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Abstract

Despite significant success in Visual Question Answer-

ing (VQA), VQA models have been shown to be notoriously

brittle to linguistic variations in the questions. Due to de-

ficiencies in models and datasets, today’s models often rely

on correlations rather than predictions that are causal w.r.t.

relevant evidence. In this paper, we propose a novel way to

analyze and measure the robustness of the state of the art

models w.r.t semantic visual variations as well as propose

ways to make models more robust against spurious correl-

ations. Our method performs automated semantic image

manipulations and tests for consistency in model predic-

tions to quantify the model robustness as well as generate

synthetic data to counter these problems. We perform our

analysis on three diverse, state of the art VQA models and

diverse question types with a particular focus on challen-

ging counting questions. In addition, we show that models

can be made significantly more robust against inconsistent

predictions using our edited data. Finally, we show that res-

ults also translate to real-world error cases of state of the

art models, which results in improved overall performance.

1. Introduction

VQA allows interaction between images and language,

with diverse applications such as interacting with chat bots

to assisting visually impaired people. In these applications

we expect a model to answer truthfully and based on the

evidence in the image and the actual intention of the ques-

tion. Unfortunately, this is not always the case even for state

of the art methods. Instead of “sticking to the facts”, models

frequently rely on spurious correlations and follow biases

induced by data and/or model. For instance, recent works

[27, 26] have shown that the VQA models are brittle to lin-

guistic variations in questions/answers. Shah et al. in [27]

∗Work done at Max Planck Institute for Informatics.

introduced VQA-Rephrasings dataset to expose the brittle-

ness of the VQA models to linguistic variations and pro-

posed cyclic consistency to improve their robustness. They

show that if a model answers ‘Yes’ to the question: ‘Is it

safe to turn left?’, it answers ‘No’ when the question is re-

phrased to ‘Can one safely turn left?’. Similarly Ray et al.

in [26] introduced ConVQA to quantitatively evaluate the

consistency for VQA towards different generated entailed

questions and proposed data augmentation module to make

the models more consistent.

While previous works have studied linguistic modifica-

tions, our contribution is the first systematic study of auto-

matic visual content manipulations at scale. Analogous

to rephrasing questions for VQA, images can also be se-

mantically edited to create different variants where the same

question-answer (QA) pair holds. One sub-task of this

broader semantic editing goal is object removal. One can

remove objects in such a way that the answer remains in-

variant (wherein only objects irrelevant to the QA are re-

moved) as shown in Figure 1 (top/middle). Alternately one

could also make covariant edits where we remove the object

mentioned in the QA and hence expect the answer to change

in a predictable manner as shown in Figure 1 (bottom). We

explore both invariant and covariant forms of editing and

quantify how consistent models are under these edits.

We employ a GAN-based [28] re-synthesis model to

automatically remove objects. Our data generation tech-

nique helps us create exact complementary pairs of the im-

age as shown in Figures 1, 2. We pick three recent mod-

els which represent different approaches to VQA to ana-

lyze robustness: a simple CNN+LSTM (CL) model, an

attention-based model (SAAA [17]) and a compositional

model (SNMN [11]). We show that all the three models

are brittle to semantic variations in the image, revealing the

false correlation that the models exploit to predict the an-

swer. Furthermore, we show that training data augmenta-

tion with our synthetic set can improve models robustness.

Our motivation to create this complementary dataset
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Q: Is this a kitchen?

A: no toilet removed; A: no

Baseline Ours Baseline Ours

CL no no yes no

SAAA no no no no

SNMN no no yes no

Q: What color is the balloon?

A: red umbrellas removed; A: red

Baseline Ours Baseline Ours

CL pink red red red

SAAA pink red red red

SNMN pink red red red

Q: How many zebras are there in the picture?

