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Abstract

This paper presents a novel method for labeling real-

world neuromorphic camera sensor data by calculating the

likelihood of generating an event at each pixel within a

short time window, which we refer to as “event probability

mask” or EPM. Its applications include (i) objective bench-

marking of event denoising performance, (ii) training con-

volutional neural networks for noise removal called “event

denoising convolutional neural network” (EDnCNN), and

(iii) estimating internal neuromorphic camera parameters.

We provide the first dataset (DVSNOISE20) of real-world

labeled neuromorphic camera events for noise removal.

1. Introduction

Neuromorphic (a.k.a. event-based) cameras offer a hard-

ware solution to overcome limitations of conventional cam-

eras, with high temporal resolution (>800 kHz), low la-

tency (20 µs), wide dynamic range (120 dB), and low power

(10−30mW) [28]. This is accomplished by a dynamic vi-

sion sensor (DVS), which reports the log-intensity changes

(i.e. events) of each pixel in microseconds. However, per-

formance of methods using neuromorphic cameras deteri-

orate with noise. This fact has been cited as a major chal-

lenge in recent research [18, 20]. Noise is noticeable in low

light conditions, where events triggered by minor intensity

fluctuations dominate over the usable signal in the scene.

Currently, there is no reliable way to benchmark the denois-

ing performance because the exact distribution of noise in

DVS circuitry—which is environment-, scene-, and sensor-

dependent—is still unknown. Since neuromorphic cameras

generate millions of events each second, it is impractical

to manually label each event. This has precluded machine

learning approaches to event denoising until this point.

We propose the notion of an “event probability mask”

Figure 1. Proposed EDnCNN denoising applied to “CheckerFast”

sequence in DVSNOISE20 dataset. DVS dots are colored by time

and overlaid on APS image. Red dots were classified by EDnCNN

as noise. EDnCNN characterizes real-world noise distribution by

learning the mapping between actual and noise-free DVS events.

(EPM) – a label for event data acquired by real-world neu-

romorphic camera hardware. We infer the log–likelihood

probability of an event within a neuromorphic camera pixel

by combining the intensity measurements from active pixel

sensors (APS) and the camera motion captured by an iner-

tial measurement unit (IMU). Our contributions are:

• Event Probability Mask (EPM): spatial-time neuro-

morphic event probability label for real-world data;

• Relative Plausibility Measure of Denoising (RPMD):

objective metric for benchmarking DVS denoising;

• Event Denoising CNN (EDnCNN): DVS feature ex-

traction and binary classifier model for denoising;

• Calibration: a maximum likelihood estimation of

threshold values internal to the DVS circuitry; and

• Dataset (DVSNOISE20): labeled real-world neuro-

morphic camera events for benchmarking denoising.
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Figure 2. EPM is a prediction of idealized DVS behavior – com-

puted from spatial gradients (APS) and velocities (IMU). RPMD

benchmarks performance by comparing denoising labels to EPM,

which acts as a proxy for unobservable noise-free DVS events.

2. Background and Related Work

2.1. Neuromorphic Cameras

An APS imaging sensor synchronously measures inten-

sity values observed by the photodiodes to generate frames.

Although APS is a mature technology generating high qual-

ity video, computer vision tasks such as object detection,

classification, and scene segmentation are challenging when

the sensor or the target moves at high-speed (i.e. blurring)

or in high dynamic range scenes (i.e. saturation). High-

speed cameras rely on massive storage and computational

hardware, making them unsuitable for real-time applica-

tions or edge computing.

A DVS is an asynchronous readout circuit designed to

determine the precise timing of when log-intensity changes

in each pixel exceed a predetermined threshold. Due

to their asynchronous nature, DVS events lack the no-

tion of frames. Instead, each generated event reports the

row/column pixel index, the timestamp, and the polarity.

Log-intensity change is a quantity representing relative in-

tensity contrast, yielding a dynamic range far wider than a

conventional APS. Typical event cameras have a minimum

threshold setting of 15–50% illumination change—with the

lower limit determined by noise [20].

In this work, we make use of a dynamic active vision

sensor (DAVIS) that combines the functionality of DVS and

APS [11]. Two read-out circuits share the same photodi-

ode, operating independently. One outputs the log-intensity

changes; the other records the linear intensity at up to 40+

frames per second. In addition, the DAVIS camera has an

IMU, operating at the 1kHz range with timestamps synchro-

nized to the APS and DVS sensors. See Figure 3.

