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Abstract

The single image super-resolution task is one of the most

examined inverse problems in the past decade. In the recent

years, Deep Neural Networks (DNNs) have shown superior

performance over alternative methods when the acquisition

process uses a fixed known downscaling kernel—typically a

bicubic kernel. However, several recent works have shown

that in practical scenarios, where the test data mismatch

the training data (e.g. when the downscaling kernel is not

the bicubic kernel or is not available at training), the lead-

ing DNN methods suffer from a huge performance drop.

Inspired by the literature on generalized sampling, in this

work we propose a method for improving the performance

of DNNs that have been trained with a fixed kernel on ob-

servations acquired by other kernels. For a known kernel,

we design a closed-form correction filter that modifies the

low-resolution image to match one which is obtained by an-

other kernel (e.g. bicubic), and thus improves the results of

existing pre-trained DNNs. For an unknown kernel, we ex-

tend this idea and propose an algorithm for blind estimation

of the required correction filter. We show that our approach

outperforms other super-resolution methods, which are de-

signed for general downscaling kernels.

1. Introduction

The task of Single Image Super-Resolution (SISR) is one

of the most examined inverse problems in the past decade

[11, 13, 37, 8]. In this problem, the goal is to reconstruct a

latent high-resolution (HR) image from its low-resolution

(LR) version obtained by an acquisition process that in-

cludes low-pass filtering and sub-sampling. In the recent

years, along with the developments in deep learning, many

SISR methods that are based on Deep Neural Networks

(DNNs) have been proposed [7, 17, 21, 20, 41, 35, 15].

Typically, the performance of SISR approaches is eval-

uated on test sets with a fixed known acquisition process,

e.g. a bicubic downscaling kernel. This evaluation method-

ology allows to prepare large training data, which are based

on ground truth HR images and their LR counterparts syn-

thetically obtained through the known observation model.

DNNs, which have been exhaustively trained on such train-

ing data, clearly outperform other alternative algorithms,

e.g. methods that are based on hand-crafted prior models

such as sparsity or non-local similarity [8, 13, 37].

Recently, several works have shown that in practical sce-

narios where the test data mismatch the training data, the

leading DNN methods suffer from a huge performance drop

[38, 27, 31]. Such scenarios include a downscaling kernel

which is not the bicubic kernel and is not available at the

training phase. A primary example is an unknown kernel

that needs to be estimated from the LR image at test time.

Several recent SISR approaches have proposed differ-

ent strategies for enjoying the advantages of deep learning

while mitigating the restriction of DNNs to the fixed ker-

nel assumption made in the training phase. These strate-

gies include: modifying the training phase such that it cov-

ers a predefined set of downscaling kernels [39, 14]; using

DNNs to capture only a natural-image prior which is de-

coupled from the SISR task [38, 5]; or completely avoid

any offline training and instead train a CNN super-resolver

from scratch at test time [32, 27].

Contribution. In this work we take a different strat-

egy, inspired by the generalized sampling literature [9, 33],

for handling LR images obtained by arbitrary downscaling

kernels. Instead of completely ignoring the state-of-the-art

DNNs that have been trained for the bicubic model, as done

by other prior works, we propose a method that transforms

the LR image to match one which is obtained by the bicubic

kernel. The modified LR can then be inserted into existing

leading super-resolvers, such as DBPN [15], RCAN [41],

and proSR [35], thus, improving their performance signif-

icantly on kernels they have not been trained on. The pro-

posed transformation is performed using a correction filter,

which has a closed-form expression when the true (non-

bicubic) kernel is given.

In the ”blind” setting, where the kernel is unknown, we

extend our approach and propose an algorithm that esti-
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Original image (cropped) LR image

Bicubic upsampling SRMD [39] ZSSR [27]

ProSR [35] RCAN [41] DBPN [15]

ProSR with our correction RCAN with our correction DBPN with our correction

Figure 1: Non-blind super-resolution of image 223061 from BSD100, for scale factor 4 and Gaussian downscaling kernel

with std 4.5/
√
2. Our correction filter significantly improves the performance of DNNs trained on another SR kernel.

mates the required correction. The proposed approach out-

performs other super-resolution methods in various practi-

cal scenarios. See example results in Figure 1 for the non-

blind setting.