A: 2 zebra removed A: 1

Baseline Ours Baseline Ours

CL 2 2 2 1

SAAA 2 2 2 1

SNMN 2 2 2 1

Figure 1: VQA models change their predictions as they ex-

ploit spurious correlations rather than causal relations based

on the evidence. Shown above are predictions of 3 VQA

models on original and synthetic images from our proposed

IV-VQA and CV-VQA datasets. ‘Ours’ denote the models

robustified with our proposed data augmentation strategy.

stems from the desire to study how accurate and consistent

different VQA models are and to improve the models by the

generated ‘complementary’ data (otherwise not available in

the dataset). While data augmentation and cyclic consist-

ency are making the VQA models more robust [16, 26, 27]

towards the natural language part, we take a step forward

to make the models consistent to semantic variations in the

images. We summarize our main contributions as follows:

• We propose a novel approach to analyze and quantify

issues of VQA models due to spurious correlation and

biases of data and models. We use synthetic data to

quantify these problems with a new metric that measures

erroneous inconsistent predictions of the model.

• We contribute methodology and a synthetic dataset 1 that

complements VQA datasets by systematic variations that

are generated by our semantic manipulations. We com-

plement this dataset by a human study that validates our

approach and provides additional human annotations.

• We show how the above-mentioned issues can be reduced

by a data augmentation strategy - similar to adversarial

training. We present consistent results across a range of

questions and three state of the art VQA methods and

show improvements on synthetic as well as real data.

• While we investigate diverse question types, we pay par-

ticular attention to counting by creating an covariant ed-

ited set and show that our data augmentation technique

can also improve counting robustness in this setting.

2. Related Work

Visual Question Answering. There has been growing in-

terest in VQA [15, 29] recently, which can be attributed

to the availability of large-scale datasets [7, 14, 3, 23, 4]

and deep learning driven advances in both vision and NLP.

There has been immense progress in building VQA mod-

els [20, 24, 22, 6] using LSTMs [9] and convolutional net-

works [18, 8] to models that span different paradigms such

as attention networks [21, 17, 30] and compositional mod-

ule networks [2, 12, 11, 13]. In our work, we pick a repres-

entative model from each of these three design philosophies

and study their robustness to semantic visual variations.

Robustness in VQA. Existing VQA models often exploit

language and contextual priors to predict the answers [31,

25, 7, 1]. To understand how much do these models actually

see and understand, various works have been proposed to

study the robustness of models under different variations in

the input modalities. [1] shows that changing the prior dis-

tributions for the answers across training and test sets signi-

ficantly degrades models’ performance. [26, 27] study the

robustness of the VQA models towards linguistic variations

in the questions. They show how different re-phrasings of

the questions can cause the model to switch their answer

predictions. In contrast, we study the robustness of VQA

models to semantic manipulations in the image and propose

a data augmentation technique to make the models robust.

Data Augmentation for VQA. Data Augmentation has

been used in VQA to improve model’s performance either

in the context of accuracy [16] or robustness against lin-

guistic variations in questions [26, 27]. [16] generated new

questions by using existing semantic annotations and a gen-

erative approach via recurrent neural network. They showed

that augmenting these questions gave a boost of around

1.5% points in accuracy. [27] propose a cyclic-consistent

training scheme where they generate different rephrasings

1https://rakshithshetty.github.io/CausalVQA/

9691



of question (based on answer predicted by the model) and

train the model such that answer predictions across the gen-

erated and the original question remain consistent. [26] pro-

poses a data augmentation module that automatically gen-

erates entailed (or similar-intent) questions for a source QA

pair and fine-tunes the VQA model if the VQA’s answer to

the entailed question is consistent with the source QA pair.

