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Figure 1. We can create virtual cameras that facilitate: (1) freezing the time and exploring views (red); (2) freezing the view and moving

through time (green); and (3) vary both time and view (blue).

Abstract

We present a data-driven approach for 4D space-time

visualization of dynamic events from videos captured by

hand-held multiple cameras. Key to our approach is the use

of self-supervised neural networks specific to the scene to

compose static and dynamic aspects of an event. Though

captured from discrete viewpoints, this model enables us to

move around the space-time of the event continuously. This

model allows us to create virtual cameras that facilitate: (1)

freezing the time and exploring views; (2) freezing a view

and moving through time; and (3) simultaneously changing

both time and view. We can also edit the videos and reveal

occluded objects for a given view if it is visible in any of

the other views. We validate our approach on challenging

in-the-wild events captured using up to 15 mobile cameras.

1. Introduction

Imagine going back in time and revisiting crucial mo-

ments of your lives, such as your wedding ceremony, your

graduation ceremony, or the first birthday of your child, im-

mersively from any viewpoint. The prospect of building

such a virtual time machine [40] have become increasingly

realizable with the advent of affordable and high-quality

smartphone cameras producing extensive collections of so-

cial video data. Unfortunately, people do not benefit from

this broader set of captures of their social events. When it

comes to look back, we are likely to only look at one video

or two even when hundreds were captured. We present a

data-driven approach that leverages all perspectives to en-

able a more complete exploration of the event. With our

approach, the benefits from each extra perspective that is

captured leads to a more complete experience. We seek to

automatically organize the disparate visual data into a com-

prehensive four-dimensional environment (3D space and

time). The complete control of spatiotemporal aspects not

only enables us to see a dynamic event from any perspec-

tive but also allows geometrically consistent content editing.

This functionality unlocks many potential applications in the

movie industry and consumer devices, especially as virtual

reality headsets are becoming popular by the day. Figure 1

show examples of virtual camera views synthesized using

our approach for an event captured from multi-view videos.

Prior work on virtualized reality [28, 30, 32] has primarily

been restricted to studio setups with tens or even hundreds

of synchronized cameras. Four hundred hours of video data

is uploaded on YouTube every minute. This feat has become

possible because of the commercial success of high qual-
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Figure 2. Comparison to existing work: Given a dynamic event captured using 10 phones, we freeze time and explore views for two

time instances. We use a standard Structure-from-Motion (SfM) [42, 43] to reconstruct the camera trajectory. As shown in first-column,

SfM treats dynamic information as outliers for rigid reconstruction. We use additional cues such as 2D keypoints [4], statistical human

body model [36], and human association [51] along-with the outputs of SfM to generate dynamic information for these two time instances

(Frame-450 and Frame-1200 in second and third columns respectively). We call this SfM+humans. These three outputs lack realism.

Additionally, the reconstruction fails for non-Lambertian surfaces (see glass windows), non-textured regions (see umbrellas), and shadows

(around humans). Our approach, on the other hand, can densely synthesize the various static and dynamic components, as shown in fourth

and fifth columns for the same moments.

ity hand-held cameras such the iPhones or GoPros. Many

public events are easily captured from multiple perspectives

by different people. Despite this new form of big visual

data, reconstructing and rendering the dynamic aspects have

mostly been limited to studios and not for in-the-wild cap-

tures with hand-held cameras. Currently, there exists no

method for fusing the information from multiple cameras

into a single comprehensive model that could facilitate con-

tent sharing. This gap is largely because the mathematics

of dynamic 3D reconstruction [20] is not well-posed. The

segmentation of objects [19] are far from being consistently

recovered to do 3D reconstruction [56]. Large scale analyt-

ics of internet images exist for static scenes [24, 42, 43, 46]

alone, and ignores the interesting dynamic events (as shown

in Figure 2-first-column).