2. Related Work

In the past five years many works have employed DNNs

for the SISR task, showing a great advance in performance

with respect to the reconstruction error [7, 15, 17, 21, 35,

41] and the perceptual quality [4, 20, 25, 34]. However, one

main disadvantage of DNN-based SISR methods is their

sensitivity to the LR image formation model. A network

performance tends to drop significantly if it has been trained

for one acquisition model and then been tested on another

[27, 31, 38].

Recently, different SISR strategies has been proposed

with the goal of enjoying the advantages of deep learning

while mitigating the restriction of DNNs to the fixed kernel

assumption made in the training phase. One approach trains

a CNN super-resolver that gets as inputs both the LR im-

age and the degradation model, and assumes that the down-

scaling kernels belong to a certain set of Gaussian filters

[14, 39]. Another approach builds on the structural prior of

CNNs, which promotes signals with spatially recurring pat-

terns (e.g. natural images) and thus allows to train a super-

resolver CNN from scratch at test time [27, 32]. Another

line of work recovers the latent HR image by minimizing a

cost function that is composed of a fidelity term (e.g. least

squares or back-projection [30]) and a prior term, where
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Figure 2: Downsampling, correction, and upsampling operators for single image super-resolution: (a) Downsampling op-

erator composed of convolution with a kernel k and sub-sampling by factor of α; (b) Correction operator composed of

convolution with a correction filter h; (c) Upsampling operator composed of up-sampling by factor of α and convolution

with a (flipped) kernel kbicub. In our approach, H is computed for S∗ and R, but then we replace R with a pre-trained DNN

super-resolver.

only the latter is handled by a pre-trained CNN denoiser or

GAN [38, 29, 5, 40]. Recently, the two last approaches have

been incorporated by applying image-adaptation to denois-

ers [31] and GANs [1]. In all these methods the downscal-

ing kernel is given as an input. In a blind setting (where the

kernel is unknown) it is still possible to apply these methods

after an initial kernel estimation phase.

Our approach is inspired by the literature on gener-

alized sampling [6, 33, 9], which generalizes the classi-

cal Whittaker–Nyquist–Kotelnikov–Shannon sampling the-

orem [36, 23, 19, 26], which considers signals that are band-

limited in the frequency domain and sinc interpolations.

The generalized theory provides a framework and condi-

tions under which a signal that is sampled by a certain basis

can be reconstructed by a different basis. In this framework,

the sampled signal is reconstructed using a linear operator

that can be decoupled into two phases, the first applies a dig-

ital correction filter and the second includes processing with

a reconstruction kernel. The role of the correction filter is

to transform the sampling coefficients, associated with the

sampling kernel, to coefficients which fit the reconstruction

kernel.

Several works have used the correction filter approach

for image processing [10, 12, 24]. These works typically

propose linear interpolation methods, i.e. the correction fil-

ter is followed by a linear reconstruction operation, and do

not use a strong natural-image prior. As a result, the recov-

ery of fine details is lacking.

In this work, we plan to use (very) non-linear reconstruc-

tion methods, namely—DNNs, whose training is difficult,

computationally expensive, storage demanding, and cannot

be done when the observation model is not known in ad-

vance. To tackle these difficulties, we revive the correc-

tion filter approach and show how it can be used with deep

super-resolvers which have been already trained.

The required correction filter depends on the kernel

which is used for sampling. Therefore, in the blind setting,

it needs to be estimated from the LR image. To this end,

we propose an iterative optimization algorithm for estimat-

ing the correction filter. In general, only a few works have

considered the blind SISR setting and developed kernel es-

timation methods [28, 22, 14, 3].