3. Synthetic Dataset for Variances and Invari-

ances in VQA

While robustness w.r.t linguistic variations [27, 26] and

changes in answer distributions [1] have been studied, we

explore how robust VQA models are to semantic changes

in the images. For this, we create a synthetic dataset by re-

moving objects irrelevant and relevant to the QA pairs and

propose consistency metrics to study the robustness. Our

dataset is built upon existing VQAv2 [7] and MS-COCO

[19] datasets. We target the 80 object categories present in

the COCO dataset [19] and utilize a GAN-based [28] re-

synthesis technique to remove them. The first key step in

creating this dataset is to select a candidate object for re-

moval for each Image-Question-Answer (IQA) pair. Next,

since we use an in-painter-based GAN, we need to ensure

the removal of the object does not affect the quality of the

image or QA in any manner. We introduce vocabulary map-

ping to take care of the former and area-overlapping criteria

for the latter. We discuss these steps in detail to generate

the edited set in irrelevant removal setting and later extend

these to relevant object removal.

3.1. InVariant VQA (IV­VQA)

For the creation of this dataset, we select and remove

the objects irrelevant to answering the question. Hence the

model is expected to make the same predictions on the ed-

ited image. A change in the prediction would expose the

spurious correlations that the model is relying on to answer

the question. Some examples of the semantically edited im-

ages along with the original images can be seen in Figures

1, 2. For instance, in Figure 2 (top-right), for the ques-

tion about the color of the surfboard, removing the person

should not influence the model’s prediction. In order to gen-

erate the edited image, we first need to identify person as a

potential candidate which in turn requires studying the ob-

jects present in the image and the ones mentioned in the

QA. Since we use VQA v2 dataset [7], where all the images

overlap with MS-COCO [19], we can access the ground-

truth bounding box and segmentation annotations for each

image. In total, there are 80 different object classes in MS-

COCO which become our target categories for removal.

Vocabulary mapping. To decide if we can remove an ob-

ject, we need to first map all the object referrals in question

and answer onto the 80 COCO categories. These categories

COCO categories Additional words mapped

person man, woman, player, child, girl, boy

people, lady, guy, kid, he etc

fire hydrant hydrant, hydrate, hydra

wine glass wine, glass, bottle, beverage, drink

donut doughnut, dough, eating, food, fruit

chair furniture, seat

... ...

Table 1: Example of vocabulary mapping from QA space

to COCO categories. If any of these words (in the right

column) occur in the QA, these words are mapped to the

corresponding COCO category (in the left column).

are often addressed in the QA space by many synonyms or

a subset representative of that class. For example- people,

person, woman, man, child, he, she, biker all refer to the

category: ‘person’; bike, cycle are commonly used for the

class ‘bicycle’. To avoid erroneous removals, we create an

extensive list mapping nouns/pronouns/synonyms used in

the QA vocabulary to the 80 COCO categories. Table 1

shows a part of the object mapping list. The full list can be

found in code-release for the project 2.

Let OI represent the objects in the images (known via

COCO segmentations), OQA represent the objects in the

question-answer (known after vocabulary mapping). Then

our target object for removal, Otarget, is given by OI −{OI ∩
OQA}. We assume that if the object is not mentioned in the

QA, it is not relevant and hence can be safely removed.

Area-Overlap threshold. The next step is to make sure

that the removal of Otarget does not degrade the quality of

the image or affect the other objects mentioned in the QA.

Since we use an in-painter based GAN [28], we find that lar-

ger object removal is harder to in-paint leaving the images

heavily distorted. In order to avoid such distorted images,

we only remove the object if the area occupied by its largest

instance is less than 10% of the image area. Furthermore,

we also consider if the object being removed overlaps in

any manner with the object that is mentioned in the QA.

We quantitatively measure the overlap score as shown in

Equation 1 where MO denotes the dilated ground truth seg-

mentation mask of all the instances of the object. We only

remove the object if the overlap score is less than 10%.

Overlap score(Otarget, OQA) =
(MO)

target ∩ (MO)
QA

(MO)QA

(1)

Uniform Ground-Truth. Finally, we only aim to tar-

get those IQAs which have uniform ground-truth answers.

