
Supplementary Material for
“ A Sufficient Condition for Convergences of Adam and RMSProp ”

In this supplementary we give the complete proof of our main results. Section A introduces the necessary lemmas for the
proof and Section B prove the maim propositions, theorems and corollaries. Section C describes the architectures of LeNet
and ResNet-18, and the statistics of the training datasets and validation datasets of MNIST and CIFAR-100.

Notations We use bold letters to represent vectors. The k-th component of a vector vt is denoted as vt,k. The inner
product between two vectors vt and wt is denoted as 〈vt,wt〉. Other than that, all computations that involve vectors shall be
understood in the component-wise way. We say a vector vt ≥ 0 if every component of vt is non-negative, and vt ≥ wt if
vt,k ≥ wt,k for all k = 1, 2, . . . , d. The `1 norm of a vector vt is defined as ‖vt‖1 =

∑d
k=1 |vt,k|. The `2 norm is defined

as ‖vt‖2 = 〈vt,vt〉 =
∑d
k=1 |vt,k|2. Given a positive vector η̂t, it will be helpful defining the following weighted norm:

‖vt‖2ηt
= 〈vt, η̂tvt〉 =

∑d
k=1 η̂t,k|vt,k|2.

A. Key Lemmas
In this section we provide the necessary lemmas for the proof of the main theorem.

Lemma 15. Given S0 > 0 and a non-negative sequence {st}, let St = S0 +
∑t
i=1 si for t ≥ 1. Then the following estimate

holds
T∑
t=1

st
St
≤ log(ST )− log(S0). (10)

Proof. The finite sum
∑T
t=1 st/St can be interpreted as a Riemann sum

∑T
t=1(St − St−1)/St. Since 1/x is decreasing on

the interval (0,∞), we have
T∑
t=1

St − St−1
St

≤
∫ ST

S0

1

x
dx = log(ST )− log(S0).

The proof is finished.

Lemma 16 (Abel’s Lemma - Summation by parts). Let {ut} and {st} be two non-negative sequences. Let St =
∑t
i=1 si for

t ≥ 1. Then
T∑
t=1

utst =

T−1∑
t=1

(ut − ut+1)St + uTST . (11)

Proof. Let S0 = 0. Then

T∑
t=1

utst =

T∑
t=1

ut(St − St−1) =

T−1∑
t=1

utSt −
T−1∑
t=1

ut+1St + uTST =

T−1∑
t=1

(ut − ut+1)St + uTST . (12)

The proof is finished.

Lemma 17. Let {θt} and {αt} satisfy the restrictions (R2) and (R3). For any i ≤ t we have

χt ≤ C0χi and αt ≤ C0αi. (13)

Proof. For any i ≤ t, since the sequence {at} is non-increasing, we have at ≤ ai. Hence,

χt =
αt√

1− θt
≤ C0at ≤ C0ai ≤ C0

αi√
1− θi

= C0χi.



This proves the first inequality. On the other hand, since {θt} is non-decreasing,

αt ≤ C0

√
1− θt√
1− θi

αi ≤ C0αi = C0αi.

The proof is finished.

Let Θ(t,i) =
∏t
j=i+1 θj for i < t and Θ(t,t) = 1 by convention.

Lemma 18. Fix a constant θ′ with β2 < θ′ < θ. Let C1 be as given as Eq. (6) in the main paper. For any i ≤ t we have

Θ(t,i) ≥ C1(θ′)t−i. (14)

Proof. For any i ≤ t, Since θj ≥ θ′ for j ≥ N , and θj < θ′ for j < N , we have

Θ(t,i) =

t∏
j=i+1

θj ≥

 N∏
j=i+1

θj

 (θ′)t−N =

 N∏
j=i+1

(θj/θ
′)

 (θ′)t−i ≥

 N∏
j=1

(θj/θ
′)

 (θ′)t−i.

We take the constant C1 =
∏N
j=1(θj/θ

′) where N is the maximum of the indices for which θj < θ′. The proof is finished.

Remark 19. If θt = θ is a constant, we have Θ(t,i) = θt−i. In this case we can take θ′ = θ and C1 = 1.

Lemma 20. Let γ := β2/θ′. We have the following estimate

m2
t ≤

1

C1(1− γ)(1− θt)
vt, ∀t. (15)

Proof. Let B(t,i) =
∏t
j=i+1 βj for i < t and B(t,t) = 1 by convention. By the iteration formulamt = βtmt−1 + (1− βt)gt

andm0 = 0, we have

mt =

t∑
i=1

 t∏
j=i+1

βj

 (1− βi)gi =

t∑
i=1

B(t,i)(1− βi)gi.

Similarly, by vt = θtvt−1 + (1− θt)g2t and v0 = ε, we have

vt =

 t∏
j=1

θj

 ε+

t∑
i=1

 t∏
j=i+1

θj

 (1− θi) g2i ≥
t∑
i=1

Θ(t,i)(1− θi)g2i .

It follows by arithmetic inequality that

m2
t =

(
t∑
i=1

(1− βi)B(t,i)√
(1− θi)Θ(t,i)

√
(1− θi)Θ(t,i)gi

)2

≤

(
t∑
i=1

(1− βi)2B2
(t,i)

(1− θi)Θ(t,i)

)(
t∑
i=1

Θ(t,i)(1− θi)g2i

)
≤

(
t∑
i=1

(1− βi)2B2
(t,i)

(1− θi)Θ(t,i)

)
vt.

Note that {θt} is non-decreasing by (R2), and B(t,i) ≤ βt−i by (R1). By Lemma 18, we have

t∑
i=1

(1− βi)2B2
(t,i)

(1− θi)Θ(t,i)
≤ 1

C1(1− θt)

t∑
i=1

(
β2

θ′

)t−i
≤ 1

C1(1− θt)

t−1∑
k=0

γk ≤ 1

C1(1− γ)(1− θt)
.