Finally, we would like to highlight major differences be-

tween this paper and the work in [14], whose ”kernel cor-

rection” approach may be misunderstood as our ”correction

filter”. In [14], three different DNNs (super-resolver, kernel

estimator, and kernel corrector) are offline trained under the

assumption that the downscaling kernel belongs to a certain

family of Gaussian filters (similarly to [39]), and the CNN

super-resolver gets the estimated kernel as an input. So, the

first major difference is that contrary to our approach, no

pre-trained existing DNN methods (other than SRMD [39])

can be used in [14]. Secondly, their approach is restricted

by the offline training assumptions to very certain type of

downscaling kernels, contrary to our approach. Thirdly, the

concepts of these works are very different: The (iterative)

correction in [14] modifies the estimated downscaling ker-

nel, while our correction filter modifies the LR image.

3. The Proposed Method

The single image super resolution (SISR) acquisition

model, can be formulated as

y = (x ∗ k) ↓α, (1)

where x ∈ R
n represents the latent HR image, y ∈ R

m

represents the observed LR image, k ∈ R
d (d ≪ n) is the

(anti-aliasing) blur kernel, ∗ denotes the linear convolution

operator, and ↓α denotes sub-sampling operator with stride

of α. Under the common fashion of dropping the edges of

x ∗ k, such that it is in R
n, we have that m = ⌈n/α⌉.

Note that Equation (1) can be written in a more elegant

way as

y = S∗x, (2)

where S∗ : Rn → R
m is a linear operator that encapsulates

the entire downsampling operation, i.e. S∗ is a composition

of blurring followed by sub-sampling. The downsampling

operator S∗ is presented in Figure 2(a).
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Most SISR deep learning methods, e.g. [7, 17, 21, 20,

41, 35, 15], assume that the observations are obtained us-

ing the bicubic kernel. Let us denote by R∗ the associ-

ated downsampling operator (essentially, R∗ coincides with

the previously defined S∗ if k is the bicubic kernel kbicub).

The core idea of our approach is to modify the observations

y = S∗x, obtained for an arbitrary downscaling kernel k,

such that they mimic the (unknown) ”ideal observations”

ybicub = R∗x, which can be fed into pre-trained DNN

models.

In what follows, we present a method to (approximately)

achieve this goal using the correction filter tool, adopted

from the generalized sampling literature. First, we con-

sider the non-blind setting, where the downscaling kernel

is known, and thus S∗ is known. In this case, we obtain

a closed-form expression for the required correction filter,

which depends on k (and on kbicub). Later, we extend the

approach to the blind setting, where k is unknown. In this

case, we propose a technique for estimating the correction

filter from the LR image y.

3.1. The non­blind setting

In the non-blind setting, both the downscaling kernel

k and the target kernel kbicub are known. Therefore, the

downsampling operators S∗ and R∗ are known as well. Us-

ing common notations from generalized sampling literature

[9], let us denote by S and R the adjoint operators of S∗ and

R∗, respectively. The operator R : Rm → R
n is an upsam-

pling operator that restores a signal in R
n from m samples,

associated with the downsampling operator R∗. In the con-

text of our work, when R is applied on a vector it pads it

with n − m zeros (α − 1 zeros between each two entries)

and convolves it with a flipped version of kbicub. The up-

sampling operator R is presented in Figure 2(c). A similar

definition holds for S : Rm → R
n with the kernel k.

The key goal of generalized sampling theory is to iden-

tify signal models and sampling systems that allow for per-

fect recovery. Therefore, to proceed, let us make the follow-

ing assumption.

Assumption 1. The signal x can be perfectly recovered

from its samples R∗x by the operator R(R∗R)−1, i.e.

x = R(R∗R)−1R∗x. (3)

Assumption 1 essentially states that the latent image x

resides in the linear subspace spanned by the bicubic ker-

nel. Therefore, it can be perfectly recovered from the ob-

servations ybicub = R∗x by applying the pseudoinverse of

R∗ on ybicub, i.e. by the estimator x̂ = R(R∗R)−1ybicub.

Even though Assumption 1 does not hold for natural im-

ages, it is motivated by the fact that there are many DNN

methods that can handle observations of the form R∗x quite

well.

However, since we are given observations that are ob-

tained by a different downscaling kernel, y = S∗x, let

us propose a different estimator x̂ = RHy, where H :
R

m → R
m is a correction operator. This recovery proce-

dure is presented in Figures 2(b)+2(c). The following theo-

rem presents a condition and a formula for H under which

perfect recovery is possible under Assumption 1.