In VQA v2 [7], all the questions have 10 answers, while

it is good to capture diversity in open-ended question-

answering, it also introduces ambiguity, especially in case

2https://github.com/rakshithShetty/CausalVQA
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IV-VQA CV-VQA

#IQA train val test train val test

real 148013 7009 63219 18437 911 8042

realNE 42043 2152 18143 13035 648 5664

edit 256604 11668 108239 8555 398 3743

Table 2: IV-VQA and CV-VQA distribution. Real refers

to VQA [7] IQAs with uniform answers, realNE refers to

IQAs for which no edits are possible (after vocabulary map-

ping and area-overlap threshold), edit refers to the edited

IQA. We split the VQA val into 90:10 ratio, where the

former is used for testing purpose and latter for validation.

of counting and binary question types. To avoid this am-

biguity in our robustness evaluation, we build our edited

set by only selecting to semantically manipulate those IQs

which have a uniform ground truth answer.

Finally, we remove all the instances of the target ob-

ject from the image for those IQAs which satisfy the above

criteria using the inpainter GAN [28]. We call our edited

set as IV-VQA as removal of objects does not lead to any

change in answer, the answer is invariant to the semantic

editing. Table 2 shows the number of edited IQAs in IV-

VQA. While our algorithm involves both manually curated

heuristics to select the objects to remove, and a learned

in-painter-based GAN model to perform the removal, the

whole pipeline is fully automatic. This allows us to apply it

to the large-scale VQA dataset with 658k IQA triplets.

Validation by Humans. We get a subset (4.96k IQAs) of

our dataset validated by three humans. The subset is selec-

ted based on an inconsistency analysis of 3 models covered

in the next Section 4. Every annotator is shown the edited

IQA and is asked to say if the answer shown is correct for

the given image and question (yes/no/ambiguous). Accord-

ing to the study, 91% of the time all the users agree that our

edited IQA holds. More details about the study are in the

supplementary material (section A.2).

3.2. CoVariant VQA (CV­VQA)

An alternate way of editing images is to target the ob-

ject in the question. Object-specific questions like counting,

color, whether the object is present or not in the image are

suitable for this type of editing. We choose counting ques-

tions where we generate complementary images with one

instance of the object removed. If the model can count n
instances of an object in the original image, it should also

be able to count n − 1 instances of the same object in the

edited image. Next, we will describe how to generate this

covariant data for counting.

First, we collect all the counting questions in the VQA

set: selecting questions which contained words ‘many’ and

‘number of’ and which had numeric answers. Next, we fo-

cus on removing instances of the object which is to be coun-

ted in the question. Vocabulary mapping is used to identify

the object mentioned in the question OQ. Then only those

images are retained where the number of the target object

instances according to COCO segmentations match the IQA

ground-truth answer A given by 10 human annotators.

For the generation of this set, we use the area threshold as

0.1, we only intend to remove the instance if it occupies less

than 10% of the image. Furthermore for overlap, since we

do not want the removed instance to interfere with the other

instances of the object, two masks considered to measure

the score are: (1). dilated mask of instance to be removed

(2). dilated mask of all the other instances of the object.

The object is only removed if the overlap score is zero.

We call our edited set as CV-VQA since removal of the

object leads to a covariant change in answer. Table 2 shows

the number of edited IQAs in VQA-CV. Figure 2 (bottom

row) shows a few examples from our edited set. We only

target one instance at a time. More such visual examples

can be found in supplementary (section B.2) .

4. Consistency analysis

The goal of creating edited datasets is to gauge how con-

sistent are the models to semantic variations in the images.

In IV-VQA, where we remove objects irrelevant to the QA

from the image, we expect the models predictions to remain

unchanged. In CV-VQA, where one of the instances to be

counted is removed, we expect the predicted answer to re-

duce by one as well. Next, we briefly cover the models’

training and then study their performances both in terms of

accuracy and consistency. We propose consistency metrics

based on how often the models flip their answers and study

the different type of flips qualitatively and quantitatively.