The proof is finished.

Let ∆t := xt+1 − xt = −αtmt/
√
vt. Let v̂t = θtvt−1 + (1− θt)σ2

t where σ2
t = Et

[
g2t
]

and let η̂t = αt/
√
v̂t.



Lemma 21. The following equality holds

∆t −
βtαt√
θtαt−1

∆t−1 = −(1− βt)η̂tgt − η̂tgt
(1− θt)gt√

vt
At − η̂tσt

(1− θt)gt√
vt

Bt, (16)

where

At =
βtmt−1√

vt +
√
θtvt−1

− (1− βt)gt√
vt +

√
v̂t
,

Bt =

(
βtmt−1√
θtvt−1

√
1− θtgt√

vt +
√
θtvt−1

√
1− θtσt√

v̂t +
√
θtvt−1

)
+

(1− βt)σt√
vt +

√
v̂t
.

Proof. We have

∆t −
βtαt√
θtαt−1

∆t−1 = − αtmt√
vt

+
βtαtmt−1√
θtvt−1

= −αt

(
mt√
vt
− βtmt−1√

θtvt−1

)

= − (1− βt)αtgt√
vt︸ ︷︷ ︸

(I)

−βtαtmt−1

(
1
√
vt
− 1√

θtvt−1

)
︸ ︷︷ ︸

(II)

.
(17)

For (I) we have

(I) =
(1− βt)αtgt√

v̂t
+ (1− βt)αtgt

(
1√
vt
− 1√

v̂t

)
= (1− βt)η̂tgt + (1− βt)αtgt

(1− θt)(σ2
t − g2t )

√
vt
√
v̂t(
√
vt +

√
v̂t)

= (1− βt)η̂tgt + η̂tσt
(1− θt)gt√

vt

(1− βt)σt√
vt +

√
v̂t
− η̂tgt

(1− θt)gt√
vt

(1− βt)gt
√
vt +

√
v̂t
.

(18)

For (II) we have

(II) = βtαtmt−1
(1− θt)g2t√

vt
√
θtvt−1(

√
vt +

√
θtvt−1)

= βtαtmt−1
(1− θt)g2t√

vt
√
v̂t(
√
vt +

√
θtvt−1)

+ βtαtmt−1
(1− θt)g2t√

vt(
√
vt +

√
θtvt−1)

(
1√
θtvt−1

− 1√
v̂t

)

= η̂tgt
(1− θt)gt√

vt

(
βtmt−1√

vt +
√
θtvt−1

)
+

βtαtmt−1(1− θt)2g2tσ2
t√

vt
√
v̂t
√
θtvt−1(

√
vt +

√
θtvt−1)(

√
v̂t +

√
θtvt−1)

= η̂tgt
(1− θt)gt√

vt

(
βtmt−1√

vt +
√
θtvt−1

)
+ η̂tσt

(1− θt)gt√
vt

(
βtmt−1√
θtvt−1

√
1− θtgt√

vt +
√
θtvt−1

√
1− θtσt√

v̂t +
√
θtvt−1

)
.

(19)

Combine Eq. (18) and Eq. (19), we then obtain the desired Eq. (16). The proof is finished.

Lemma 22. Let Mt = E
[
〈∇f(xt),∆t〉+ L ‖∆t‖2

]
and χt = αt/

√
1− θt. Then for any t ≥ 2, we have

Mt ≤
βtαt√
θtαt−1

Mt−1 + L E
[
‖∆t‖2

]
+ C2GχtE

[∥∥∥∥√1− θtgt√
vt

∥∥∥∥2
]
− 1− β

2
E
[
‖∇f(xt)‖2η̂t

]
(20)

and

M1 ≤ L E
[
‖∆1‖2

]
+ C2Gχ1E

[∥∥∥∥√1− θtg1√
v1

∥∥∥∥2
]
, (21)

where C2 = 2

(
β/(1−β)√
C1(1−γ)θ1

+ 1

)2

.



Proof. First, for t ≥ 2 we have

E〈∇f(xt),∆t〉 =
βtαt√
θtαt−1

E〈∇f(xt),∆t−1〉︸ ︷︷ ︸
(I)

+E
〈
∇f(xt),∆t −

βtαt√
θtαt−1

∆t−1

〉
︸ ︷︷ ︸

(II)

.
(22)

To estimate (I), by Schwartz inequality and the Lipschitz continuity of the gradient of f , we have

〈∇f(xt),∆t−1〉 ≤ 〈∇f(xt−1),∆t−1〉+ 〈∇f(xt)−∇f(xt−1),∆t−1〉
≤ 〈∇f(xt−1),∆t−1〉+ L ‖xt − xt−1‖ ‖∆t−1‖

= 〈∇f(xt−1),∆t−1〉+ L ‖∆t−1‖2 .
(23)

Hence, we have

(I) ≤ βtαt√
θtαt−1

E
[
〈∇f(xt−1),∆t−1〉+ L ‖∆t−1‖2

]
=

βtαt√
θtαt−1

Mt−1. (24)

To estimate (II), by Lemma 21, we have

E
〈
∇f(xt),∆t −

βtαt√
θtαt−1

∆t−1

〉
=− (1− βt)E〈∇f(xt), η̂tgt〉−E

〈
∇f(xt), η̂tgt

(1− θt)gt√
vt

At

〉
︸ ︷︷ ︸

(III)

−E
〈
∇f(xt), η̂tσt

(1− θt)gt√
vt

Bt

〉
︸ ︷︷ ︸

(IV)

.
(25)

Note that η̂t is independent from gt, and that Et[gt] = ∇f(xt). Hence, for the first term in the right hand side of Eq. (25), we
have

−(1− βt)E〈∇f(xt), η̂tgt〉 = −(1− βt)E 〈∇f(xt), η̂tEt[gt]〉

= −(1− βt)E ‖∇f(xt)‖2η̂t

≤ −(1− β)E ‖∇f(xt)‖2η̂t
.