We pose the problem of 4D visualization from in-the-wild

captures within an image-based rendering paradigm utilizing

large capacity parametric models. The parametric models

based on convolutional neural nets (CNNs) can circumvent

the requirement of explicitly computing a comprehensive

model [2, 5] for modeling and fusing static and dynamic

scene components. Key to our approach is the use of self-

supervised CNNs specific to the scene to compose static and

dynamic parts of the event. This data-driven model enables

us to extract the nuances and details in a dynamic event.

We work with in-the-wild dynamic events captured from

multiple mobile phone cameras. These multiple views have

arbitrary baselines and unconstrained camera poses.

Despite impressive progress with CNN-based scene re-

construction [53, 26, 33, 52], noticeable holes and artifacts

are often visible, especially for large texture-less regions

or non-Lambertian surfaces. We accumulate spatiotempo-

ral information available from multiple videos to capture

content that is not visible at a particular time instant. This

accumulation helps us to capture even the large non-textured

regions (umbrellas in Figure 2) or non-Lambertian surfaces

(glass windows in Figure 2). Finally, a complete control of

static and dynamic components of a scene, and viewpoint

and time enables user-driven content editing in the videos.

In public events, one often encounters random movement

obstructing the cameras to capture an event. Traditionally

nothing can be done about such spurious content in captured

data. The complete 4D control in our system enables the

user to remove unwanted occluders and obtain a clearer view

of the actual event using multi-view information.

2. Related Work

There is a long history of 4D capture systems [30] to ex-

perience immersive virtualized reality [14], especially being

able to see from any viewpoint that a viewer wants irrespec-

tive of the physical capture systems.

4D Capture in Studios: The ability to capture depth maps

from a small baseline stereo pair via 3D geometry tech-

niques [20] led to the development of video-rate stereo ma-

chines [32] mounting six cameras with small baselines. This

ability to capture dense depth maps motivated a generation

of researchers to develop close studios [28, 31, 39, 58] that

can precisely capture the dynamic events happening within it.
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Figure 3. Overview: We pose the problem of 4D visualization of

dynamic events captured from multiple cameras as a data-driven

composition of static background (top) and instantaneous fore-

ground (middle) to generate the final output (bottom). Importantly,

the data-driven composition enables us to capture certain aspects

that may otherwise be missing in the inputs, e.g., parts of the hu-

man body are missing in the first and third column, and parts of

background are missing in second row.

A crucial requirement in these studios is the use of synchro-

nized video cameras [31]. This line of research is restricted

to a few places in the world with access to proper studios

and camera systems.

Beyond Studios: The onset of mobile phones have rev-

olutionized the capture scenario. Each one of us possess

high-definition smartphone cameras. Usually, there are more

cameras at a place than there are people around. Many public

events are captured by different people from various perspec-

tives. This feat motivated researchers to use in-the-wild data

for 3D reconstruction [23, 46] and 4D visualization [2, 5].

A hybrid of geometry [20] and image-based rendering [44]

approaches have been used to reconstruct 3D scenes from

pictures [7]. Photo tourism [46] and the works following

it [1, 15, 16, 24, 45] use internet-scale images to reconstruct

architectural sites. These approaches have led to the devel-

opment of immersive 3D visualization of static scenes.

The work on 3D reconstruction treats dynamic informa-

tion as outliers and reconstructs the static components alone.

Additional cues such as visual hulls [13, 18, 37], or 3D

body scans [5, 6], or combination of both [3, 49] are used to

capture dynamic aspects (esp. human performances) from

multi-view videos. Hasler et al. [21] use markerless method

by combining pose estimation and segmentation. Vedula et

al. [48] compute scene shape and scene flow for 4D modeling.

Ballan et al. [2] model foreground subjects as video-sprites

on billboards. However, these methods assume a single actor

in multi-view videos. Recent approaches [10, 50] are not

restricted by this assumption but does sparse reconstruction.

CNN-based Image Synthesis: Data-driven approaches [9,

17, 27, 54] using convolutional neural networks [35] have

led to impressive results in image synthesis. These results

inspired a large body of work [11, 12, 29, 38, 47, 57] on con-

tinuous view synthesis for small baseline shifts. Hedman et

al. [22] extended this line of work to free-viewpoint capture.