Since their introduction, neuromorphic cameras have

proven useful in simultaneous localization and mapping

(SLAM) [37, 46], optical flow [2, 8, 48], depth estima-

tion [14, 49], space applications [15, 17], tactile sens-

ing [33, 39], autonomous navigation [30, 41], and object

classification [4, 6, 10, 21, 34]. Many approaches rely on

hand-crafted features such as [16, 26, 27, 32, 44], while

other applications use deep learning architectures trained

using simulated data [38, 42].

Figure 3. DVS events are generated when the log-intensity J ex-

ceeds a predefined threshold ε. APS frames are exposed for τ sec-

onds, occurring at the rate of η seconds. Based on scene content

and camera motion, EPM label predicts whether an event would

have occurred (E = 1) or not (E = 0) during APS exposures.

2.2. Denoising

There are largely four types of random noise in neuro-

morphic cameras. First, an event is generated even when

there is no real intensity change. Referred to as “back-

ground activity” (BA), these false alarms severely impact

algorithm accuracy and consume bandwidth. Second, an

event is not generated, despite an intensity change (i.e.

“holes” or false negatives). Third, the timing of the event

arrival is stochastic. Lastly, although proportional to the

edge magnitude (e.g. high contrast change generates more

events than low contrast), the actual number of events for a

given magnitude varies randomly.

Most existing event denoising methods are concerned

with removing BA—examples include bioinspired filter-

ing [5] and hardware-based filtering [24, 29]. Spatial fil-

tering techniques leverage the spatial redundancy of pixel

intensity changes as events tend to correspond to the edges

of moving objects. Thus, events are removed due to spatial

isolation [18, 19] or through spatial-temporal local plane

fitting [7]. Similarly, temporal filters exploit the fact that

a single object edge gives rise to multiple events propor-

tional in number to the edge magnitude. Temporal filters

remove events that are temporally redundant [3] or ambigu-

ous. Edge arrival typically generates multiple events. The

first event is called an “inceptive event” (IE) [4] and coin-

cides with the edge’s exact moment of arrival. Events di-

rectly following IE are called “trailing events” (TE), rep-

resenting edge magnitude. TE have greater ambiguity in

timing because they occur some time after the edge arrival.

2.3. Neuromorphic Camera Simulation

Simulators such as ESIM [36] and PIX2NVS [9] artifi-

cially generate plausible neuromorphic events correspond-

ing to a user-specified input APS image or 3D scene. The

simulated neuromorphic events have successfully been used
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Figure 4. (First Row) Examples from DVSNOISE20 dataset. Noisy (raw) DVS events overlayed on APS frames. (Second Row) Proposed

event probability mask (EPM) predicting the noise-free DVS behavior. Intensity values denote probability 0 (black) – 1 (white).

in machine learning methods to perform tasks such as mo-

tion estimation [12, 43, 45] and event-to-video conver-

sion [38]. However, the exact probabilistic distribution of

noise within neuromorphic cameras is the subject of ongo-

ing research, making accurate simulation challenging. To

the best of our knowledge, we are unaware of any prior de-

noising methods leveraging the exact and explicit character-

ization of the DVS noise distribution.

3. Event Probability Mask

We describe below a novel methodology of predicting

the behavior of the DVS from APS intensity measurements

and IMU camera motion. We derive the likelihood prob-

ability of an event in DVS pixels of a noise-free camera, a

notion we refer to as “event probability mask” (EPM). EPM

serves as a proxy for ground truth labels. For example, EPM

identifies which of the real-world events generated by actual

DVS hardware are corrupted by noise, thereby overcoming

the challenges associated with modeling or simulating the

noise behavior of DVS explicitly (see Section 2.3).