VQA models and training. For comparison and analysis,

we select three models from the literature, each representing

a different design paradigm: a simple CNN+LSTM (CL)

model, an attention-based model (SAAA [17]) and a com-

positional model (SNMN [11]). We use the official code

for training the SNMN [11] model, [10]. SAAA [17] is

trained using the code available online [32]. We modified

this SAAA code in order to get CL model by removing the

attention layers from the network. As we use the VQA v2

val split for consistency evaluation and testing, the mod-

els are trained using only the train split. Further details of

these models and hyper-parameters used can be found in

the supplementary (section B.1). Table 3 shows the accur-

acy scores on VQA v2 val set for models trained by us along

with similar design philosophy models benchmarked in [1]

and [7]. The models chosen by us exceed the performance

of other models within the respective categories.

Consistency. The edited data is created to study the robust-

ness of the models. Since we modify the images in con-
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pos→neg neg→pos

Q: What are the shelves made of? Q: What color is the surfboard?

A: glass vases removed; A: glass A: white person removed; A: white

CNN+LSTM glass wood CNN+LSTM yellow white

SAAA glass metal SAAA white white

SNMN glass metal SNMN yellow white

Q: Are there zebras in the picture? Q: Is there a cat?

A: yes giraffes removed; A: yes A: no dogs removed; A: no

CNN+LSTM yes no CNN+LSTM yes no

SAAA yes no SAAA yes no

SNMN yes no SNMN yes no

Q: What sport is he playing? Q: What room of a house is this?

A: soccer sports-ball; A: soccer A: kitchen bowl; A: kitchen

CNN+LSTM soccer tennis CNN+LSTM bathroom kitchen

SAAA soccer tennis SAAA bathroom kitchen

SNMN soccer tennis SNMN bathroom kitchen

Q: How many dogs are there? Q: How many giraffe are there?

A: 1 dog removed; A: 0 A:3 giraffe removed; A: 2

CNN+LSTM 1 2 CNN+LSTM 1 2

SAAA 1 1 SAAA 2 2

SNMN 1 1 SNMN 2 2

Figure 2: Existing VQA models exploit spurious correlations to predict the answer often looking at irrelevant objects. Shown

above are the predictions for 3 different VQA models on original and edited images from our synthetic datasets IV-VQA and

CV-VQA.
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Trained by us For comparison

CNN+LSTM 53.32 d-LSTM Q + norm I [20] 51.61

SAAA [17] 61.14 SAN [30] 52.02

HieCoAttn [21] 54.57

MCB [5] 59.71

SNMN [11] 58.34 NMN [2] 51.62

Table 3: Accuracy (in %) of different models when trained

on VQA v2 train and tested on VQA v2 val.

trolled manner, we expect the models predictions to stay

consistent. Robustness is quantified by measuring how of-

ten models change their predictions on the edited IQA from

the prediction on original IQ. On IV-VQA, a predicted la-

bel is considered “flipped” if it differs from the prediction

on the corresponding unedited image. On CV-VQA, if the

answer on the edited samples is not one less than the pre-

diction on original image, it is considered to be “flipped”.

We group the observed inconsistent behavior on edited

data into three categories: 1. neg→pos 2. pos→neg 3.

neg→neg. neg→pos flip means that answer predicted on

the edit IQA was correct but the prediction on the corres-

ponding real IQA was wrong. Other flips are defined ana-

logously. In the neg→neg flip, answer predicted is wrong

in both the cases. While all forms of label flipping show in-

consistent behaviour, the pos→neg and neg→pos categories

are particularly interesting. In these the answer predicted is

correct before and afterward the edit, respectively. These

metrics show that there is brittleness even while making

correct predictions and indicate that models exploit spuri-

ous correlations while making their predictions.

Quantitative analysis. Table 4 shows the accuracy along

with the consistency numbers for all the 3 models on the

IV-VQA test split. Consistency is measured across edited

IV-VQA IQAs and corresponding real IQAs from VQA v2.

