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Abstract

Representation learning is a fundamental part of mod-
ern computer vision, where abstract representations of data
are encoded as tensors optimized to solve problems like im-
age segmentation and inpainting. Recently, self-attention in
the form of a Non-Local Block has emerged as a powerful
technique to enrich features, by capturing complex inter-
dependencies in feature tensors. However, standard self-
attention approaches leverage only spatial relationships,
drawing similarities between vectors and overlooking cor-
relations between channels. In this paper, we introduce a
new method, called Tensor Element Self-Attention (TESA)
that generalizes such work to capture interdependencies
along all dimensions of the tensor using matricization. An
order R tensor produces R results, one for each dimension.
The results are then fused to produce an enriched output
which encapsulates similarity among tensor elements. Ad-
ditionally, we analyze self-attention mathematically, provid-
ing new perspectives on how it adjusts the singular values of
the input feature tensor. With these new insights, we present
experimental results demonstrating how TESA can benefit
diverse problems including classification and instance seg-
mentation. By simply adding a TESA module to existing
networks, we substantially improve competitive baselines
and set new state-of-the-art results for image inpainting on
CelebA and low light raw-to-rgb image translation on SID.

1. Introduction

Deep Convolutional Neural Networks (DCNNs) repre-
sent the state-of-the-art method in a variety of computer vi-
sion problems but, in their standard implementation, they
are limited to compute only local regions of the input. This
innate characteristic makes long-range dependencies, which
are a key aspect in a variety of tasks, hard to capture with-
out the use of circumventing techniques. The use of deeper
stacks of convolutional layers, for instance, increases neu-
rons’ receptive fields [31] at the cost of optimization dif-
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Figure 1: The input 3rd-order tensor is viewed as a com-
bination of its three mode-matricizations. Combining their
outputs allows the method to make use of inter- and intra-
channel correlations. Blue-gray, white and gray 3D boxes
represent similar vectors within each one of the three ma-
tricizations. Red cubes in the Z tensor represent similar
elements in Z.

ficulties [20] and higher complexity [38]. Recently, more
sophisticated layers (e.g. Non-Local Blocks) have been pro-
posed, which directly leverage these interdependencies as
a means to enrich the intermediate CNN representations
[41,47, 39,49, 28]. These blocks have been proven useful,
beating competitive baselines in video action recognition,
classification and instance segmentation. At the same time,
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the majority of these methods try to estimate only spatio-
temporal correlations among positions of the input tensor
[49, 41, 28] or overlook its complex topology [47, 3]. In this
paper, we build upon the aforementioned line of research
and extend its scope to the goal of mining tensor element
interactions from the input. Our three main contributions
can be summarized as follows:

o We propose a new self-attention block (TESA) able to
leverage correlations in all possible directions of the
input tensor to take advantage of channel information
without losing the topology of the input tensor. Instead
of completely flattening the elements of the input in
a single vector and facing intractable complexity, we
propose to use tensor matricizations as a way to extract
complex interactions (Figure 1).

o We provide a statistical interpretation of the proposed
family of non-local blocks. In particular, we demon-
strate that our block can be seen as an operator act-
ing as a regulariser of the spectrum (i.e. the variance)
of the various matricizations of the feature tensor. We
prove from a theoretical and empirical perspective how
TESA adjusts the relative importance of the singular
values. This is achieved implicitly without the need
to compute an expensive singular value decomposition
(SVD) in a direct way.

o We demonstrate the power of TESA in a battery of het-
erogeneous computer vision tasks. Our method shows
a consistent improvement in large-scale classification,
detection, instance segmentation and puzzle-solving.
It also achieves state-of-the-art performance in the two
dense image-to-image translation problems of inpaint-
ing and short-exposure-raw to long-exposure-rgb.

2. Related work

Self-similarites The concept of similarity among
image parts or video frames is pivotal in many computer
vision applications. Therefore, a long-lasting trend in the
community has been understanding how to properly define
and exploit self-similarity. The idea of relating features to
each other (i.e. CNN’s channels or classical descriptors)
has inspired various pooling methods [23, 27, 12, 6, 25, 4]
where correlation is used as a higher order representation
for the image and fed to a classifier. ~Simultaneously,
a complementary line of research proposed techniques
to relate an image part to its context using both classi-
cal methods [36, 13, 8] and CNN models [9, 21, 17, 50, 24].