3.1. Proposed Labeling Framework

Let I : Z
2 × R → R denote an APS video (the sig-

nal), where I(X, t) is the radiance at pixel X ∈ Z
2 and

at time t ∈ R. The log amplifier in DVS circuit yields a

log-intensity video J : Z2 × R → R, modeled as:

J(X, t) := log(aI(X, t) + b), (1)

where a and b are the gain and offset, respectively. In noise-

free neuromorphic camera hardware, idealized events are

reported by DVS when the log-intensity exceeds a prede-

fined threshold ε > 0:

ti(X) := argmin
t{

t > ti−1(X)
∣∣∣|J(X, t)− J(X, ti−1(X))| ≥ ε

}

pi(X) := sign(J(X, ti(X))− J(X, ti−1(X))). (2)

Ideally, each reported event from noise-free neuromor-

phic camera hardware provides the spatial location X , pre-

cise timestamp ti that J(X, t) crosses the threshold, and

polarity pi ∈ {+1,−1} indicating whether the change in

the log-pixel intensity was brighter or darker respectively

(see Figure 3).

Now suppose {ti(X), pi(X)} refers to a set of events

obtained from real, practical, noisy DVS hardware. We

consider formalizing the DVS event denoising as a hypoth-

esis test of the form:
{
H0 : |J(X, ti(X))− J(X, ti−1(X))| ≥ ε

H1 : |J(X, ti(X))− J(X, ti−1(X))| < ε.
(3)

That is, we would like to determine whether an event as de-

scribed by (ti, pi) corresponds to an actual temporal change

in the log-pixel intensity exceeding the threshold ε. How-

ever, this formalism has a major disadvantage; the hypothe-

sis test on (ti, pi) relies on another event, (ti−1, pi−1) which

may also be noisy. Thus in this work, we revise the hypoth-

esis test as follows:
{
H0 : ti(X) ∈ [t, t+ τ) for some i

H1 : ti(X) /∈ [t, t+ τ) for all i,
(4)

where τ is a user-specified time interval (set to the integra-

tion window of APS in our work; see Theorem 1 below).

Notice that the new hypothesis test decouples (ti, pi) from

(ti−1, pi−1). Hypothesis test in (4) also abstracts away the

magnitude and timing noises, while faithfully modeling BA

and holes.

Define the event probability mask (EPM) M : Z2×R →
[0, 1] as the Bernoulli probability of null hypothesis:

M(X, t) :=Pr[H0] = Pr[∃i s.t. ti(X) ∈ [t, t+ τ)]. (5)

Intuitively, EPM quantifies the plausibility of observing

an event within the time window [t, t+ τ). If an event oc-

curred during [t, t+τ) but M(X, ti) ≈ 0, then this is an im-

plausible event, likely caused by noise. On the other hand,
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if M(X, ti) ≈ 1, we have a high confidence that the event

corresponds to an actual temporal change in the log-pixel

intensity exceeding ε. In this sense, EPM is a proxy for soft

ground truth label—the inconsistencies between EPM and

the actual DVS hardware output identify the events that are

corrupted by noise. EPM M : Z
2 × R → [0, 1] can be

computed from APS and IMU measurements as explained

in Theorem 1 below.

Theorem 1 Let θ(t) = (θx(t), θy(t), θz(t))
T represent the

instantaneous 3-axis angular velocity of camera measured

by IMU’s gyroscope. Let A : Z
2 × Z → R denote APS

measurements with exposure time τ . Assume camera con-

figuration with focal length f , principal point cx, cy , and

skew parameter κ. Then

M(X, t) =

{
τ |Jt(X,t)|

ε
if |Jt(X, t)| < ε

τ

1 else.
(6)

where Jt(X, t) is as described in (7) and (8).

Proof and derivation is provided in Appendix A. Exam-

ples of EPM are shown in Figure 4. Note that this method

requires two parameters internal to the DAVIS camera,

namely the threshold value ε > 0 and the offset value

O ∈ R. Calibration procedure to obtain these values is

described in Section 6.

3.2. Limitations

EPM calculation requires static scenes (i.e. no moving

objects) and rotation-only camera motion (i.e. no transla-

tional camera movement) to avoid occlusion errors. We ad-

dress this issue by acquiring data using a camera configura-

tion as shown in Figure 5 (additional details in Section 7.1).

We emphasize, however, this is only a limitation for bench-

marking and network training (Section 5.3). These restric-

tions are removed at inference because spatially global and

local pixel motions behave similarly within the small spa-

tial window used by our denoising model. Our empirical

results in Section 7.3 confirm robustness to such model as-

sumptions. Additionally, Theorem 1 is only valid for con-

stant illumination (e.g. fluorescent light flicker is detectable

by DVS). Moreover, since the dynamic range of the DVS

is much larger than the APS, it is not possible to calculate

an EPM for pixels at APS extremes. Examples shown in

Figure 4.