Accuracy is reported on real data from VQA v2 (original

IQAs with uniform answers). We follow this convention

throughout our paper. On the original data, we see that

SAAA is the most accurate model (70.3%) as compared to

SNMN (66%) and CL (60.2%). In terms of robustness to-

wards the variations in the images, CL model is the least

consistent- with a 17.9% flipping on the edit set compared

to the predictions on the corresponding original IQA. For

SAAA, 7.85% flips, making SNMN the most robust model

with 6.522% flips. SAAA and SNMN are much more stable

than CL. A point noteworthy here is that SNMN turns out

to be the most robust despite its accuracy being lesser than

SAAA. This shows that higher accuracy does not neces-

sarily mean we have the best model, further highlighting

the need to study and improve the robustness of the mod-

els. Of particular interest are the pos→neg and neg→pos

scores, which are close to 7% each for the CL model. For

a neg→pos flip, the answer to change from an incorrect an-

CL (%) SAAA (%) SNMN (%)

Accuracy orig 60.21 70.26 66.04

Predictions flipped 17.89 7.85 6.52

pos→neg 7.44 3.47 2.85

neg→pos 6.93 2.79 2.55

neg→neg 3.53 1.58 1.12

Table 4: Accuracy-flipping on real data/IV-VQA test set.

CL (%) SAAA (%) SNMN (%)

Accuracy orig 39.38 49.9 47.948

Predictions flipped 81.41 78.44 78.92

pos→neg 28.69 31.66 32.35

neg→pos 20.57 25.38 23.51

neg→neg 32.14 21.4 23.06

Table 5: Accuracy-flipping on real data/CV-VQA test set.

swer to one correct answer of the 3000 possible answers

(size of answer vector). If the removed object was not

used by the model, as it should be, and editing caused uni-

form perturbations to the model prediction, this event would

be extremely rare (p(neg → pos) = 1/3000 ∗ 39.8 =
0.013%). However we see that this occurs much more fre-

quently (6.9%), indicating that in these cases model was

spuriously basing its predictions on the removed object and

thus changed the answer when this object was removed.

In the CV-VQA setting, where we target counting and re-

move one instance of the object to be counted, we expect the

models to maintain n/n-1 consistency on real/edited IQA.

As we see from Table 5, the accuracy on orig set is quite

low for all the models reflecting the fact that counting is a

hard problem for VQA models. SAAA (49.9%) is the most

accurate model with SNMN at 47.9% and CL at 39.4%. In

terms of robustness, we see that for all 3 models are incon-

sistent more than 75%, meaning for >75% for the edited

IQAs, if models could correctly count n objects in the ori-

ginal IQA, it wasn’t able to count n-1 instances of the same

object in the edited IQA. These numbers further reflect that

counting is a difficult task for VQA models and enforcing

consistency on it seems to break all 3 models. In the next

section, we discuss these flips with some visual examples.

Qualitative analysis. We visualize the predictions of the

models on a few original and edited IQAs for all the 3 mod-

els in Figure 2. The left half shows examples of pos→neg

and the right half shows the neg→pos flips. Existing VQA

models often exploit false correlations to predict the answer.

We study the different kinds of flips in detail here and see

how they help reveal these spurious correlations.

pos→neg. VQA models more often rely on the contextual

information/ background cues/ linguistic priors to predict

the answer rather than the actual object in the question.