Self-Attention The key idea of an attention mecha-
nism is to steer the model focus on particular portions of
the data, considered useful to solve the given task. Its
initial formulation can be traced back to the 60’s [42, 10]
and has recently received interest in various applications

of machine learning. In machine translation, self-attention
vectors assess how strongly each element attends (i.e.
is correlated) to all the others and estimate the target as
the sum of all elements in a sentence, weighted by their
attention values [2, 40]. Variants of self-attention have
been used in computer vision to solve a variety of problems
ranging from inpainting [45] to zero shot-learning [44] and
visual question answering [35, 37]. Noticeable examples
can be found in classification, where it has been used to
estimate attention-masks for intermediate CNN features
[32] or to learn re-calibration of features given global
channels descriptors [19]. Recently, the Non-Local Block
has been proposed as a plug-and-play extension to existing
architectures. The purpose of this block is to enrich
features using spatial-temporal interaction, considering all
position at once [41, 49, 39] or a single position and its
neighborhood [28]. This formulation inspired new deep
learning architectures [48, 11, 7] and has been extended
in recent works to the scope of integrating with the input
compact global descriptor of feature maps [47, 3, 43].

3. Method

In this section, we introduce the notation used through-
out the paper, give an overview of the concept of self-
attention and describe in detail the proposed method. At
first, we study the spatial version of our non-local block.
Next, we generalize to the scope of capturing more complex
tensor interdependencies. Finally, we relate our method to
other existing non-local blocks.

3.1. Notation

In the rest of the paper, we adopt the notation of Kolda
et al. in [22]. Tensors are denoted using calligraphic let-
ters (e.g. X’) and matrices by bold upper-case letters (e.g.
X). The i*" row of a matrix X is a vector denoted us-
ing lower-case bold letters as x;. The order N of a ten-
sor corresponds to the number of its dimensions and can
be also called mode. A mode-n-fiber of a tensor is the
vector obtained by fixing all indices of X except for the
n*" dimension and can be seen as a generalization of ma-
trix’s rows and columns. The mode-n-matricization of a
tensor X € R x[2X-XIn i 3 case of matricization de-
noted as X(,) and arranges its mode-n-fibers to be the
columns of the resulting matrix. More formally, the ten-
sor elements (i1, 42, ...,4x) are rearranged into the matrix
element (i,,,7) where j = 1 + Zg:17k¢n(ik —1)Jy and

Jk = Hﬁ’b¢l,m;ﬁn Im
3.2. Overview of self-attention

Given an input matrix X, an attention mechanism
weights X with an attention matrix A to highlight the rel-
evant parts of the input. Different ways of computing A en-
tail different variants of attention mechanisms. This paper
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focuses on self-attention, where weights are only a function
of input X. In particular, we consider a pairwise function
f, which can be used to capture interdependencies between
each x; and every x;. A self-attention block is a variation
of a residual block [18] which sums the output of a self-
attention mechanism to the original input X. The output Y
of the self-attention block is expressed as follows:

Z=X+AX =X + f(X,X). (1)

3.3. Capturing spatial correlation

Let a 3" order tensor X € RH*WXC be the feature map
output of one of the layers of a CNN. Let X be rearranged,
using its mode-c matricization, as a X ) € RW#* where
each spatial position is described by its C features. Let’s
assume X .y is mean normalized. In the linear version of
the proposed block, we choose as attention matrix the co-
variance X(C)X(Tc) € RWHXHW “which expresses the cor-

relations between each i* position and every j** position.

Thus, the output of the spatial self-attention block using this
mechanism can be written as follows:

Z = X (o) + BeX () X (X (o) )

where a. and (. are learnable scalars modulating the con-
tribution of each term. In Eq. 2, the global covariance term
modulates the feature’s representation with spatial similar-
ities. The residual term, together with the two learnable
scalars allows the implicit regularization of the spectrum via
a polynomial function. In the following, we draw a connec-
tion between the input and the output of the self-attention
block, omitting the subscripts to simplify the notation. The
matrix X and its positive, semi-definite covariance matrix
have the following singular-value and eigen decomposition:

X=UxV', XX'=QAQ'=U(=Z3)U" (3

where Q = U is the eigenvectors matrix, V" and U are
the right and left singular vectors, A is the eigenvalue ma-
trix and X its corresponding singular value diagonal matrix.
Notably, A = X2, Thus, the 3 parameter learns to modu-
late the contribution of the following term:

XXX =Ux?u’uzv’ =uz3v’ 4)

From the above, it is evident that using the proposed self-
attention block changes the spectrum of X as

aX +B(XXN)X =U(eZ + 2%V’ (5)

Hence, the self-attention block described in Equation (2)
learns the coefficients of a polynomial function of the sin-
gular values, without operating on the input’s orthogonal
vectors U and VT and it can be seen as an operator that
modifies the singular values of the input matrix X without

the need of a direct and expensive SVD computation. Only
two learnable parameters, o and (3, are used for this pur-
pose. Since « and S can be either positive or negative, the
method performs an algebraic sum of two functions and,
therefore, has the flexibility to regularise the spectrum by
performing shrinkage or whitening.

3.4. Capturing tensor elements interdependencies

In the previous subsection, the choice of unfolding the
tensor as a matrix X, € R"#* drives the focus of the
attention mechanism to capture only spatial similarities. In
the following, we introduce a generalization that leverages
both spatial and channel-based correlations, while keeping
intact the module’s effect on the spectrum. As depicted in
Figure 1, the proposed generalisation represents the feature
tensor X € R¥*WxC ysing its three mode matricizations
X(e)» Xy and X(,,), each embedded in a different sub-
space via a weight matrix W, followed by a non-linear
function o

Y = 0(Xwn)) = 0(Xn)W)) ne{c.Bw}  (6)

In our implementation, o is a ReLU activation func-
tion [33] and the weight matrices W) € REXC
Wn € REXH, W) € RW>XW correspond to 1 x 1
convolutions in the tensor space over each respective
dimension.

Then, a self-attention block is applied independently
to each Y (,,) and the three contributions are reshaped and
combined via summation to generate the final output Z.

C,HW
Z= 3 V(Y +5.YmY L Ywm), O

n

where WU,y is a reshape function which rearranges the ma-
trices as tensors of dimension H x W x C. In the above
equation, each embedded matricization represents a dif-
ferent point of view on the input tensor: Y. accounts
for spatial interactions, Y, for interactions between rows
and channel activations and Y (5 for interactions between
columns and channels. Our method processes each Y,
in its own space, modulating its representation with a self-
attention block as described in Eq. 2. Thus, it is not limited
to capture only correlations among positions but is also ca-
pable of capturing correlations across channels. In order to
be considerated simultaneously, the three contributions are
fused in tensor space (i.e. overlayed in the same coordinate-
space). The fusion through summation ensures i) the same
dimensionality of input and output and ii) equal contri-
bution for each term. As depicted in Figure 1, although
the output of each self-attention block encapsulates simi-
larity between pairs of vectors, their summation allows the
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method to directly relate tensor elements to each other. We
call our method Tensor Element Self-Attention or TESA.

3.5. Relation with Other Self-Attention Blocks

In this section, we connect TESA with other self-
attention works. The non-local block [41] and its vari-
ants [49, 39, 28] explore the introduction of non-local in-
formation in a neural network and can be framed as self-
attention methods investigating spatial correlation. In the
formulation that is closest to ours, the non-local block ap-
plies three learnable weights matrices (Wg, W4 and W)
on the same input X [41]. The first two matrices are in
charge of extracting spatial long-range dependencies using
a dot-product similarity, while the third one embeds the in-
put. Given X € RWHXC 'the output Z of the original non
local block is: Z = X + softmax(XWQWgXT)XWg.
Our goal is to generalize the self-attention mechanism to
more complex interactions without overlooking channel in-
formation. Therefore, our block embeds each tensor mode
separately and aims to extract different correlations from
each embedding. Recent works propose to leverage chan-
nel information by estimating a scalar global description of
each channel [43] or tensor feature maps [47]. In the case
closest to ours in [47], the method divides the input in G
separate groups X,; € RWHx & and extracts a global repre-
sentation (R1) for each of them. On the contrary, we tackle
the problem from a complementary perspective, with a for-
mulation that focuses on the explicit computation of tensor
elements’ pairwise correlation and provides interpretability
regarding the self-attention effect on the features.