Another limitation is that the value of M(X) diminishes

when the camera motion is very slow. This is due to the fact

that the events are infrequently generated by DVS, reducing

the probability of observing an event within a given time

window [t, t + τ). While EPM captures this phenomenon

accurately (limited only by the IMU sensitivity), it is diffi-

cult to discriminate noisy events from events generated by

extremely slow motion.

Figure 5. Camera setup for DVSNOISE20 collection. Gimbal lim-

its camera motion while centering the focal point at the origin.

4. Application: Denoising Benchmarking

EPM is the first-of-its-kind benchmarking tool to enable

quantitative evaluation of denoising algorithms against real-

world neuromorphic camera data. Given a set of events

(ti, pi), let E : Z2 → {0, 1} denote an event indicator:

E(X, t) =

{
1 if ti(X) ∈ [t, t+ τ) for some i

0 if ti(X) /∈ [t, t+ τ) for all i.
(9)

Then if EPM is known, the log-probability of the events

(ti, pi) is explicitly computable:

logPr[E] = (10)
∑

X∈Z2

E(X) logM(X) + (1− E(X)) log(1−M(X)).

(Proof: for each pixel X ∈ Z
2, logPr[E(X) = 1] =

M(X) and logPr[E(X) = 0] = 1 − M(X).) This

log-probability can be used to assess the level of noise

present in real, practical, noisy DVS hardware. On the other

hand, if (t′i, p
′
i) denotes the outcome of an event denoising

method, then the corresponding log-probability logPr[E′]
is an objective measure of the denoising performance. The

improvement from noisy events (ti, pi) to denoised events

(t′i, p
′
i) can be quantified by logPr[E′]− logPr[E].

The objective of denoising methods, then, is to yield a set

of events (t′i, p
′
i) to maximize logPr[E′]. In fact, the theo-

retical bound for best achievable denoising performance is

computable. It is

max
E:Z2→{0,1}

logPr[E] =

∑

X∈Z2

logmax(M(X), 1−M(X)), (11)

which is achieved by a thresholding on M(X)

Eopt(X) =

{
1 if M(X) > 0.5

0 if M(X) ≤ 0.5.
(12)
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Jt(X) ≈−
τ∇A(X, t)

A(X, t)−O

(
|Vx(X, t)| 0

0 |Vy(X, t)|

)
V (X, t) (7)

V (X, t) =

(
f κ cx
0 f cy

)


0 −θz(t) θy(t)
θz(t) 0 −θx(t)
−θy(t) θx(t) 0






f κ cx
0 f cy
0 0 1




−1 

x
y
1


 (8)

Figure 6. Multiple time-surfaces are generated from k most recent

events in m×m neighborhood of event-of-interest X . All surfaces

are concatenated and passed to EDnCNN. EDnCNN performs bi-

nary classification to yield a denoising label.

(Proof: if M(X) ≤ 1 −M(X) then M(X) ≤ 0.5.) Thus

we propose an objective DVS quality metric for denoising

called “relative plausibility measure of denoising” (RPMD),

defined as

RPMD :=
1

N
log

Pr[Eopt]

Pr[E]
(13)

where N is the total number of pixels. Lower RPMD val-

ues indicate better denoising performance with 0 represent-

ing the best achievable performance. Benchmarking results

using RPMD are shown in Figures 7 and 9.

5. Application: Event Denoising CNN

Event denoising for neuromorphic cameras is a binary

classification task whose goal is to determine whether a

given event corresponds to a real log-intensity change or

noise. We propose EDnCNN, an event denoising method

using convolutional neural networks. EDnCNN is designed

to carry out the hypothesis test in (4), where the null hy-

pothesis H0 states that the event ti(X) is expected to be

generated by DVS within a short temporal window [t, t+τ)
due to changes in log-intensity.

The input to EDnCNN is a 3D vector generated only

from DVS events. The training data is composed of DVS

and the corresponding EPM label. Once trained, EDnCNN

does not require APS, IMU, stationary scenes, or restricted

camera motion. By training on DVS data from actual hard-

ware, EDnCNN benefits from learning noise statistics of

real cameras in real environments.