(26)

To estimate (III), we have

(III) ≤ E
〈√

η̂t|∇f(xt)||gt|
σt

,

√
η̂tσt|At|(1− θt)|gt|√

vt

〉
. (27)

Note that σt ≤ G. Therefore,

√
η̂tσt =

√
η̂tσ2

t =

√
αtσ2

t√
v̂t
≤

√
αtσ2

t√
(1− θt)σ2

t

≤

√
Gαt√
1− θt

=
√
Gχt. (28)

On the other hand,

|At| =

∣∣∣∣∣ βtmt−1√
vt +

√
θtvt−1

− (1− βt)gt√
vt +

√
v̂t

∣∣∣∣∣ ≤ βt|mt−1|√
θtvt−1

+
(1− βt)|gt|√

vt
. (29)

By Lemma 20, we have
|mt−1|√
vt−1

≤ 1√
C1(1− γ)(1− θt)

. (30)

Meanwhile,
|gt|√
vt
≤ |gt|√

(1− θt)g2t
=

1√
1− θt

. (31)



Hence, we have

|At| ≤
βt√

C1(1− γ)(1− θt)θt
+

1− βt√
1− θt

≤

(
βt/(1− βt)√
C1(1− γ)θt

+ 1

)
1− βt√
1− θt

≤

(
β/(1− β)√
C1(1− γ)θ1

+ 1

)
1− βt√
1− θt

:=
C ′2(1− βt)√

1− θt
,

(32)

where C ′2 =

(
β/(1−β)√
C1(1−γ)θ1

+ 1

)
. The last inequality is due to βt/(1− βt) ≤ β/(1− β) as βt ≤ β. Therefore, we have

〈√
η̂t|∇f(xt)||gt|

σt
,

√
η̂tσt|At|(1− θt)|gt|√

vt

〉
≤
〈√

η̂t|∇f(xt)||gt|
σt

,
√
GχtC

′
2(1− βt)

√
1− θt|gt|√

vt

〉
≤ 1− βt

4

∥∥∥∥√η̂t|∇f(xt)||gt|
σt

∥∥∥∥2 + C ′22 G(1− βt)χt
∥∥∥∥√1− θtgt√

vt

∥∥∥∥2
≤ 1− βt

4

∥∥∥∥ η̂t|∇f(xt)|2|gt|2

σ2
t

∥∥∥∥
1

+ C ′22 Gχt

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2 .
(33)

Note that σ2
t = Et[g2t ]. Hence,

Et
∥∥∥∥ η̂t|∇f(xt)|2|gt|2

σ2
t

∥∥∥∥
1

=
∥∥η̂t|∇f(xt)|2

∥∥
1

= ‖∇f(xt)‖2η̂t
. (34)

Combine Eq. (27), Eq. (33) and Eq. (34), we get

(III) ≤ 1− βt
4

E
[
‖∇f(xt)‖2η̂t

]
+ C ′22 GχtE

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2 . (35)

The term (IV) is estimated similarly as term (III). First, we have

|Bt| ≤

(
βt|mt−1|√
θtvt−1

√
1− θt|gt|√

vt +
√
θtvt−1

√
1− θtσt√

v̂t +
√
θtvt−1

)
+

(1− βt)σt√
vt +

√
v̂t

≤

(
β/(1− β)√
C1(1− γ)θ1

+ 1

)
1− βt√
1− θt

=
C ′2(1− βt)√

1− θt
,

(36)

where C ′2 is the constant defined above. We have

(IV) ≤ E
〈√

η̂t|∇f(xt)|,
√
η̂tσt|Bt|(1− θt)|gt|√

vt

〉
≤ E

〈√
η̂t|∇f(xt)|,

√
GχtC

′
2(1− βt)

√
1− θt|gt|√

vt

〉
≤ 1− βt

4
E
[
‖∇f(xt)‖2η̂t

]
+ C ′22 GχtE

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2 .
(37)

Combine Eq. (22), Eq. (23), Eq. (25), Eq. (26), Eq. (35) and Eq. (37), we obtain that

E〈∇f(xt),∆t〉 ≤
βtαt√
θtαt−1

Mt−1 + 2C ′22 GχtE
∥∥∥∥√1− θtgt√

vt

∥∥∥∥2 − 1− βt
2

E
[
‖∇f(xt)‖2η̂t

]
≤ βtαt√

θtαt−1
Mt−1 + 2C ′22 GχtE

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2 − 1− β
2

E
[
‖∇f(xt)‖2η̂t

]
.

(38)



Let C2 denote the constant 2(C ′2)2. Then

C2 = 2

(
β/(1− β)√
C1(1− γ)θ1

+ 1

)2

.

We obtain Eq. (20) by adding the term LE
[
‖∆t‖2

]
to both sides of Eq. (38).