Theorem 2. Let y = S∗x, x̂ = RHy, and assume that

Assumption 1 holds. Then, if

null(S∗) ∩ range(R) = {0}, (4)

we have that x̂ = x for

H = (S∗R)
−1

: Rm → R
m. (5)

Proof. Note that

x̂ = RHy

= RHS∗x

= RHS∗R(R∗R)−1R∗x, (6)

where the last equality follows from Assumption 1. Next,

(4) implies that the operator (S∗R) is invertible. Thus, set-

ting H according to (5) is possible, and we get

x̂ = R (S∗R)
−1 S∗R(R∗R)−1R∗x

= R(R∗R)−1R∗x = x, (7)

where the last equality follows from Assumption 1.

Theorem 2 is presented in operator notations to simplify

the derivation. In the context of SISR (i.e. with the previous

definitions of S∗ and R), the operator H = (S∗R)
−1

can

be applied simply as a convolution with a correction filter

h0, given by

h0 = IDFT

{

1

DFT {(k ∗ flip(kbicub)) ↓α}

}

, (8)

where DFT(·) and IDFT(·) denote the Discrete Fourier

Transform and its inverse respectively.1

In practice, instead of using the weak estimator x̂ =
RHy that does not use any natural-image prior, we propose

to recover the HR image by

x̂ = f(h ∗ y), (9)

where f(·) is a DNN super-resolver that has been trained

under the assumption of bicubic kernel and h is a modified

1Using DFT allows fast implementation of cyclic convolutions. When

it is used for linear convolutions, edge artifacts need to be ignored.
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Table 1: Non-blind super-resolution comparison on Set14. Each cell displays PSNR [dB] (left) and SSIM (right).

Scale Gaussian std = 1.5/
√

2 Gaussian std = 2.5/
√

2 Box of width = 4

ZSSR 2 28.107 / 0.829 27.954 / 0.806 28.506 / 0.802

SRMD 2 32.493 / 0.878 29.923 / 0.812 25.944 / 0.757

DBPN 2 30.078 / 0.850 26.366 / 0.734 28.444 / 0.803

DBPN + our correction 2 34.023 / 0.904 33.288 / 0.895 29.364 / 0.822

ProSR 2 30.073 / 0.849 26.371 / 0.734 28.459 / 0.803

ProSR + our correction 2 33.954 / 0.903 33.273 / 0.895 29.514 / 0.825

RCAN 2 30.118 / 0.851 26.389 / 0.736 28.469 / 0.804

RCAN + our correction 2 34.043 / 0.904 33.251 / 0.895 29.306 / 0.820

Scale Gaussian std = 3.5/
√

2 Gaussian std = 4.5/
√

2 Box of width = 8

ZSSR 4 25.642 / 0.701 25.361 / 0.683 24.549 / 0.653

SRMD 4 26.877 / 0.718 25.350 / 0.674 19.704 / 0.525

DBPN 4 25.067 / 0.685 23.890 / 0.645 24.636 / 0.667

DBPN + our correction 4 28.680 / 0.775 28.267 / 0.766 25.157 / 0.679

ProSR 4 25.033 / 0.683 23.882 / 0.645 24.685 / 0.667

ProSR + our correction 4 28.609 / 0.772 28.220 / 0.764 25.419 / 0.683

RCAN 4 25.077 / 0.685 23.904 / 0.646 24.694 / 0.668

RCAN + our correction 4 28.534 / 0.771 28.110 / 0.762 25.301 / 0.679

correction filter, given by

h = IDFT

{

DFT {(kbicub ∗ flip(kbicub)) ↓α}
DFT {(k ∗ flip(kbicub)) ↓α}

}

, IDFT

{

Fnumer

Fdenom

}

. (10)