5.1. Input: Event Features

There exist a wide array of methods to extract features

from neuromorphic camera data [3, 10, 13, 21, 22, 25, 26,

34, 44]. These methods are designed to summarize thou-

sands or even millions of events into a single feature to carry

out high-level tasks such as object tracking, detection, and

classification. However, event denoising is a low-level clas-

sification task. Denoising requires inference on pixel-level

signal features rather than high-level abstraction of scene

content. For example, there is a high likelihood that an iso-

lated event is caused by noise, whereas spatially and tempo-

rally clustered events likely correspond to real signal [35].

For this reason, event denoising designed to discriminate IE,

TE, and BA would benefit from features that faithfully rep-

resent the local temporal and spatial consistency of events.

In denoising, we take inspiration from PointConv [47],

a method for generating nonlinear features using local co-

ordinates of 3D point clouds. Unlike PointConv, designed

for three continuous spatial domains, a DVS event is repre-

sented by two discrete spatial and one continuous temporal

dimension. We leverage the discrete nature of the spatial

dimensions by mapping the temporal information from the

most recently generated event at each pixel to construct a

time-surface [26]. This is similar to FEAST [1], which ex-

tracts features from a spatial neighborhood of time-surface

near the event-of-interest. However, the temporal history of

recent events at each pixel is averaged into a single surface,

obfuscating the spatial consistency of event timing useful to

denoising.

Combining ideas from PointConv and FEAST, we pro-

pose to encode the events within the spatial-temporal neigh-

borhood of the event-of-interest (ti(X), pi(X)). The ED-

nCNN input is a feature vector Q ∈ R
m×m×k×2. Here,

m × m refers to the size of the spatial neighborhood cen-

tered at pixel X where the event-of-interest occurred. At

each pixel within this spatial neighborhood, we wish to en-

code k most recently occurring events (i.e. before ti(X)) of

polarities pi = −1 and pi = 1 (hence the dimension 2 in

Q). Note that the temporal neighborhood is not thresholded

by time but by the number of events. This allows for au-

tomatic adaptation to pixel velocity—events corresponding
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to a slower moving edge require a longer temporal window

than a fast moving edge with very frequent event reporting.

When an event ti(X), pi(X) is received, we populate

Q(:, :, 1,−1) and Q(:, :, 1,+1) with m × m relative time-

surfaces formed by the difference between the time stamp

of event-of-interest ti(X) and the time stamps of the most

recent events at each neighborhood pixel with the polari-

ties −1 and +1 respectively. We repeat the construction of

time-surfaces using the second most recent events at each

neighborhood pixel, which is stored into Q(:, :, 2,−1) and

Q(:, :, 2,+1) etc., until k most recent events at every pixel

are encoded into Q. See Figure 6. As a side note, en-

coding of EDnCNN input feature is very memory efficient.

Each time-surface is the size of the DVS sensor, meaning

the overall memory requirement is M × N × k × 2 where

(M,N) ∈ Z
2 is the spatial resolution of the DVS sensor,

storing the most recent k events. In our implementation, m
was set to 25, k was 2, and the resolution of DAVIS346 is

(M,N) = 346× 260.

5.2. Network Architecture

Let Êφ : Z2 → {0, 1} be the output of the EDnCNN

binary classifier, where the network coefficients is denoted

φ. The output Êφ(X) = 1 implies that an event (ti, pi)
corresponds to a real event. Testing showed a shallow net-

work could quickly be trained using the features described

in Section 5.1, which is ideal for high-performance infer-

ence. EDnCNN is composed of three 3 × 3 convolutional

layers (employing ReLU, batch normalization, and dropout)

and two fully connected layers. The learning was performed

via Adam optimizer with a decay rate of 0.1 and a learning

rate of 1E-4. The network is trained on EPM-labeled DVS

events generated during APS frame exposure. Once trained,

EDnCNN can classify events at any time. Due to the fact

that small local patches are primarily scene independent,

EDnCNN can perform well against new scenes and envi-

ronments and requires no tuning or calibration at inference.

5.3. Training

We present three strategies for training EDnCNN and

prove that these strategies are statistically equivalent, given

sufficient training data volume. The first approach aims at

minimizing the RPMD by maximizing a related function:

φopt1 =argmax
φ

∑

X

Pr[Êφ(X)] (14)

=
∑

X

Êφ(X)M(X) + (1− Êφ(X))(1−M(X)).