When t = 1, we have

M1 = E
[
−
〈
∇f(x1),

α1m1√
v1

〉
+ L ‖∆1‖2

]
= E

[
−
〈
∇f(x1),

α1(1− β1)g1√
v1

〉
+ L ‖∆1‖2

]
. (39)

The same as what we did for term (I) in Lemma 21, we have

(1− β1)α1g1√
vt

= (1− β1)η̂1g1 + η̂1σ1
(1− θ1)g1√

v1

(1− β1)σ1√
v1 +

√
v̂1
− η̂1g1

(1− θ1)g1√
v1

(1− β1)g1
√
v1 +

√
v̂1
. (40)

Then the similar argument as Eq. (33) implies that

E
[
−
〈
∇f(x1),

α1m1√
v1

〉]
≤ C2Gχ1E

[∥∥∥∥√1− θtg1√
v1

∥∥∥∥2
]
− 1− β1

2
E
[
‖∇f(x1)‖2η̂1

]
≤ C2Gχ1E

[∥∥∥∥√1− θtg1√
v1

∥∥∥∥2
]
.

(41)

Combine Eq. (39) and Eq. (41), and adding both sides by LE
[
‖∆‖21

]
, we obtain Eq. (21). This finishes the proof.

Lemma 23. The following estimate holds

T∑
t=1

‖∆t‖2 ≤
C2

0χ1

C1(1−√γ)2

T∑
t=1

χt

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2 . (42)

Proof. Note that vt ≥ θtvt−1, hence we have vt ≥
(∏t

j=i+1 θj

)
vi = Θ(t,i)vi. By Lemma 18, this follows that vt ≥

C1(θ′)t−ivi for all i ≤ t. On the other hand,

|mt| ≤
t∑
i=1

 t∏
j=i+1

βj

 (1− βi)|gi| ≤
t∑
i=1

βt−i|gi|.

It follows that

|mt|√
vt
≤

t∑
i=1

βt−i|gi|√
vt

≤ 1√
C1

t∑
i=1

(
β√
θ′

)t−i |gi|√
vi

=
1√
C1

t∑
i=1

√
γ
t−i |gi|√

vi
. (43)

Since αt = χt
√

1− θt ≤ χt
√

1− θi for i ≤ t, it follows that

‖∆t‖2 =

∥∥∥∥αtmt√
vt

∥∥∥∥2 ≤ χ2
t

C1

∥∥∥∥∥
t∑
i=1

√
γ
t−i
√

1− θi|gi|√
vi

∥∥∥∥∥
2

≤ χ2
t

C1

(
t∑
i=1

√
γ
t−i

)
t∑
i=1

√
γ
t−i
∥∥∥∥√1− θigi√

vi

∥∥∥∥2

≤ χ2
t

C1(1−√γ)

t∑
i=1

√
γ
t−i
∥∥∥∥√1− θigi√

vi

∥∥∥∥2 .
(44)

By Lemma 17,
χt ≤ C0χi,∀i ≤ t.



Hence,

‖∆t‖2 =

∥∥∥∥αtmt√
vt

∥∥∥∥2 ≤ C2
0χ1

C1(1−√γ)

t∑
i=1

√
γ
t−i
χi

∥∥∥∥√1− θigi√
vi

∥∥∥∥2 . (45)

It follows that

T∑
t=1

‖∆t‖2 ≤
C2

0χ1

C1(1−√γ)

T∑
t=1

t∑
i=1

√
γ
t−i
χi

∥∥∥∥√1− θigi√
vi

∥∥∥∥2

=
C2

0χ1

C1(1−√γ)

T∑
i=1

(
T∑
t=i

√
γ
t−i

)
χi

∥∥∥∥√1− θigi√
vi

∥∥∥∥2

≤ C2
0χ1

C1(1−√γ)2

T∑
i=1

χi

∥∥∥∥√1− θigi√
vi

∥∥∥∥2 .
(46)

The proof is finished.

Lemma 24. Let Mt = E
[
〈∇f(xt),∆t〉+ L ‖∆t‖2

]
. For T ≥ 1 we have

T∑
t=1

Mt ≤ C3E

[
T∑
t=1

χt

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2
]
− 1− β

2
E

[
T∑
t=1

‖∇f(xt)‖2η̂t

]
. (47)

where the constant C3 is given by

C3 =
C0√

C1(1−√γ)

 C2
0χ1L

C1(1−√γ)2
+ 2

(
β/(1− β)√
C1(1− γ)θ1

+ 1

)2

G

 .

Proof. Let Nt = LE
[
‖∆t‖2

]
+ C2GχtE

[∥∥∥√1−θtgt√
vt

∥∥∥2]. By Lemma 22, we have M1 ≤ N1 and

Mt ≤
βtαt√
θtαt−1

Mt−1 +Nt −
1− β

2
E
[
‖∇f(xt)‖2η̂t

]
≤ βtαt√

θtαt−1
Mt−1 +Nt. (48)

It is straightforward to get by induction that

Mt ≤
βtαt√
θtαt−1

βt−1αt−1√
θt−1αt−2

Mt−2 +
βtαt√
θtαt−1

Nt−1 +Nt −
1− β

2
E
[
‖∇f(xt)‖2η̂t

]
...

≤
αtB(t,1)

α1

√
Θ(t,1)

M1 +

t∑
i=2

αtB(t,i)

αi
√

Θ(t,i)

Ni −
1− β

2
E
[
‖∇f(xt)‖2η̂t

]
≤

t∑
i=1

αtB(t,i)

αi
√

Θ(t,i)

Ni −
1− β

2
E
[
‖∇f(xt)‖2η̂t

]
.

(49)

By Lemma 17, αt ≤ C0αi for any i ≤ t. By Lemma 18, Θ(t,i) ≥ C1(θ′)t−i. In addition, B(t,i) ≤ βt−i. Hence,

Mt ≤
C0√
C1

t∑
i=1

(
β√
θ′

)t−i
Ni −

1− β
2

E
[
‖∇f(xt)‖2η̂t

]
=

C0√
C1

t∑
i=1

√
γ
t−i
Ni −

1− β
2

E
[
‖∇f(xt)‖2η̂t

]
.