However, these methods are currently applicable to static

scenes only. We combine the insights from CNN-based im-

age synthesis and earlier work on 4D visualization to build

a data-driven 4D Browsing Engine that makes minimal as-

sumption about the content of multi-view videos.

3. 4D Browsing Engine

We are given N camera views with extrinsic pa-

rameters {C1, C2, ..., CN}, and intrinsic parameters

{M1,M2, ...,MN}. Our goal is to generate virtual camera

view C that does not exist in any of these N cameras.

In this work, we accumulate the long-term multiview spa-

tiotemporal information to densely reconstruct static back-

ground, and combine it with instantaneous information. We

pose this problem as a self-supervised composition of static

background and instantaneous foreground. Figure 3 shows

an overview of our approach via a virtual camera that freezes

time and explores views. We begin by describing the overall

fusion architecture in Section 3.1, then describe the modules

for computing the foreground and background components

in Section 3.2, and finally discuss the model in Section 3.3.

3.1. Self­Supervised Composition

We use a data-driven approach to learn the fusion of

a static background, B, and a dynamic foreground, F , to

generate the required target view for given camera param-

eters. Since there exists no ground truth or manual annota-

tions, we train a convolutional neural network (CNN) in a

self-supervised manner by reconstructing a known held-out

camera view, C, from the remaining N − 1 views, thereby

learning a mapping G : (B,F ) → C. We use three losses to

learn this mapping: (1) Reconstruction loss; (2) Adversarial

loss; and (3) Frequency loss.

Reconstruction Loss: We use standard l1 reconstruction

loss to minimize reconstruction error on the content with

paired data samples {((bi, fi), ci)} where bi ∈ B, fi ∈ F ,

and ci ∈ C:

min
G

Lr =
∑

i

||ci −G(bi, fi)||1 (1)

Adversarial Loss: Recent work [17] has shown that

learned mapping can be improved by tuning it with a discrim-

inator D that is adversarially trained to distinguish between

real samples of ci from generated samples G(bi, fi):

min
G

max
D

Ladv(G,D) =
∑

i

logD(ci)+

∑

i

log(1−D(G(bi, fi))) (2)
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Figure 4. Instantaneous Foreground Estimation: We begin with

estimating disparity for a stereo pair using an off-the-shelf disparity

estimation approach [52]. We use
(

N

2

)

stereo pairs, and reproject

them to the target view using standard 3D geometry [20]. We use a

dynamic event consistency to select appropriate reprojected views

from
(

N

2

)

views (marked with green in middle). The dynamic

event consistency is computed using the output of SfM+humans

(marked with yellow in bottom-row). Finally, we compute a per-

pixel max, weighted-mean, and median of selected views. Collec-

tively these represent instantaneous foreground information along

with SfM+humans (shown in the bottom-row).

Frequency Loss: We enforce a frequency-based loss

function via Fast-Fourier Transform to learn appropriate

frequency content and avoid generating spurious high-

frequencies when ambiguities arise (inconsistent foreground

and background inputs):

min
G

Lfr =
∑

i

||F (ci)− F (G(bi, fi))||1 (3)

where F is fast-Fourier transform. The overall optimiza-

tion combines Eq. 1, Eq. 2, and Eq. 3:

L = λrLr + λadvLadv + λfrLfr

where, λr = λfr = 100, and λadv = 1. Explicitly using

background and foreground for target view makes the model

independent of explicit camera parameters.

3.2. Intermediate Data Generation

We now describe our approach to estimate information

about dynamic foreground and static background that are

camera pose

ti
m

e

median of different views for a given camera pose

. . . . . .. . .

reprojected views for different camera poses over time

Figure 5. Static Background Estimation: We generate images

for the target camera pose for all time. A per-pixel median of the

images over a large temporal window for the target camera pose

filters the dynamic components. We show estimated background

images in the bottom-row for the three camera poses.

used as an input to the neural network (Section 3.3). We start

with pre-processing of multiple camera views, and then use

it to compute background and foreground information.