4. Illustrative experiment

One of the goals of self-attention mechanisms is to equip
a model with the capacity to reason about the whole input
representation at one glance. We first test this property in
a controlled scenario, designing a new “puzzle MNIST”
experiment. We used the MNIST dataset and a four-layer
fully convolutional encoder-decoder architecture. To test
the ability of our self-attention method to make use of avail-
able but scattered information, we attempted the reconstruc-
tion of an image given its shuffled version. To obtain an
input puzzle, each image is split into 16 tiles of equal size.
These tiles are then randomly rotated and mirrored before
being stitched back together. Input and output samples
can be seen in Figure 2e and 2a, respectively. Between
the encoder and the decoder part of the network, the self-
attention module integrates information about positions or
tensor self-similarity.

4.1. Capturing spatial correlations

We start by analyzing the spatial self-attention block as
formulated in Equation 2. To highlight the effect of self-
attention in the latent space, we compared a model trained

without any attention (o« = 1, § = 0) and two variants of
our block: one where o and [ are fixed to be equal to unity
and the other where they are treated as learnable scalars.
The first row of Figure 2 shows a qualitative overview of our
comparisons. The baseline is limited to process the input
locally and performs worse than models trained with self-
attention. The second row shows comparisons on the em-
pirical distribution of singular values for the puzzle MNIST
test set. Given a sample of the test-set, we extracted features
before and after the self-attention block, returning for each
image two matrices X;, and X,,;. As explained in Sec-
tion 3, the left and right singular vectors are left untouched
by the method. Consequently, the relation between input
and output can be computed using only the o and 3 param-
eters and the effect of self-attention can be captured plot-
ting the singular value spectrum of input and output side-
by-side. Figures 2g and 2h show the singular values of
the input X;,, (in blue) and the singular values of the out-
put X, (in white) plotted in descending order. The red
bars depict the prediction for 33,,; obtained using Equa-
tion 5. Comparing input and output in each plot shows how
the attention block shrinks the spectrum of the input, au-
tomatically choosing which information (i.e. components)
is highlighted and which is suppressed to simplify the sub-
sequent decoding task. Moreover, it shows how the direct
SVD computation matches closely the theoretical predic-
tion. The comparison between the two plots shows how the
possibility to learn the spectrum transformation (Figure 2h
) retains more expressive components compared to the fixed
contribution of self-attention and input (Figure 2g). For ex-
ample, in Figure 2h the drop between the first and second
singular value is substantially smaller (30% drop) than what
occurs in the case of « and 3 fixed to one (60% drop).

4.2. Capturing tensor elements interdependencies

The same logic can be used to analyze the generalized
case of Equation 7. As a first step, we extended the linear
spatial case to consider channel based interdependencies.
This case is equivalent to substitute Y,, with X,, in Equa-
tion 7. This allows a comparison in the same latent space for
input (X)) and output (Z) tensors, and gives the possibility
to inspect directly their matricization’s spectrum. In 3b, 3c,
3d plots, each mode matricization (H, C, W) is treated sep-
arately, showing the comparison between input and output
of each self-attention. The figures depict how self-attention
produces a shrinkage effect on all mode matricizations. The
possibility to correlate channels with rows and columns pat-
terns modifies the role of X (). Its spectrum is drastically
reduced to have only two meaningful components, account-
ing for more than 99% of the whole variance. Figure 3a
shows sample outputs for our method, which is not limited
to spatial similarity but can leverage multiple views on the
original tensor. It produces considerably sharper outputs

13948



7]zl /ol4]]9]]<] 7]
0]6]7]0]1[5]9[7]>]4]
7]6]b[514]07 4|01 ]
3\ [3lal712]2 ) [2]1]
2[4 A3 5]\ [ ]4]Y]
HEGBERLINLE