Strictly speaking, (14) is not equivalent to RPMD min-

imization. Maximizing logP [Êφ] implies multiplying

Pr[Êφ(X)] over X ∈ Z
2. However, (14) is equivalent

to the L1 minimization problem:

φopt2 = argmin
φ

∑

X

∣∣∣M(X)− Êφ(X)
∣∣∣ . (15)

(Proof: Penalty for choosing Êφ(X) = 1 is 1 −M(X) in

(15), which is equivalent to reward of M(X) in (14).)

Lastly, consider a minimization of classification error:

φopt3 = argmin
φ

∑

X

∣∣∣Eopt(X)− Êφ(X)
∣∣∣ , (16)

where Eopt is the theoretically optimal classifier defined in

(12). Given sufficient data, (16) is statistically equivalent to

(14) and (15). Proof is provided in Appendix A.

6. Application: Calibration

A key to calculating the event likelihood from APS and

IMU data is knowing the log contrast sensitivity ε in (2). In

theory, this parameter value is controlled by registers in neu-

romorphic cameras programmed by the user. In practice,

the programmed register values change the behavior of the

DVS sensors, but the exact thresholding value remains un-

known [12]. Similarly, the gain and offset values a, b, α, β
in DVS (1) and APS are not easily observable and are dif-

ficult to determine precisely. It is of concern because the

offset value O in (8) is O = β + αb/a (see Appendix A).

Offset allows mapping the small linear range of the APS to

the large dynamic range of the DVS.

In this work, we make use of the EPM to calibrate the

thresholding value ε and the offset O from the raw DVS

data. Recalling (5) and (10), the probabilistic quantities

Pr[H0] and logPr[E] are parameterized in part by ε and

O. Hence, rewriting them more precisely as Pr[H0|ε,O]
and logPr[E|ε,O], respectively, we formulate a maximum

likelihood estimate as follows:

(ε̂, Ô) = argmax
(ε,O)

logP [E|ε,O], (17)

where E : Z2 → {0, 1} denotes the event indicator for the

unprocessed, noisy DVS data. Solution to (17) is not re-

quired for network inference. These estimated values are

only used to compute EPM for use in benchmarking (Sec-

tion 4) and denoising (Section 5).

7. Experiments

7.1. Dataset: DVSNOISE20

Data was collected using a DAVIS346 neuromorphic

camera. It has a resolution of 346 × 260 pixels, dynamic

range of 56.7 and 120dB for APS and DVS respectively,

a latency of 20µs, and a 6-axis IMU. As discussed in Sec-

tion 3.2, Theorem 1 is valid in absence of translational cam-

era motion and moving objects. Movement of the camera
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Figure 7. Benchmark scores of denoising algorithms across 16 scenarios. Smaller RPMD values indicate better denoising performance.

was restricted by a gimbal (Figure 5), and the IMU was cal-

ibrated before each collection. Only stationary scenes were

selected, avoiding saturation and severe noise in the APS.

The APS framerate (41-56 fps; η range 17 to 24 ms) was

maximized using a fixed exposure time (τ range 0.13ms to

6ms) per scene. Since EPM labeling is only valid during the

APS exposure time, benchmarking (Section 4) and training

EDnCNN (Section 5.3) are restricted to events occurring

during this time. However, a large data volume can be ac-

quired easily by extending the length of collection. In ad-

dition, we calibrated APS fixed pattern noise and compen-

sated for the spatial non-uniformity of pixel gain and bias.

We obtained 16 indoor and outdoor scenes of noisy, real-

world data to form DVSNOISE20. Examples are shown in

Figure 4. Each scene was captured three times for ≈16

seconds, giving 48 total sequences with a wide range of

motions. The calibration procedure outlined in Section 6

was completed for each sequence. The estimates of internal

camera parameters were repeatable and had mean/standard

deviation ratios of 21.44 (O), 13.58 (εpos), and 13.27

(εneg). The DVSNOISE20 dataset, calibration, and code

are available at: http://issl.udayton.edu.

7.2. Results

To ensure fair evaluation, EDnCNN was trained using

a leave-one-scene-out strategy for DVSNOISE20. In Fig-

ure 7, the performance of EDnCNN is assessed by RPMD.