Temporal Alignment & Correspondences: We establish

the frame-level temporal alignment for the all cameras using

spatiotemporal bundle adjustment [50]. We estimate pixel-

level correspondences between a stereo pair using an off-the-

shelf disparity estimation [52]. While these correspondences

can be noisy, multiple views constraints a better selection of

points across
(

N
2

)

stereo pairs.

Instantaneous Foreground Estimation: We build fore-

ground estimates at a given time using stereo pairs. We

use estimated disparity [52] to warp to the target view. Fig-

ure 4 shows different reprojected views from various stereo

pairs. Since we have no control over camera placements, the

disparity from various
(

N
2

)

stereo pairs are often noisy and

cannot be naively used to synthesize the target view in all

conditions. Sparse cameras, large stereo baseline, bad stereo-

pairs, or errors in camera-poses may result in misaligned

frames (shown in Figure-4-middle) for the target camera

pose. Therefore we enforce dynamic event consistency via

3D reconstruction to select five best reprojected views to

compose instantaneous foreground information.

Dynamic Event Consistency: We use a previous approach

to perform long-term 3D human tracking across multiple

views [51]. The 3D tracking provides a rough 3D estimate of

humans from different views. Collectively, with the output of

3D background reconstruction from SfM and MVS [42, 43],

we call this SfM+humans. While not a realistic and precise
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Figure 6. Freeze a view and Move in time: We show 4 frames from a 3 minute-long generated video of a stationary camera. This sequence

is captured using 10 phones. The top-row shows the output generated using SfM+humans. The second-row shows intermediate using

instantaneous information. We observe missing foreground and background details in the first and second row. The third row shows

the output of our approach. Our approach can consistently generate the background and foreground. We also compare our outputs to a

ground-truth held-out camera sequence in fourth-row. Finally, we show a few close-ups in the last-row. Our approach not only captures the

humans well but also contains detailed information such as flowing dresses and flowers in it. We are, however, not able to capture the sun’s

glare at this location as we compose output from views at other locations and do not explicitly parameterize illumination.

output by itself, such 3D reconstruction is sufficient to rank

the various stereo pairs that are required to generate a tar-

get camera view. This is the main purpose of SfM+Human.

We compute the distance between various reprojections and

SfM+humans. This distance is computed using the Conv-5

features of an ImageNet [8] pre-trained AlexNet model [34].

We use top-5 scoring views for composing an instantaneous

foreground image. As shown in Figure 4, we find good

stereo-pairs using SfM+humans (marked yellow). We com-

pute a per-pixel max, weighted-mean, and median using the

top-5 ranked stereo pairs (marked green). These images,

along with SfM+humans, collectively represent instanta-

neous information (Figure 4-bottom).

Static Background Estimation: We accumulate long-term

spatiotemporal information to compute static background for

a target camera view. The intrinsic and extrinsic parameters

from N physical cameras enable us to create the views over

a large temporal window of [0, t] for a target camera position.

Figure 5 shows creation of virtual cameras for various poses

and time instants. We estimate a static background by com-

puting a median of different views for a given camera pose.

Computing the median over large temporal window for a

given camera position enables us to capture non-textured and

non-Lambertian stationary surfaces in a scene (see Figure 5).

3.3. Stacked Multi­Stage CNN

We now describe the neural network architecture that

composes the static background and instantaneous fore-
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Figure 7. Many people and their unrestricted movement: We captured a Jiu-Jitsu retreat event that was witnessed by more than 30

people. We show 4 frames of two virtual cameras (freeze a view and move in time) and contrast it with the held-out camera sequences

(ground truth). We also show close-ups at various locations and compare it with the ground-truth. We capture various nuance despite people

in different clothing, poses, and involved in unchoreographed activities.

ground. We use a modified U-Net [41] architecture that

inputs background and foreground information, and outputs

the image. Most consumer phones enable to capture 1080p
videos at 60fps. Training a neural network combining the

various background and foreground information with hi-res

images require the use of high capacity models. These mod-

els need prohibitive memory and hence we use a stacked

multi-stage CNN for an effective composition. We use a high

capacity model for low-res image generation that learns over-

all structure, and improve the resolution with multiple stages.