Let us explain the idea behind the estimator in (9). Since the

inverse mapping f(·) assumes bicubic downscaling (R∗x),

it can be interpreted as incorporating R(R∗R)−1 with a

(learned) prior. Therefore, unlike h0 in (8) which is fol-

lowed by R, here the correction filter should also compen-

sate for the operation (R∗R)−1 which is implicitly done in

f(·). This explains the term in the numerator of h (com-

pared to 1 in the numerator of h0). To ensure numerical

stability, we slightly modify (10), and compute h using

h = IDFT

{

Fnumer ·
F ∗

denom

|Fdenom|2 + ǫ

}

, (11)

where ǫ is a small regularization parameter. Regarding

the choice of f(·), in our experiments we use DBPN [15],

RCAN [41], and proSR [35], but in general any other

method with state-of-the-art performance (for bicubic ker-

nel) is expected to give good results.

Note that the theoretical motivation for our strategy re-

quires that the condition in (4) holds. This condition can be

inspected by compaing the bandwidth of the kernels k and

kbicub in the frequency domain. As k is commonly a low-

pass filter (and so is kbicub), the condition requires that the

passband of kbicub is contained in the passband of k. Yet,

as shown in the experiments section, our approach yields

a significant improvement even when the passband of k is

moderately smaller than the passband of kbicub. Further-

more, we observe that even for very blurry LR images per-

formance improvement can be obtained by increasing the

regularization parameter in (11). We refer the reader to the

supplementary material for more details.

3.2. The blind setting

In the blind setting, the downscaling kernel k is un-

known. Therefore, we cannot compute the correction fil-

ter h using (11), and extending our approach to this setting

requires to estimate k and h from the LR image y.

To this end, we propose to estimate k as the minimizer

of the following objective function

ξ(k) = ‖y−S∗f(Hy)‖Hub + ‖mcen · k‖1 + ‖k‖1, (12)

where ‖ · ‖Hub is Huber loss [16], the operator H is filtering

with h given in (11), S∗ is the downsampling operator, f(·)
is the given SR network, and mcen is given by

mcen(x, y) = 1− e−
(x2+y

2)

32α2 ,

where α is the scale factor. Note that the two operators H
and S∗ depend on the kernel k. The last two terms in (12)

are regularizers: the last term promotes sparsity of k and

the penultimate term centralizes its density.

Inspired by [2, 3], we choose to parameterize the la-

tent k by a linear CNN composed of 4 layers, i.e. k =
k0 ∗ k1 ∗ k2 ∗ k3, where {kn}2n=0 are of size 33 × 33 and
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Table 2: Non-blind super-resolution comparison on BSD100. Each cell displays PSNR [dB] (left) and SSIM (right).

Scale Gaussian std = 1.5/
√

2 Gaussian std = 2.5/
√

2 Scale Gaussian std = 3.5/
√

2 Gaussian std = 4.5/
√

2

ZSSR 2 29.339 / 0.822 26.415 / 0.715 4 25.115 / 0.651 24.348 / 0.625

SRMD 2 26.591 / 0.803 29.294 / 0.838 4 25.735 / 0.704 26.432 / 0.707

DBPN 2 29.512 / 0.827 26.371 / 0.711 4 25.268 / 0.662 24.357 / 0.628

DBPN + correction 2 32.300 / 0.884 31.875 / 0.878 4 27.690 / 0.740 27.474 / 0.733

ProSR 2 29.513 / 0.827 26.381 / 0.711 4 25.237 / 0.661 24.353 / 0.628

ProSR + correction 2 32.276 / 0.884 31.899 / 0.878 4 27.645 / 0.738 27.455/ 0.733

RCAN 2 29.558 / 0.829 26.397 / 0.713 4 25.281 / 0.663 24.373 / 0.629

RCAN + correction 2 32.368 / 0.886 31.876 / 0.878 4 27.626 / 0.739 27.399/ 0.732

Algorithm 1: Correction filter estimation

Input: y, kbicub, α, f(·).
Output: ĥ an estimate for h.