(50)



Hence,

T∑
t=1

Mt ≤
C0√
C1

T∑
t=1

t∑
i=1

√
γ
t−i
Ni −

1− β
2

E

[
T∑
t=1

‖∇f(xt)‖2η̂t

]

=
C0√
C1

T∑
i=1

(
T∑
t=i

√
γ
t−i

)
Ni −

1− β
2

E

[
T∑
t=1

‖∇f(xt)‖2η̂t

]

=
C0√

C1(1−√γ)

T∑
t=1

Nt −
1− β

2
E

[
T∑
t=1

‖∇f(xt)‖2η̂t

]
.

(51)

Finally, by Lemma 23, we have

T∑
t=1

Ni = E

[
L

T∑
t=1

‖∆t‖2 + C2G

T∑
t=1

χt

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2
]

≤
(

C2
0χ1L

C1(1−√γ)2
+ C2G

)
E

[
T∑
t=1

χt

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2
]
.

(52)

Let

C3 =
C0√

C1(1−√γ)

(
C2

0χ1L

C1(1−√γ)2
+ C2G

)

=
C0√

C1(1−√γ)

 C2
0χ1L

C1(1−√γ)2
+ 2

(
β/(1− β)√
C1(1− γ)θ1

+ 1

)2

G

 .

Combine Eq. (51) and Eq. (52), we then obtain the desired estimate Eq. (47). The proof is finished.

Lemma 25. The following estimate holds

E

[
t∑
i=1

∥∥∥∥√1− θigi√
vi

∥∥∥∥2
]
≤ d

[
log

(
1 +

G2

εd

)
+

t∑
i=1

log(θ−1i )

]
. (53)

Proof. Let W0 = 1 and Wt =
∏T
i=1 θ

−1
i . Let wt = Wt −Wt−1 = (1− θt)

∏t
i=1 θ

−1
i = (1− θt)Wt. We therefore have

wt
Wt

= 1− θt,
Wt−1

Wt
= θt.

Note that v0 = ε and vt = θtvt−1 + (1 − θt)gt, hence W0v0 = ε and Wtvt = Wt−1vt−1 + wtg
2
t . Hence, Wtvt =

W0v0 +
∑t
i=1 wig

2
i = ε+

∑t
i=1 wig

2
i . It follows that

t∑
i=1

∥∥∥∥√1− θigi√
vi

∥∥∥∥2 =

t∑
i=1

∥∥∥∥ (1− θi)g2t
vi

∥∥∥∥
1

=

t∑
i=1

∥∥∥∥wig2iWivi

∥∥∥∥
1

=

t∑
i=1

∥∥∥∥∥ wig
2
i

ε+
∑i
`=1 w`g

2
`

∥∥∥∥∥
1

. (54)

Write the norm in terms of coordinates, we get

t∑
i=1

∥∥∥∥√1− θigi√
vi

∥∥∥∥2 =

t∑
i=1

d∑
k=1

wig
2
i,k

ε+
∑i
`=1 w`g

2
`,k

=

d∑
k=1

t∑
i=1

wig
2
i,k

ε+
∑i
`=1 w`g

2
`,k

. (55)

By Lemma 18, for each k = 1, 2, . . . , d,

t∑
i=1

wig
2
i,k

ε+
∑i
`=1 w`g

2
`,k

≤ log

(
ε+

t∑
`=1

w`g
2
`,k

)
− log(ε) = log

(
1 +

1

ε

t∑
`=1

w`g
2
`,k

)
. (56)



Hence,

t∑
i=1

∥∥∥∥√1− θigi√
vi

∥∥∥∥2 ≤ d∑
k=1

log

(
1 +

1

ε

t∑
i=1

wig
2
i,k

)

≤ d log

(
1

d

d∑
k=1

(
1 +

1

ε

t∑
i=1

wig
2
i,k

))
= d log

(
1 +

1

εd

t∑
i=1

wi ‖gi‖2
)
.

(57)

The second inequality is due to the convex inequality 1
d

∑d
k=1 log (zi) ≤ log

(
1
d

∑d
k=1 zi

)
. Indeed, we have the more general

convex inequality that
E[log(X)] ≤ logE[X] (58)

for any positive random variable X . Taking X to be 1 + 1
εd

∑t
i=1 wi ‖gi‖

2 in the right hand side of Eq. (57), we obtain

E

[
t∑
i=1

∥∥∥∥√1− θigi√
vi

∥∥∥∥2
]
≤ d E

[
log

(
1 +

1

εd

t∑
i=1

wi ‖gi‖2
)]
≤ d log

(
1 +

1

εd

t∑
i=1

wiE
[
‖gi‖2

])

≤ d log

(
1 +

G2

εd

t∑
i=1

wi

)
= d log

(
1 +

G2

εd
(Wt −W0)

)
= d log

(
1 +

G2

εd

(
t∏
i=1

θ−1i − 1

))

≤ d

[
log

(
1 +

G2

εd

)
+ log

(
t∏
i=1

θ−1i

)]
.

(59)

The last inequality is due to the following trivial inequality

log(1 + ab) ≤ log(1 + a+ b+ ab) = log(1 + a) + log(1 + b)

for non-negative a and b. It then follows that

E

[
t∑
i=1

∥∥∥∥√1− θigi√
vi

∥∥∥∥2
]
≤ d

[
log

(
1 +

G2

εd

)
+

t∑
i=1

log(θ−1i )

]
. (60)

The proof is finished.