For instance, removal of the glass vases from the shelves
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in Figure 2 (Top-left) from the image causes all 3 models

to flip their answers negatively, perhaps models were look-

ing at the wrong object (glass vases) to predict the material

of the shelves that also happened to be glass. In absence

of giraffes, models cannot seem to spot the occluded zebras

anymore- hinting that maybe they are confusing zebras with

giraffes. Removing the sports-ball from the field make all

3 models falsely change their predictions to tennis without

considering the soccer field or the players. In the bottom-

left, we also see that if models were spotting the one dog

rightly in the original image, on it’s edited counterpart( with

no dog anymore )- it fails to answer 0. Semantic edits im-

pact the models negatively here exposing the spurious cor-

relations being used by the models to predict the correct

answer on the original image. These examples also show

that accuracy should not be the only sole criterion to evalu-

ate performance. A quick look at the Table 4 show that for

IV-VQA, pos→neg flips comprise a major chunk (>40%) of

all the total flips. For CV-VQA (refer Table 5) , these flips

are 28-32% absolute- again reinforcing the fact that VQA

models are far from learning to count properly.

neg→pos. Contrary to above, semantic editing here helps

correct the predictions, meaning removal of the object

causes the model to switch its wrong answer to one right an-

swer by getting rid of the wrong correlations. For instance,

removing the pink umbrella helps models predict correctly

the color of the balloon Figure 1 (middle) . In Figure 2

(second-right), removing the dogs leave no animals behind

and hence models now can correctly spot the absence of

cat- hinting that they were previously confusing cats and

dogs. In absence of the bowl, models can identify the room

as kitchen- shows that too much importance is given to the

bowl (which is falsely correlated to bathroom) and not to the

objects in the background such as microwave. Towards the

bottom-right, we see that removing a giraffe helps all the 3

models now- it’s hard to say what is the exact reason for the

behaviour but it indeed reflects upon the inconsistent beha-

viour of the models. From Table 4 we see that these flips

also comprise a significant number of the total flips (>35%)

for all the models. For CV-VQA (refer Table 5), these num-

bers are in range 20-25%, showing that counting is easier

for these models when spurious correlations are removed.

neg→neg. These flips where answers change show the in-

consistent behavior of models as well but since both the an-

swers are wrong- they are harder to interpret. But in the

end goal of building robust models, we expect consistent

behavior even when making incorrect predictions.

All these flips show that existing VQA models are brittle

to semantic variations in images. While VQA models are

getting steadily better in terms of accuracy, we also want

our models to be robust to visual variations. We want VQA

models to not just be accurate but use the right cues to an-

swer correctly. Accuracy combined with consistency can
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Figure 3: Accuracy-flipping results of finetuning experi-

ments. Plots show relative performance of models finetuned

using real+edit data w.r.t to using just real data.

help us understand the shortcomings of the models.

5. Robustification by Data Augmentation

In the previous section, we see that VQA models are

brittle to semantic manipulations. While these flips expose

the inconsistent behaviour, they also show the underlying

scope of improvement for VQA models and can be used

to make the models more robust. In order to leverage the

variances brought in by the synthetic data, we finetune all

the models using real and real+synthetic data. Our analysis

shows that using synthetic data significantly reduces incon-

sistency across a variety of question types.

For fine-tuning experiments, we use a strict subset of IV-

VQA with an overlap score of zero. The performance of

all the baseline models on this strict subset remains similar

to Table 4 (refer supplementary- section C.1). For SNMN,

the model trained using a learning rate of 1e−3 is unstable

while fine-tuning and hence we use a lower learning rate

2.5e−4 to train the model and further finetune this model.

InVariant VQA Augmentation. In order to train and test

different models, we aim at specific question types and see

if we are able to boost the model’s performance on that

question type. We select 4 question types based on how

much they are affected from editing (i.e total number of

flips/ total number of original IQA per question type) and

if that question category has significant number of flipped

labels in order to ensure we have enough edited IQAs for

finetuning. Hence, we select the given 3 question categor-

ies and run our experiments on these splits: 1. ‘what color

is the’ 2. ‘is there a’ 3. ‘is this a’ 4. ‘how many’. Addi-

tionally we focus on all the counting questions. All these

specialized splits have around 6.3k-12.5k IQAs in the real

train split with 10.8k-15.2k in edit train split.

For each question-type, we finetune all the models with

corresponding real + IV-VQA IQAs for the particular ques-

tion type. For a fair baseline, we also finetune all the mod-

els using just real data. Figure 3 (left) shows how different
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Q: What color is the mouse?