We train three models for three different resolutions, namely:

(1) low-res (270×480); (2) mid-res (540×960); and (3) hi-

res (1080×1960). These models are trained independently

and form multiple stages of our formulation. At test time,

we use them sequentially, starting from low-res to mid-res

to hi-res outputs. The median channel of foreground infor-

mation for mid-res model is replaced by a 2× upsampled

output of low-res model. Similarly, the median channel of

foreground information for hi-res model is replaced by a 2×
upsampled output of mid-res model. We artificially create
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original edited

viewing behind a second-order occlusion

viewing behind an occlusion

Figure 8. User-Controlled Manipulation: We show two examples of user-controlled manipulation and editing in videos. In the top-row, a

user selects a mask to see the occluded blue-shirt person (behind red shirt person). There is no way we can infer this information from a

single-view. However, multi view information allows us to not only see the occluded human but also gives a sense of activity he is doing. We

show frames from 2 seconds of video. In the middle-row, we want to see the part of scene behind the blue-shirt person who is disoccluded

above. This is an example of a seeing behind a second-order occlusion. While not as sharp as first-order occlusion result, we can still see

green grass and white bench in the background with a person moving. This particular scenario is not only challenging due to second-order

occlusion but also because of larger distance from cameras. In the bottom-row, a user can remove the foreground person by marking on a

single frame in video. Our system associates this mask to all the frames in video, and edit it to show background in place of human. We

show frames of edited video (20 seconds long).

a low-resolution median foreground image (down-sampled

by a factor of 2) during training to effectively utilize the

modifications to mid-res and hi-res models at test time. We

provide more details for stacked multi-stage composition on

our project page.

3.4. User­Controlled Manipulation

We have complete control of the 3D space and time in-

formation of the event. This 4D control allows us to browse

the dynamic events. A user can see behind the occlusions,

edit, add, or remove objects. To accomplish this, a user only

needs to mark the required portion in a video. Our approach

automatically edits the content, i.e., update the background

and foreground, via multi-view information — the modified

inputs to stacked multi-stage composition results in desirable

outputs. Importantly, marking on a single frame in the video

is sufficient, as we can effortlessly propagate the mask to

the rest of the video (4D control of foreground). We show

two examples of user-controlled manipulation in Figure 8.

In the first example, we enable a user to see occluded person

without changing the view. Our system takes input of mask

from the user, and disocclude the blue-shirt person (Figure 8-

top-row). We also explore viewing behind a second-order

occlusion. Figure 8-middle shows a very challenging exam-

ple of viewing behind the blue-shirt person. Despite farther

away from the camera, we see grass, white table, and a per-

son moving in the output. Finally, we show an example of

editing where a user can mark region in a frame of video

(Figure 8-bottom-row). Our system generates full video

sequence without the masked person.

4. Experiments

Datasets: We collected a large number of highly diverse

sequences of unrestricted dynamic events having a wide

variety of human motion, human-human interaction,

human-object interaction, clothing, both indoor and outdoor,

under varying environmental and illumination conditions.

These sequences are captured using upto 15 mobile phones.

We refer the reader to our project page for all the results.

Here we describe a few prominent sequences used for

evaluation.

Western Folk Dance: We captured sequences of western

folk dance performances. Figure 6 shows the example of

one of the sequences from this capture. This sequence is

challenging due to flowing dresses worn by performers, self-

occlusions, and illumination conditions. Such a sequence

paves the path for explicit parametrization of illumination

condition in 4D modeling.