Lemma 26. We have the following estimate

E

[
T∑
t=1

χt

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2
]
≤ C0d

[
χ1 log

(
1 +

G2

εd

)
+

1

θ1

T∑
t=1

αt
√

1− θt

]
. (61)

Proof. For simplicity of notations, let ωt :=
∥∥∥√1−θtgt√

vt

∥∥∥2, and Ωt :=
∑t
i=1 ωi. Note that χt ≤ C0at. Hence,

E

[
T∑
t=1

χt

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2
]
≤ C0 E

[
T∑
t=1

atωt

]
. (62)

By Lemma 16, we have

E

[
T∑
t=1

atωt

]
= E

[
T−1∑
t=1

(at − at+1)Ωt + aTΩT

]
(63)

Let St := log
(

1 + G2

εd

)
+
∑t
i=1 log(θ−1i ). By Lemma 25, we have

E[Ωt] ≤ dSt. (64)



Since {at} is a non-increasing sequence, we have at − at+1 ≥ 0. By Eq. (63), we have

E

[
T−1∑
t=1

(at − at+1)Ωt + aTΩT

]
≤ d

(
T−1∑
t=1

(at − at+1)St + aTST

)

=d

(
a1S0 +

T∑
t=1

at(St − St−1)

)
= d

[
a1 log

(
1 +

G2

εd

)
+

T∑
t=1

at log(θ−1t )

] (65)

Note that at ≤ χt. Combining Eq. (62), Eq. (63) and Eq. (65), we have

E

[
T∑
t=1

χt

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2
]
≤ C0d

[
χ1 log

(
1 +

G2

εd

)
+

T∑
t=1

χt log(θ−1t )

]

= C0d

[
χ1 log

(
1 +

G2

εd

)
+

T∑
t=1

χt log(θ−1t )

]
.

(66)

Note that log(1 + x) ≤ x for all x > −1, it follows that

log(θ−1t ) = log(1 + (θ−1t − 1)) ≤ θ−1t − 1 ≤ 1− θt
θ1

.

Note that χt = αt/
√

1− θt. Hence, by Eq. (62) and Eq. (65), we have

E

[
T∑
t=1

χt

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2
]
≤ C0d

[
χ1 log

(
1 +

G2

εd

)
− 1

θ1

T∑
t=1

αt
√

1− θt

]
. (67)

The proof is finished.

Lemma 27. Let τ be randomly chosen from {1, 2, . . . , T} with equal probabilities pτ = 1/T . We have the following estimate

(
E
[
‖∇f(xτ )‖4/3

])3/2
≤ C0

√
G2 + εd

TαT
E

[
T∑
t=1

‖∇f(xt)‖2η̂t

]
. (68)

Proof. For any two random variables X and Y , by the Hölder’s inequality, we have

E[|XY |] ≤ E [|X|p]1/p E [|Y |q]1/q . (69)

Let X =

(
‖∇f(xt)‖2√
‖v̂t‖1

)2/3

, Y = ‖v̂t‖1/31 , and let p = 3/2, q = 3. By Eq. (69), we have

E
[
‖∇f(xt)‖4/3

]
≤ E

[
‖∇f(xt)‖2√
‖v̂t‖1

]2/3
E [‖v̂t‖1]

1/3
. (70)

On the one hand, we have

‖∇f(xt)‖2√
‖v̂t‖1

=

d∑
k=1

|∇kf(xt)|2√∑d
k=1 v̂t,k

≤ α−1t

d∑
k=1

αt√
v̂t,k
|∇kf(xt)|2

= α−1t

d∑
k=1

η̂t,k|∇kf(xt)|2 = α−1t ‖∇f(xt)‖2η̂t
.

(71)

On the other hand, since v̂t = θtvt−1 + (1− θt)σ2
t , and all entries are non-negative, we have

‖v̂t‖1 = θt ‖vt−1‖1 + (1− θt) ‖σt‖2 .



Notice that vt = θtvt−1 + (1 − θt)g2t , and v0 = ε and Et
[
g2t
]
≤ G2, it is straightforward to prove by induction that

E[‖vt‖1] ≤ G2 + εd. Hence,

E[‖v̂t‖1] ≤ G2 + εd. (72)

By Eq. (70), Eq. (71) and Eq. (72), we obtain

E
[
‖∇f(xt)‖4/3

]
≤
(
α−1t E

[
‖∇f(xt)‖2η̂t

])2/3
(G2 + εd)1/3. (73)

By Lemma 17, αT ≤ C0αt for any t ≤ T , hence α−1t ≤ C0α
−1
T . Hence,

E
[
‖∇f(xt)‖4/3

]3/2
≤ C0

√
G2 + εd

αT
E
[
‖∇f(xt)‖2η̂t

]
, ∀t ≤ T. (74)

The lemma is followed by

(
E
[
‖∇f(xτ )‖4/3

])3/2
=

(
1

T

T∑
t=1

E
[
‖∇f(xt)‖4/3

])3/2

≤ 1

T

T∑
t=1

(
E
[
‖∇f(xt)‖4/3

])3/2
≤ C0

√
G2 + εd

TαT
E

[
T∑
t=1

‖∇f(xt)‖2η̂t

]
.

(75)

The proof is finished.

B. Proof of the main results

In this section, we provide the detailed proof of propositions, theorems and corollaries in the main body.

B.1. Proof of Proposition 3

Proposition. Algorithm 1 and Algorithm 2 are equivalent.

Proof. It suffices to show that Algorithm 1 can be realized as Algorithm 2 with a particular choice of parameters, and vice
versa. Note that for Algorithm 1, it holds that

xt+1 =xt−
αtmt√( t∏

i=1

θi
)
ε+

t∑
i=1

( t∏
j=i+1

θj(1− θi)
)
g2i

. (76)

While for Algorithm 2, we have

xt+1 = xt −
αtmt√

1
Wt
ε+

∑t
i=1

wi

Wt
g2t

. (77)

Hence, given the parameters θt in Algorithm 1, we take wt = (1− θt)
∏t
i=1 θ

−1
i . Then it holds that

Wt = 1 +

t∑
i=1

wi =

t∏
i=1

θ−1i .