Params.: k(0) = kbicub, i = 0, ǫ = 10−14,

γ = 10−4, Niter = 250
while i < Niter do

i = i+ 1;

Compute h(i) using (11) (for k(i−1), α and ǫ);

x
(i)
h

= f(h(i) ∗ y);
ŷ(i) = (x

(i)
h

∗ k(i−1)) ↓α;

ξ(k(i−1)) =
‖y− ŷ(i)‖Hub+‖mcen ·k(i−1)‖1+‖k(i−1)‖1;

k(i) = Adam update (for ξ(k(i−1)) with LR γ);

end

ĥ = h(i);

k3 is of size 32 × 32. The minimization of (12) with re-

spect to k is performed by 250 iterations of Adam [18] with

learning rate of 10−4, initialized with k(0) = kbicub. The

proposed procedure is described in Algorithm 1. Note that

at each iteration we obtain estimates for both the downscal-

ing kernel k and correction filter h. The final estimator of

h is then used in (9) to reconstruct the HR image, similarly

to the non-blind setting.

4. Experiments

In this section we examine the performance and im-

provement due to our correction filter approach in the non-

blind and blind settings, using three different off-the-shelf

DNN super-resolvers that serve as f(·) in (9): DBPN [15],

RCAN [41], and proSR [35]. We compare our approach to

other methods that receive the downscaling kernel k (or its

estimation in the blind setting) as an input: ZSSR [27] and

SRMD [39]. We also compare our method to DPSR [40],

however, since its results are extremely inferior to the other

strategies (e.g. about 10 dB lower PSNR) they are deferred

Observed LR (Gaussian kernel)

”Ideal” LR (bicubic kernel) Corrected observed LR

Figure 3: Comparison between observed, ”ideal” and cor-

rected LR images, for SR scale factor of 4 and Gaussian

kernel of std 4.5/
√
2.

Table 3: Comparison of the filter-corrected (non-bicubic)

LR to the bicubic LR on Set14. Each cell displays PSNR

[dB] (left) and SSIM (right).

Scale Gauss. std 1.5/
√

2 Gauss. std 2.5/
√

2 Box, width 4

2 51.345 / 0.999 45.456 / 0.995 33.679 / 0.941

Scale Gauss. std 3.5/
√

2 Gauss. std 4.5/
√

2 Box, width 8

4 58.437 / 0.999 46.917 / 0.995 32.308 / 0.907

to the supplementary material. All the experiments are per-

formed with the official code of each method. We refer the

reader to the supplementary material for more results.

4.1. The non­blind setting

In this section, we assume that the downscaling kernel k

is known. Therefore, the correction filter h can be computed

directly using (11). We examine scenarios with scale factors

of 2 and 4. For scale factor of 2, we use Gaussian kernels

with standard deviation σ = 1.5/
√
2 and σ = 2.5/

√
2,

and box kernel of size 4 × 4. For scale factor of 4, we use

Gaussian kernels with standard deviation σ = 3.5/
√
2 and

σ = 4.5/
√
2, and box kernel of size 8× 8.

The results are presented in Tables 1 and 2 for the test-

1433



Original image (cropped) LR image

Bicubic upsampling SRMD ZSSR

ProSR RCAN DBPN

ProSR with our correction RCAN with our correction DBPN with our correction

Figure 4: Non-blind super-resolution of image 189080 from BSD100, for scale factor of 2 and Gaussian downscaling kernel

with standard deviation 2.5.

sets Set14 and BSD100, respectively. Figures 1 and 4

present several visual results. It can be seen that the pro-

posed filter correction approach significantly improves the

results of DBPN, RCAN, and proSR, which have been

trained for the (incorrect) bicubic kernel. Moreoever, note

that the filter-corrected applications of DBPN, RCAN, and

proSR, also outperform SRMD and ZSSR, while the plain

applications of DBPN, RCAN, and proSR are inferior to

SRMD.

As explained in Section 3, the proposed approach is

based on mimicking the (unknown) ”ideal” LR image

ybicub = R∗x by the corrected LR image Hy. The high

PSNR and SSIM results between such pairs of images,

which are presented in Table 3 for Set14, verify that this

indeed happens. Figure 3 shows a visual comparison.