(a) Groundtruth (b) No Attention

a=1,6=0

!!.EEH *

-
L N i -
P [ L i 7| 00
4 [ 5 0 5 b 5 E)
Ay SN rl:
~r- | Als - component

(e) Input

(f) Singular Values
a=1,6=0

(c) Equal Contribution
a=08=1

= Input
[ Output
mmm Output Pred

B: 1.000

o [ R S R S
component

(g) Singular Values
a=6=1

BEHAENEGADOEERR
NEEAENENE

ENBEEEENEN
NENEAEONOR
OEHEEEOGARR

(d) Learned Contribution
a=0.18=-1

. Input
[ Output
mmm Output Pred

B: 0.149
a: -0.998

) [ R S R S
component

(h) Singular Values
a=018=-1

Figure 2: Spatial Self-Attention Overview. The first row shows reconstructed digits. The baseline with no attention is
outperformed using spatial-correlation. The best quality is achieved by « and (3 learnable scalars. Features’ singular values
show how self-attention drives the first principal components to account for the majority of the variance in the matrix.
Computing the output spectrum empirically (white bars) or using Equation 5 (red bars) yields very close results. Blue plots
differ due to the different embeddings learned by the architectures.
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Figure 3: Tensor Element Self Attention Overview. The qualitative comparisons showcase the benefits of our method,
which makes use of channel information to produce more defined output.

when compared with previous cases. 5. Experiments

We evaluated TESA on a series of computer vision
problems, ranging from dense image-to-image translation
to detection. This section starts by presenting results on
two dense tasks based on an encoder-decoder architecture,
where the self-attention block is used to enrich the encoded
features representation. Then, our analysis is extended to
the case of a ResNet architecture used for classification and

To discuss the case described in Equation 7, we have to
extend the analysis to consider the embedded mode matri-
cizations, Y. Y, Y, . In this case, the input X and Z
tensors live in different subspaces, due to the learnable pa-
rameters of the projection matrices W, W;, W,,. Each
mode matricization is embedded separately, but each self-
attention operates directly on its input without any addi-

tional transformation. Thus, the input/output pairs of each
self-attention still share the same orthogonal vectors and
their spectrum can be still compared and used to highlight
the impact of the self-attention module on each latent space.
In the next section, we will report this effect on different
problems and datasets. On “shuffle MNIST”, the use of
embeddings produce shrinking trend and qualitative output
similar to those reported in Figure 3.

as the backbone for instance segmentation.

5.1. Short exposure Raw to Long exposure rgb

Initially, we address the task of reconstructing a high-
quality long-exposure rgb image given a noisy short-
exposure sensor raw image captured in low-light conditions.
In digital photography, an Image Signal-processing Pipeline
(ISP) transforms raw data collected by an image sensor into
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Figure 4: Short Exposure Raw to Long Exposure rgb Overview. The qualitative comparison shows how the method of
[5] can be improved by the use of self-attention. Our method is able to recover cleaner patterns and generate outputs without
strong color artifacts. The second row shows the singular value plots of the input/output pair for each mode matricization.
The trend depicts the whitening effect that the self-attention has on the input spectrum. Images visible better zoomed in

electronically.

a high-quality rgb image. Traditionally, an ISP relies on
classical methods and is strongly dependent on the noise
distribution and camera sensor. Modern deep learning ap-
proaches [1, 5, 15] replace the traditional ISP with one con-
volutional network, achieving good performance especially
in challenging cases of low signal-to-noise ratio (SNR). The
backbone in our experiments is the Unet architecture pro-
posed in Learning to See in the Dark (SID) [5], trained and
implemented as described in the original paper'. To inves-
tigate the capacity of the attention module to reason on the
whole image representation, we inserted the self-attention
block between the encoder and the decoder part of the net-
work where units benefit from the largest receptive field.
We then compare it against the plain version of the archi-
tecture and versions where alternative self-attention blocks
[41, 47] are used®>.

The experiments report results for the SID-Sony dataset [5],
which consists of short-exposure raw and long-exposure rgb
pairs of high-resolution images (4240x2832). The pairs are
captured in low-light conditions ranging from 0.03 to 5 lux.

! https://github.com/cchen156/Learning-to-See-in-the-Dark
Zhttps://github.com/facebookresearch/video-nonlocal-net
3 https://github.com/Kaiyu Yue/cgnl-network.pytorch

The Sony camera uses a Bayer sensor pattern to capture
a single raw frame with short exposure. Simultaneously,
the camera shot a reference rgb image increasing the ex-
posure factor of 100 or 300 times used as ground-truth by
the network. Table 1b reports the reference metrics PSNR
and SSIM obtained by the different methods. New state-of-
the-art performance is achieved by powering the architec-
ture with our self-attention block. Qualitatively, our method
shows better details and color recovery when compared
with the competitors (Fig. 4). Figures 4e, 4f, 4g depict the
effect of TESA on the singular values. In this case, the input
spectrum of Y (1,), Y (), and Y ) is whitened; note that the
input (dark blue bars) singular values fall off quickly (e.g.
exponentially), whereas self-attention with TESA rebalance
their intensities and produces an output (white bars) where
the singular values fall off more gradually (e.g. approxi-
mately linearly).