EDnCNN improved the RPMD performance of the noisy

data by an average gain of 148 points. Improvement from

denoising was significant in all scenes except for the Al-

ley and Wall sequences. These scenes have highly textured

scene contents, which are a known challenge for neuro-

morphic cameras, and thus represent the worst case perfor-

mance we expect from any denoising method. The RPMD

performance of EDnCNN in these two scenes was no better

or worse than noisy input.

EDnCNN was benchmarked against other state-of-

the-art denoising methods: filtered surface of active

events (FSAE [32]), inceptive and trailing events (IE &

IE+TE [4]), background activity filter (BAF [19]), and near-

est neighbor (NN & NN2 [35]). RPMD scores are reported

in Figure 7 for each scene. FSAE and IE did not improve

significantly over noisy input, but did reduce total data vol-

ume. IE+TE improved RPMD performance while reducing

data volume and generated a top score in the LabFast se-

quence. BAF, NN, and NN2 work and behave similarly,

outperforming EDnCNN in 3 of 16 scenes. However, the

performances of these methods were significantly more sen-

sitive than EDnCNN. EDnCNN outperformed other denois-

ing methods in 12 of 16 scenes, with a statistically signifi-

cant p-value of 0.00248 via the Wilcoxon signed-rank test.

Figure 8 shows examples of denoised DVS events (su-

perimposed on APS image for visualization). Qualitatively,

IE+TE, BAF, and NN2 pass events that are spatially iso-

lated, making it more difficult to distinguish edge shapes

compared to EDnCNN. EDnCNN removes events that do

not correspond to edges, and enforces a strong agreement

with the EPM label as designed (see Figure 4).

7.3. Robustness to Assumptions and Dataset

To test for robustness, we also benchmarked on simu-

lated DVS data from ESIM [36]. ESIM is an event cam-

era simulator allowing user-specified 3D scenes, lighting,

and camera motion. In our experiments, we interpret DVS

data simulated from a virtual scene as an output from a

noise-free neuromorphic camera. We then injected addi-

tional random events (i.e. BA noise) into the scene. Fig-

ure 9 shows the result of RPMD benchmarking on synthetic

data as a function of BA noise percentage. As expected, the

RPMD performance of noisy data scales linearly as the per-

centage of noise increases. Since EDnCNN was not trained

against noise-free data, it has a slightly lower performance

than some other methods at 0% BA noise level. By con-

trast, IE+TE, BAF, NN, and NN2 underdetect noise as event

count increases, deteriorating performance.

Figure 10 shows example sequences with non-rotational

camera motion [40] and multiple moving objects [31].

Qualitatively, EDnCNN denoising seems consistent with
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Figure 8. DVSNOISE20 denoising results from four different algorithms. Denoised DVS events (yellow) overlaid on APS frames.

Figure 9. Simulated Results: Random noise was injected into sim-

ulated data to test each algorithm’s robustness to input noise levels.

stationary scene performance in Figure 8. Additional anal-

ysis on other datasets and further examples may be found in

supplementary material and Appendix A.

8. Conclusion

Contrast sensitivity in neuromorphic cameras is primar-

ily limited by noise. In this paper, we present five major

contributions to address this issue. We rigorously derived a

method to assign a probability (EPM) for observing events

within a very short time interval. We proposed a new bench-

marking metric (RPMD) that enables quantitative compari-

son of denoising performance on real-world neuromorphic
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N

(a) DVSFLOW16 [40] (b) IROS18 [31]
Figure 10. EDnCNN results on published datasets. (a) DVS Opti-

cal Flow dataset with non-rotational camera motion [40]. (b) Ex-

treme Event Dataset (EED) with multiple object motions [31].

cameras. We developed EDnCNN, a neural network-based

event denoising method trained to minimize RPMD. We

showed that internal camera parameters can be estimated

based on natural scene output. We collected a new bench-

marking dataset for denoising along with the EPM label-

ing tools (DVSNOISE20). Quantitative and qualitative as-

sessment verified that EDnCNN outperforms prior art. ED-

nCNN admits higher contrast sensitivity (i.e. detection of

scene content obscured by noise) and would vastly enhance

neuromorphic vision across a wide variety of applications.
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