, P (|C| > C(T ) < 6%/3. Therefore, P (\C| )> > 1 — §2/3. This finishes the proof. O

B.4. Proof of Corollary 7
Corollary. Take oy = n/t* with 0 < s < 1. Suppose lim;_, o, 0; = 6 < 1, then the Bound(T') in Theorem 5 is bounded from

below by constants
C'v1-196
—

In particular, when 0, = 6 < 1, we have the following more subtle estimate on lower and upper-bounds for Bound(T)

c ovIi=o c CoViZh
<B .
T T s ound(T) < S+ 50 = 5)

Bound(T) > (85)

Proof. Since lim;_,, 6; = 6, and 6, is non-decreasing, we have (1 — 6;) > 1 — 6. Hence, by Theorem 5, it holds
C cVI—60, 5t
ST + 5 ( T1i-s )
- C'\/1-6
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If in particular, §; = 6 < 1, then by Theorem 5 we have

C CNVI=0,5 0t
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(86)

Bound(T) =

Note that
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Combining Egs. (87)-(88), we obtain the desired result. O



B.5. Proof of Corollary 10

Corollary. Generic Adam with the above family of parameters converges as long as 0 < r < 2s < 2, and its non-asymptotic
convergence rate is given by

o/, r/2+s<1
IV f (@I < { Olog(T)/T*),  r/2+s=1.
o)1), r/2+s5>1

Proof. 1t is not hard to verify that the following equalities hold:

Sk e/ T= 0 = py/a Xy t=(/2+9)

OT =24y r/24s <1
O(log(T)), r/24+s=1.
0Q), r/2+s>1

In this case, Tarp = nT'~*. Therefore, by Theorem 5 the non-asymptotic convergence rate is given by

T/, r/2+s<1
IV (@) < § Olog(T)/T*%), r/2+5=1.
O@1/T*), r/2+s>1
To guarantee convergence, then 0 < r < 2s < 2. O

B.6. Proof of Corollary 12

Corollary. Suppose in Weighted AdaEMA the weights w; = t" for r >0, and o, =n/+/t. Then Weighted AdaEMA has the
O(log(T) /V/T) non-asymptotic convergence rate.

Proof. By the proof procedures of Theorem 3, the equivalent Generic Adam has the parameters 6, = W;_,/W,, where
Wi =1+ ', w;. Hence, it holds that
Wi t"

1—0=—Lt=—" " —O(1)b).
W14y i /)

We have lim;_, o 6; = 1 > /3 and 6, is increasing. In addition, we have that x; = a;/+/1 — 0; is bounded, and hence “almost”
non-increasing (by taking a; = 1 in (R3)). The restrictions (R1)-(R3) are all satisfied. Hence, we can apply Theorem 5 in this
case. It follows that its convergence rate is given by

‘T—l V1 -0, tT—l
o(==a =) o=l — o

The proof is completed. O

C. Experimental Implementation

In this section, we describe the statistics of the training and validation datasets of MNIST? and CIFAR-100%, the architectures
of LeNet and ResNet-18, and detailed implementations.

C.1. Datasets

MNIST [17] is composed with ten classes of digits among {0, 1,2, ...,9}, which includes 60000 training examples and
10000 validation examples. The dimension of each example is 28 x 28.

CIFAR-100 [17] is composed with 100 classes of 32 x 32 color images. Each class includes 6000 images. In addition,
these images are devided into 50000 training examples and 10000 validation examples.

3http://yann.lecun.com/exdb/mnist/
“https://www.cs.toronto.edu/ kriz/cifar.htm]



C.2. Architectures of Neural Networks

LetNet [16] used in the experiments is a five-layer convolutional neural network with ReLU activation function whose
detailed architecture is described in [16]. The batch size is set as 64. The training stage lasts for 100 epochs in total. No L2
regularization on the weights is used.

ResNet-18 [10] is a ResNet model containing 18 convolutional layers for CIFAR-100 classification [10]. Input images are
down-scaled to 1/8 of their original sizes after the 18 convolutional layers, and then fed into a fully-connected layer for the
100-class classification. The output channel numbers of 1-3 conv layers, 4-8 conv layers, 9-13 conv layers and 14-18 conv
layers are 64, 128, 256 and 512, respectively. The batch size is 64. The training stage lasts for 100 epochs in total. No L2
regularization on the weights is used.

C.3. Additional Experiments of ResNet-18 on CIFAR-100

We further illustrate Generic Adam with different » = {0, 0.25,0.5,0.75, 1}, RMSProp, and AMSGrad with an alternative
base learning rate &« = 0.01 on ResNet-18. We do cut-off by taking oy = 0.001 if ¢ < 2500. Note that v is still non-increasing.
The motivation is that at the very beginning the learning rate oy = % could be large which would deteriorate the performance.
The performance profiles are also exactly in accordance with the analysis in theory, i.e., larger r leads to a faster training
process.
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Figure 4. Performance profiles of Generic Adam with » = {0, 0.25,0.5,0.75,1}, RMSProp, and AMSGrad for training ResNet on the
CIFAR-100 dataset. Figures (a), (b), and (c) illustrate training loss vs. epochs, test accuracy vs. epochs, and test loss vs. epochs, respectively.