It follows that Eq. (77) becomes Eq. (76). Conversely, given the parameters wt of Algorithm 2, we take θt = Wt−1/Wt. Then
Eq. (76) becomes Eq. (77). The proof is completed.



B.2. Proof of Theorem 4

Theorem. Let {xt} be a sequence generated by Generic Adam for initial values x1,m0 = 0 and v0 = ε. Assume that f and
stochastic gradients gt satisfy assumptions (A1)-(A4). Let τ be randomly chosen from {1, 2, . . . , T} with equal probabilities
pτ = 1/T . We have the following estimate

(
E
[
‖∇f(xτ )‖4/3

])3/2
≤
C + C ′

∑T
t=1 αt

√
1− θt

TαT
, (78)

where the constant C and C ′ are given by

C =
2C0

√
G2 + εd

1− β

(
f(x1)− f∗ + C3C0d χ1 log

(
1 +

G2

εd

))
,

C ′ =
2C2

0C3d
√
G2 + εd

(1− β)θ1
.

Proof. By the L-Lipschitz continuity of the gradient of f and the descent lemma, we have

f(xt+1) ≤ f(xt) + 〈∇f(xt),∆t〉+
L

2
‖∆t‖2 . (79)

Let Mt := E
[
〈∇f(xt),∆t〉+ L ‖∆t‖2

]
. In particular, we have E[f(xt+1)] ≤ E[f(xt)] + Mt. Taking sum for t =

1, 2, . . . , T , we obtain that

E [f(xT+1)] ≤ f(x1) +

T∑
t=1

Mt. (80)

Note that f(x) is bounded from below by f∗, hence, E[f(xT+1)] ≥ f∗. Applying the estimate of Lemma 24, we have

f∗ ≤ f(x1) + C3E

[
T∑
t=1

χt

∥∥∥∥√1− θtgt√
vt

∥∥∥∥2
]
− 1− β

2
E

[
T∑
t=1

‖∇f(xt)‖2η̂t

]
, (81)

where constant C3 is the constant given in Lemma 24. It follows by applying the estimates in Lemma 25 and Lemma 27 for
the second and third terms in the right hand side of Eq. (81), and appropriately rearranging the terms. Then we get

(
E
[∥∥∇f(xTτ )

∥∥4/3])3/2 ≤ C0

√
G2 + εd

TαT
E

[
T∑
t=1

‖∇f(xt)‖2η̂t

]

≤ 2C0

√
G2 + εd

(1− β)TαT

(
f(x1)− f∗ + C3E

[
T∑
t=1

χt

∥∥∥∥√1− θtgt√
vt

∥∥∥∥
])

≤ 2C0

√
G2 + εd

(1− β)TαT

[
f(x1)− f∗ + C3C0d χ1 log

(
1 +

G2

εd

)
− C3C0d

θ1

T∑
t=1

αt
√

1− θt

]

=
C + C ′

∑T
t=1 αt

√
1− θt

TαT

(82)

where

C =
2C0

√
G2 + εd

1− β

(
f(x1)− f∗ + C3C0d χ1 log

(
1 +

G2

εd

))
C ′ =

2C2
0C3d

√
G2 + εd

(1− β)θ1
.

The proof is finished.



B.3. Proof of Main Theorem 5

In this section we give a complete proof of the main Theorem 5. For readers’ convenience we restate the theorem here.

Theorem. Let {xt} be a sequence generated by Generic Adam for initial values x1,m0 = 0 and v0 = ε. Assume that f and
stochastic gradients gt satisfy assumptions (A1)-(A4). Let τ be randomly chosen from {1, 2, . . . , T} with equal probabilities
pτ = 1/T . Then for any δ > 0, the following bound holds with probability at least 1− δ2/3:

‖∇f(xτ )‖2 ≤
C + C ′

∑T
t=1 αt

√
1− θt

δTαT
:= Bound(T ), (83)

where the constants C and C ′ are given by

C =
2C0

√
G2 + εd

1− β

(
f(x1)− f∗ + C3C0d χ1 log

(
1 +

G2

εd

))
,

C ′ =
2C2

0C3d
√
G2 + εd

(1− β)θ1
,

in which the constant C3 is given by

C3 =
C0√

C1(1−√γ)

 C2
0χ1L

C1(1−√γ)2
+ 2

(
β/(1− β)√
C1(1− γ)θ1

+ 1

)2

G

 .

Proof of the Theorem. Denote the right hand side of Eq. (78) as C(T ). Let ζ = ‖∇f(xτ )‖2. By Theorem 4 we have
E
[
|ζ|2/3

]
≤ C(T )2/3. Let P denote the probability measure. By Chebyshev’s inequality, we have

P
(
|ζ|2/3 > C(T )2/3

δ2/3

)
≤

E
[
|ζ|2/3

]
C(T )2/3

δ2/3

≤ δ2/3. (84)

Namely, P
(
|ζ| > C(T )

δ

)
≤ δ2/3. Therefore, P

(
|ζ| ≤ C(T )

δ

)
≥ 1− δ2/3. This finishes the proof.