Inference run-time. Computing the correction filter re-

quires a negligible amount of time, so it does not change

the run-time of an off-the-shelf DNN. Using NVIDIA RTX

2080ti GPU, the per image run-time of all the methods ex-

cept ZSSR is smaller than 1 second (because no training is

done in the test phase), while ZSSR requires approximately

2 minutes per image.

4.2. The blind setting

In this section, we repeat previous experiments, but with-

out the assumption that the downscaling kernel k is known.

Therefore, to apply our approach we first estimate the cor-

rection filter using Algorithm 1, and then use this estimation
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Table 4: Blind super-resolution comparison on Set14. Each cell displays PSNR [dB] (left) and SSIM (right).

Scale Gaussian std = 1.5/
√

2 Gaussian std = 2.5/
√

2 Box of width = 4

KernelGAN 2 26.381 / 0.785 28.868 / 0.807 28.221 / 0.802

DBPN 2 30.078 / 0.85 26.366 / 0.734 28.444 / 0.803

DBPN + our estimated correction 2 28.46 / 0.842 28.037 / 0.794 29.778 / 0.840

Scale Gaussian std = 3.5/
√

2 Gaussian std = 4.5/
√

2 Box of width = 8

KernelGAN 4 24.424 / 0.673 25.174 / 0.669 23.575 / 0.634

DBPN 4 25.067 / 0.685 23.890 / 0.645 24.636 / 0.667

DBPN + our estimated correction 4 28.184 / 0.764 25.542 / 0.699 25.111 / 0.681

Table 5: Blind super-resolution comparison on BSD100. Each cell displays PSNR [dB] (left) and SSIM (right).

Scale Gaussian std = 1.5/
√

2 Gaussian std = 2.5/
√

2 Scale Gaussian std = 3.5/
√

2 Gaussian std = 4.5/
√

2

KernelGAN 2 26.615 / 0.773 28.244 / 0.780 4 24.363 / 0.647 25.238 / 0.652

DBPN 2 29.512 / 0.827 26.371 / 0.711 4 25.268 / 0.662 24.357 / 0.628

DBPN + est. correction 2 27.784 / 0.828 27.761 / 0.769 4 27.103/ 0.722 25.485 / 0.671

to restore the HR image by (9). Note that Algorithm 1 ex-

ploits the pre-trained DNN to estimate the correction filter.

Here we apply it only with DBPN, which has a more com-

pact architecture than RCAN and proSR, and hence leads to

faster inference. However, similar results can be obtained

also for RCAN and proSR. In this setting we compare our

method to kernelGAN [3], which estimates the downscaling

kernel using adversarial training (in test-time) and then uses

ZSSR to restore the HR image.

The results for Set14 and BSD100 are presented in Ta-

bles 4 and 5, respectively, and visual examples are shown

in Figure 5. More results and comparison on DIV2KRK

are presented in the the supplementary material. It can be

seen that the proposed filter correction approach improves

the results of DBPN compared to its plain application. It

also outperforms kernelGAN, despite being much simpler.

5. Conclusion

The SISR task has gained a lot from the developments

in deep learning in the recent years. Yet, the leading DNN

methods suffer from a huge performance drop when they

are tested on images that do not fit the acquisition pro-

cess assumption used in their training phase—which is,

typically, that the downscaling kernel is bicubic. In this

work, we addressed this issue by a signal processing ap-

proach: computing a correction filter that modifies the low-

resolution observations such that they mimic observations

that are obtained with a bicubic kernel. (Notice that our

focus in this work on the bicubic kernel is for the sake of

simplicity of the presentation and due to its popularity. Yet,

it is possible to use our developed tools also for other re-

construction kernels). The modified LR is then fed into

existing state-of-the-art DNNs that are trained only under

the assumption of bicubic kernel. Various experiments have

Original image (cropped) LR image

Bicubic upsampling KernelGAN

DBPN DBPN + est. correction

Figure 5: Blind SR of zebra image from Set14, for scale

factor 4 and Gaussian downscaling kernel with std 3.5/
√
2.

shown that the proposed approach significantly improves

the performance of the pre-trained DNNs and outperforms

other (much more sophisticated) methods that are specifi-

cally designed to be robust to different kernels.
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