A: white keyboards removed; A: white

real real+edit real real+edit

CL white white white white

SAAA green white white white

SNMN green white white white

Q:Is there a bowl on the table?

A: no cup removed; A: no

real real+edit real real+edit

CL no no yes no

SAAA no no yes no

SNMN no no yes no

Q: How many computer are there?

A: 2 dog removed; A: 2

real real+edit real real+edit

CL 2 2 1 2

SAAA 1 2 2 2

SNMN 2 2 1 2

Q: How many people are in the water?

A: 1 person removed; A: 0

real real+edit real real+edit

CL 1 1 1 0

SAAA 1 1 1 0

SNMN 1 1 1 0

Figure 4: Visualizations from fine-tuning experiments using

real/real+edit. Using real+edit makes models more consist-

ent and in these examples- also accurate.

models, each specialized for a question type, behave when

finetuned using real+synthetic data relative to finetuning us-

ing real data. The y axis denotes the reduction in flips and x
axis represents the accuracy on the original set for. We ob-

serve that using synthetic data always reduces flipping as all

the points lie above the y = 0 axis. The amount of reduc-

tion differs for each question type and varies from model to

model. For instance, CL model has the highest reduction in

flips for question ‘is this a’ with no change in accuracy and

while question type ‘how many’ shows the least reduction.

However for SAAA, ‘how many’ has the highest reduction

with 2.5% drop in accuracy. For SNMN, counting has the

highest reduction in flips. We also see that there are many

points on the right side of x = 0 axis showing that synthetic

data also help improve accuracy on the test set. Figure 4

shows some of the examples for these specialized models.

As we can see, finetuning the model with IV-VQA dataset

helps in improving consistency and leads to more accurate

predictions both on real as well as synthetic data.

Additionally, we also finetune all the baseline models

with all the real data in VQA-v2 + IV-VQA data. Over-

all, we find that there is 5-6% relative improvement in flips

for all 3 models: CL (17.15→16.1), SAAA (7.53→7.09),

SNMN (8.09→7.72) with marginal improvement in accur-

acy% in case of CL (60.21 →60.24), 1% reduction in ac-

curacy in case of SAAA (70.25→69.25) and 0.6% improve-

ment in accuracy for SNMN (67.65→68.02).

CoVariant VQA Augmentation. For counting, we create

our CV-VQA edit set by removing one instance of the object

being counted and evaluate the models on both accuracy and

consistency. Following the procedure above, we finetune

all the models using real data, real+CV and real+CV+IV

IQAs. We evaluate the n/n-1 consistency for counting on

CV-VQA for all the three models. The results are shown in

Figure 3 (right). We see that using CV-VQA edit set reduces

flipping by 40% for all 3 models with 1-4% drop in accur-

acy. Additionally we see that using CV-VQA + IV-VQA

data reduce the flipping by 30%: CL (83.8→59.58), SAAA

(77.74→52.71), SNMN (77.13→51.91)) with comparable

accuracy: CL (43.65→43.94), SAAA (50.87→50.45) and

SMNM (50.67→50.61). Figure 4 (Bottom) shows that

models when trained using synthetic data can show a more

accurate and consistent behaviour. Further consistency ana-

lysis with visualizations is in supplementary (section C.3).

6. Conclusion and Future Works

We propose a semantic editing based approach to study

and quantify the robustness of VQA models to visual vari-

ations. Our analysis shows that the models are brittle to

visual variations and reveals spurious correlation being ex-

ploited by the models to predict the correct answer. Next,

we propose a data augmentation based technique to improve

models’ performance. Our trained models show signific-

antly less flipping behaviour under invariant and covariant

semantic edits, which we believe is an important step to-

wards causal VQA models. By making our invariant and co-

variant VQA sets as well as evaluation and synthesis avail-

able to the community, we hope to support research in the

direction towards causal VQA models.
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