B.4. Proof of Corollary 7

Corollary. Take αt = η/ts with 0 ≤ s < 1. Suppose limt→∞ θt = θ < 1, then the Bound(T ) in Theorem 5 is bounded from
below by constants

Bound(T ) ≥ C ′
√

1− θ
δ

. (85)

In particular, when θt = θ < 1, we have the following more subtle estimate on lower and upper-bounds for Bound(T )

C

δηT 1−s +
C ′
√

1− θ
δ

≤ Bound(T )≤ C

δηT 1−s +
C ′
√

1−θ
δ(1− s)

.

Proof. Since limt→∞ θt = θ, and θt is non-decreasing, we have (1− θt) ≥ 1− θ. Hence, by Theorem 5, it holds

Bound(T ) ≥ C

δηT 1−s +
C ′
√

1− θ
δ

(∑T
t=1 t

−s

T 1−s

)
≥ C ′

√
1− θ
δ

. (86)

If in particular, θt = θ < 1, then by Theorem 5 we have

Bound(T ) =
C

δηT 1−s +
C ′
√

1− θ
δ

(∑T
t=1 t

−s

T 1−s

)
. (87)

Note that

1≤
∑T
t=1t

−s

T 1−s =
T∑
t=1

( t
T

)−s 1

T
≤
∫ 1

0

x−sdx=
1

1−s
. (88)

Combining Eqs. (87)-(88), we obtain the desired result.



B.5. Proof of Corollary 10

Corollary. Generic Adam with the above family of parameters converges as long as 0 < r ≤ 2s < 2, and its non-asymptotic
convergence rate is given by

‖∇f(xτ )‖2 ≤


O(T−r/2), r/2 + s < 1

O(log(T )/T 1−s), r/2 + s = 1

O(1/T 1−s), r/2 + s > 1

.

Proof. It is not hard to verify that the following equalities hold:∑T
t=K αt

√
1− θt = η

√
α
∑T
t=K t

−(r/2+s)

=


O(T 1−(r/2+s)), r/2 + s < 1

O(log(T )), r/2 + s = 1

O(1), r/2 + s > 1

.

In this case, TαT = ηT 1−s. Therefore, by Theorem 5 the non-asymptotic convergence rate is given by

‖∇f(xτ )‖2 ≤


O(T−r/2), r/2 + s < 1

O(log(T )/T 1−s), r/2 + s = 1

O(1/T 1−s), r/2 + s > 1

.

To guarantee convergence, then 0 < r ≤ 2s < 2.

B.6. Proof of Corollary 12

Corollary. Suppose in Weighted AdaEMA the weights wt = tr for r≥0, and αt=η/
√
t. Then Weighted AdaEMA has the

O(log(T )/
√
T ) non-asymptotic convergence rate.

Proof. By the proof procedures of Theorem 3, the equivalent Generic Adam has the parameters θt = Wt−1/Wt, where
Wt = 1 +

∑t
i=1 wi. Hence, it holds that

1− θt =
wt
Wt

=
tr

1 +
∑t
i=1 i

r
= O(1/t).

We have limt→∞ θt = 1 > β and θt is increasing. In addition, we have that χt = αt/
√

1− θt is bounded, and hence “almost”
non-increasing (by taking at = 1 in (R3)). The restrictions (R1)-(R3) are all satisfied. Hence, we can apply Theorem 5 in this
case. It follows that its convergence rate is given by

O
(∑T

i=1 αt
√

1− θt
TαT

)
= O

(∑T
t=1 1/t√
T

)
= O

( log(T )√
T

)
.

The proof is completed.

C. Experimental Implementation
In this section, we describe the statistics of the training and validation datasets of MNIST3 and CIFAR-1004, the architectures

of LeNet and ResNet-18, and detailed implementations.

C.1. Datasets

MNIST [17] is composed with ten classes of digits among {0, 1, 2, . . . , 9}, which includes 60000 training examples and
10000 validation examples. The dimension of each example is 28× 28.

CIFAR-100 [17] is composed with 100 classes of 32 × 32 color images. Each class includes 6000 images. In addition,
these images are devided into 50000 training examples and 10000 validation examples.

3http://yann.lecun.com/exdb/mnist/
4https://www.cs.toronto.edu/ kriz/cifar.html



C.2. Architectures of Neural Networks

LetNet [16] used in the experiments is a five-layer convolutional neural network with ReLU activation function whose
detailed architecture is described in [16]. The batch size is set as 64. The training stage lasts for 100 epochs in total. No L2
regularization on the weights is used.

ResNet-18 [10] is a ResNet model containing 18 convolutional layers for CIFAR-100 classification [10]. Input images are
down-scaled to 1/8 of their original sizes after the 18 convolutional layers, and then fed into a fully-connected layer for the
100-class classification. The output channel numbers of 1-3 conv layers, 4-8 conv layers, 9-13 conv layers and 14-18 conv
layers are 64, 128, 256 and 512, respectively. The batch size is 64. The training stage lasts for 100 epochs in total. No L2
regularization on the weights is used.

C.3. Additional Experiments of ResNet-18 on CIFAR-100

We further illustrate Generic Adam with different r = {0, 0.25, 0.5, 0.75, 1}, RMSProp, and AMSGrad with an alternative
base learning rate α = 0.01 on ResNet-18. We do cut-off by taking αt = 0.001 if t < 2500. Note that αt is still non-increasing.
The motivation is that at the very beginning the learning rate αt = 0.01√

t
could be large which would deteriorate the performance.

The performance profiles are also exactly in accordance with the analysis in theory, i.e., larger r leads to a faster training
process.
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Figure 4. Performance profiles of Generic Adam with r = {0, 0.25, 0.5, 0.75, 1}, RMSProp, and AMSGrad for training ResNet on the
CIFAR-100 dataset. Figures (a), (b), and (c) illustrate training loss vs. epochs, test accuracy vs. epochs, and test loss vs. epochs, respectively.