5.2. Inpainting - CelebA

Image inpainting requires missing pixels in the input im-
age to be filled in. An inpainting algorithm hallucinates
the missing image pixels and blends them in with the sur-
rounding regions in a coherent manner, producing a real-
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(b) Groundtruth (c) PConv [29] (d) PConv + NL [41] (e) PConv + TESA

(a) Input

Figure 5: Inpainting Qualitative Comparison. The Partial Convolution baseline (Pconv) creates blurry and artificial outputs
that are partially improved by the use of self-attention (e.g. PConv + NL implementing the non-local block). Our method
(right), leverages similarities across multiple dimensions and produces consistent colors and realistic details.

Method PSNR SSIM MS-SSIM g’igh"d 221\;2 2571;\;[
PConv [20]* 2536/25.10 0877/0872 0.928/0.922 []* : :
+Wang [41]%  25.41/2524 0.881/0.878 0.928/0.924 sg\?[] . iggz 8'22;‘
+Yue [47]%  25.66/25.57 0.888/0.885 0.931/0.927 +Wang [41] : :

+Yue [47]F 29.62  0.889
+Ours 26.00/25.81 0.895/0.891 0.936/0.931

+Ours 29.79 0.891

(b) Raw-to-rgb - SID Sony

(a) Inpainting - CelebA. (Random and Center Crop Evaluation)

Table 1: Quantitative Comparisons: Unet for inpainting and Raw-to-rgb. Reconstruction metrics for the inpainting and
short-exposure-raw to long-exposure-rgb tasks. Experiments employ different variants of the Unet architecture: 1 attention
block is added for raw-to-rgb and 3 attention blocks for inpainting. State-of-the-art performance can be achieved by using
our method. Asterisks ‘** indicate results produced using software provided by the authors'?3*.

istic output image. Impressive results have been achieved
in this area, with the latest architectures revolving around
an encoder-decoder network with or without skip connec-
tions [46, 29, 45]. In these experiments, the baseline archi-
tecture is the Unet architecture with partial convolution®,
as proposed in [29]. We investigated the capacity of the
self-attention block to work in a multi-scale fashion. In the
encoder, the resolution of the input is downscaled multiple
times with the goal to concentrate on different aspects of the
image at different layers. We incorporated self-similarity
information at different scales by inserting the self-attention
block of Section 3.4 at layers 2, 4 and 6. We compared our
architecture against a variant where our block is replaced by
another version [4 1, 47] and against the original Unet archi-
tecture, where no attention mechanism is used. For training
procedures and implementation details, please refer to [29].

The CelebA dataset [30], which consists of more than
202K samples, was used in our experiments. The training
data were generated by randomly cropping a 128x128 patch
from each training sample (a quarter of the input image).
Table 1a reports PSNR, SSIM, MS-SSIM for the methods.
TESA achieved the best results for all the evaluated met-
rics and generates convincing images with rich details and

4 https://github.com/NVIDIA/partialconv

reduced artifacts (e.g. more defined wrinkles).

5.3. Instance Segmentation - MS-COCO

The task of image instance segmentation requires the de-
tection and segmentation of each item in the input image,
differentiating among instances. It outputs a per-pixel mask
that identifies both the category and the instance for each
object. The baseline model for these experiments is the two
stages Mask R-CNN [16]. The first Region Proposal stage
(RPN) uses a network that serves as “attention” for the en-
tire pipeline: it takes an image as input and outputs a set
of rectangular object proposals. The second stage addresses
in parallel the tasks of classification and regression of the
bounding-box regions. We tested the capacity of the self-
attention block to enrich the representation of RPN features.
Following the implementation of related work, we added a
self-attention block right before the last residual block of the
ResNet50 feature extractor, reducing the channel dimension
while embedding the modes’ matricizations. To bring back
the overall output to the original channel dimension, we
used one extra convolution and a weighted global skip con-
nection. We compared against the original implementation
of [16], trained end-to-end, and its non-local block exten-
sion [41, 49]. Please refer to the original papers and code®’