Jiu-Jitsu Retreat: Jiu-Jitsu is a type of Brazilian Martial
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Approach M.S.E PSNR SSIM LPIPS [55] FID [25]

N.N 1595.78 15.50 0.476 0.401 -

±294.53 ±2.72 ±0.086 ±0.027

SfM 6494.47 9.66 0.438 0.422 184.629

+ Humans ±1721.17 ±1.88 ±0.079 ±0.022

Inst. 2886.11 13.57 0.538 0.391 122.31

±1654.34 ±3.23 ±0.113 ±0.054

Ours 591.92 20.06 0.689 0.222 47.610

±286.86 ±3.95 ±0.130 ±0.025

Table 1. Comparison: We contrast our approach with: (1). a

simple nearest neighbor (N.N.) baseline; (2). reconstructed outputs

of SfM+humans; and finally (3). median-channel of instantaneous

dynamic information (Inst). We use various evaluation crietria

to study our approach in comparisons with these three methods:

(1). M.S.E: We compute a mean-squared error of the generated

camera sequences using held-out camera sequences.; (2). PSNR:

We compute a peak signal-to-noise ratio of the generated sequences

against the held out sequences; (3). SSIM: We also compute a

SSIM in similar manner.; (4). We also use LPIPS [55] to study

structural similarity and to avoid any biases due to MSE, PSNR,

and SSIM. Lower it is, better it is. Note that all the above four

criteria are computed using held-out camera sequences; and finally

(5) we compute a FID-score [25] to study the quality of generations

when a ground-truth is not available for comparisons. Lower it is,

better it is.

Art. We captured sequences of this sporting event during a

summer retreat of the Jiu-Jitsu group. This sequence is an

extreme example of unchoreographed dynamic motion from

more than 30 people who participated in it. Figure 1 and

Figure 7 show examples from this capture.

Performance Dance: We captured many short perfor-

mance dances including Ballet, Tango, and renactments of

plays. The illumination, clothing, and motions change dras-

tically in these sequences.

Sequences from Prior Work: We also used sequences

from Vo et al. [50] to properly compare our results with their

3D reconstruction (SfM+humans). Figure 2 and Figure 3

shows the results of freezing the time and exploring the

views for these sequences.

Evaluation: We use a mean-squared error (MSE), PSNR,

SSIM, and LPIPS [55] to study the quality of virtual

camera views created using our approach. MSE: Lower

is better. PSNR: Higher is better. SSIM: Higher is better.

LPIPS: Lower is better. We use held-out cameras for proper

evaluation. We also compute a FID score [25], lower the

better, to study the quality of sequences where we do not

have any ground truth (e.g., freezing the time and exploring

views). This criterion contrast the distribution of virtual

cameras against the physical cameras.

Baselines: To the best of our knowledge, there does not

exist a work that has demonstrated dense 4D visualization

for in-the-wild dynamic events captured from unconstrained

multi-view videos. We, however, study the performance of

our approach with: (1) a simple nearest neighbor baseline

N.N.: We find nearest neighbors of generated sequences

using conv-5 features of an ImageNet pre-trained AlexNet

model. This feature space helps in finding the images closer

in structure.; (2) SfM+humans: We use work from Vo et

al [50, 51] for these results.; and finally (3) we contrast it

with median channel of instantenous image (Inst).

Table 1 contrasts our approach with various baselines

on held-out cameras for different sequences. In total, we

generated data for 12 minutes long sequences for evalua-

tion against held-out sequences, and another 12 minutes of

random movements. We observe significantly better out-

puts under all the criteria. We provide more qualitative and

quantitative ablation studies on our project page.

5. Discussion & Future Work

The world is our studio. The ability to do 4D visualization

of dynamic events captured from unconstrained multi-view

videos opens up avenue for future research to capture events

with a combination of drones, robots, and hand-held cameras.

The use of self-supervised scene-specific CNNs allows one

to browse the 4D space-time of dynamic events captured

from unconstrained multi-view videos. We extensively cap-

tured various in-the-wild events to study this problem. We

show different qualitative and quantitative analysis in our

study. A real-time user guided system that allows a user to

upload videos and browse will enable a better understanding

of 4D visualization systems. The proposed formulation and

the captured sequences, however, open a number of opportu-

nities for future research such as incorporating illumination

and shadows in 4D spatiotemporal representation, and mod-

eling low-level high frequency details. One drawback of

our method is that the video streams are treated as perfectly

synchronized. This introduces motion artifacts for fast ac-

tions [50]. Future work will incorporate sub-frame modeling

between different video streams in depth estimation and

view synthesis modules for more appealing 4D slow motion

browsing.
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