5 https://github.com/latentgnn/LatentGNN-V 1-PyTorch
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Method Top 1 Top 5 Method APpor  APpozso APpoz7s5 APpmask APmasks0 APmasks
ResNet50 [47]  76.15  92.87 MaskR-CNNJ[49] 37.8 59.1 41.2 34.2 55.8 36.3
+ Yue [47] 77.69  93.64 + Zhang[49] 39.0 60.7 42.5 355 57.6 37.6
ResNet50* 7578  92.76 MaskR-CNN* 38.1 59.4 41.2 34.6 55.9 36.8
+ Wang[41]* 76.09  93.00 + Wang[41]* 39.0 61.1 419 355 58.0 37.4
+ Zhang[49]*  75.28  92.33 + Zhang[49]* 39.1 60.7 42.5 35.5 57.6 37.6
+ Ours 76.49  93.05 + Ours 39.5 61.2 43.0 35.7 57.9 37.9

(a) Classification - Imagenet

(b) Object detection and Instance Segmentation - MS-COCO

Table 2: Quantitative Comparisons: ResNet. Performance metrics for the task of classification on the Imagenet dataset

[34] and object detection and instance segmentation on COCO [26].

Results are based on ResNet50 and Mask R-CNN

with a ResNet50-FPN backbone. Both use one single attention block. Asterisks “*’ indicate results obtained using software
provided by the authors?*>. Yue et al. did not converge during our training and is not reported in table (b).

o 5 10 15 20 25 30 o 5 10

component
(a) Singular Values
Matricization mode H

15
component

(b) Singular Values
Matricization mode W

20 5 30 o ] 10 15 20 Fs) 30
component

(c) Singular Values
Matricization mode C

Figure 6: Tensor Element Self-Attention Spectrum on instance segmentation (MS-COCQ). The same shrinking trend can
be tracked in all three plots. The block compresses the input singular values and outputs feature maps where the meaningful
components (i.e. which cumulative count for 80% of the total variance) are reduced.

for implementation details and to [14] for the training pro-
cedure. Table 2b reports results on the Microsoft Common
Objects in COntext dataset [26]. We used the 2017 version
of the dataset and reported the standard metrics of AP (av-
eraged over multiple IoU thresholds) for segmentation and
detection tasks. The results show how TESA outperforms
its competitors. Figures 6a, 6b, 6¢ show the singular val-
ues for each mode-matricization input/output pairs. In this
case, the self-attention block learns to shrink the singular
values of the input. In other words, it implicitly performs
a choice on which feature’s information (i.e. singular vec-
tors) the network should pay attention to during the feature
extraction process.

5.4. Classification - Imagenet

Lastly, we evaluate our method on a large-scale classi-
fication task using the 1000 categories and the 1.2 million
training images of the ImageNet dataset [34]. The backbone
for our experiments is a Resnet50 architecture trained fol-
lowing the protocol in [14]. We extended this architecture
with one TESA self-attention block or its different variants
[41, 49], as described in the previous paragraph. Table 2a

reports Top1 and Top 5 accuracy for the evaluated methods.
The use of global descriptors achieves the best performance,
but TESA makes full use of the interactions among tensor
elements, producing competitive results and outperforming
methods which use only spatial correlations.

6. Conclusion

In this paper, we introduced a new family of non-
local blocks, framed mathematically as operators acting
on the features’ spectrum and proposed TESA, which
generalizes earlier non-local spatial correlations to tensor-
elements interactions. We demonstrated its capacity to
consistently improve results over competitive and state-
of-the-art baselines on diverse tasks. Finally, we show-
cased the distinctive characteristic of our method to sin-
gle out the interesting data components, adapting its be-
havior to different applications. We illustrated how this
can entail shrinking, where dominant components are cho-
sen to summarize the data in a compact way, or whiten-
ing, where components are balanced and decorrelated to
simplify the subsequent tasks. Next, we aim to combine
TESA with the orthogonal contribution of global descrip-
tors.
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