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Abstract

A new method for robust estimation, MAGSAC++1, is

proposed. It introduces a new model quality (scoring) func-

tion that does not require the inlier-outlier decision, and

a novel marginalization procedure formulated as an M-

estimation with a novel class of M-estimators (a robust

kernel) solved by an iteratively re-weighted least squares

procedure. We also propose a new sampler, Progressive

NAPSAC, for RANSAC-like robust estimators. Exploiting

the fact that nearby points often originate from the same

model in real-world data, it finds local structures earlier

than global samplers. The progressive transition from local

to global sampling does not suffer from the weaknesses of

purely localized samplers. On six publicly available real-

world datasets for homography and fundamental matrix fit-

ting, MAGSAC++ produces results superior to the state-

of-the-art robust methods. It is faster, more geometrically

accurate and fails less often.

1. Introduction

The RANSAC (RANdom SAmple Consensus) algo-

rithm [5] has become the most widely used robust estimator

in computer vision. RANSAC and its variants have been

successfully applied to a wide range of vision tasks, e.g.,

motion segmentation [27], short baseline stereo [27, 29],

wide baseline matching [19, 14, 15], detection of geometric

primitives [23], image mosaicing [7], and to perform [32] or

initialize multi-model fitting [9, 18]. In brief, RANSAC re-

peatedly selects minimal random subsets of the input point

set and fits a model, e.g., a line to two 2D points or a funda-

mental matrix to seven 2D point correspondences. Next, the

quality of the estimated model is measured, for instance by

the cardinality of its support, i.e., the number of inlier data

points. Finally, the model with the highest quality, polished,

e.g., by least squares fitting of all inliers, is returned.

1https://github.com/danini/magsac

(a) Community Photo Collection dataset [30].

(b) ExtremeView dataset [11].

(c) Tanks and Temples dataset [10].

Figure 1. Image pairs where all tested robust estimators (i.e.,

LMeDS [22], RANSAC [5], MSAC [28], GC-RANSAC [1],

MAGSAC [2]) failed, except the proposed MAGSAC++. Inlier

correspondences found by MAGSAC++ are drawn by lines.

Since the publication of RANSAC, many modifications

have been proposed improving the algorithm. For exam-

ple, MLESAC [28] estimates the model quality by a maxi-

mum likelihood process with all its beneficial properties, al-

beit under certain assumptions about data distributions. In

practice, MLESAC results are often superior to the inlier

counting of plain RANSAC, and they are less sensitive to

the user-defined inlier-outlier threshold. In MAPSAC [26],

the robust estimation is formulated as a process that esti-
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mates both the parameters of the data distribution and the

quality of the model in terms of maximum a posteriori.

Methods for reducing the dependency on the inlier-

outlier threshold include MINPRAN [24] which assumes

that the outliers are uniformly distributed and finds the

model where the inliers are least likely to have occurred ran-

domly. Moisan et al. [16] proposed a contrario RANSAC,

selecting the most likely noise scale for each model. Barath

et al. [2] proposed the Marginalizing Sample Consensus

method (MAGSAC) marginalizing over the noise σ to elim-

inate the threshold from the model quality calculation.

The MAGSAC algorithm, besides not requiring a man-

ually set threshold, was reported to be significantly more

accurate than other robust estimators on various problems,

on a number of datasets. The improved accuracy origi-

nates from the new model quality function and σ-consensus

model polishing. The quality function marginalizes over

the noise scale with the data interpreted as a mixture of uni-

formly distributed outliers and inliers with residuals hav-

ing χ2-distribution. The σ-consensus algorithm replaces

the originally used least-squares (LS) fitting with weighted

least-squares (WLS) where the weights are calculated via

the marginalization procedure – which requires a number

of independent LS estimations on varying sets of points.

Due to the several LS fittings, σ-consensus is slow.

In [2], a number of tricks (e.g., preemptive verification;

down-sampling of σ values) are proposed to achieve ac-

ceptable speed. However, MAGSAC is often significantly

slower than other robust estimators. In this paper, we pro-

pose new quality and model polishing functions, reformu-

lating the problem as an M-estimation with a novel class of

M-estimators (a robust kernel) solved by an iteratively re-

weighted least squares procedure. In each step, the weights

are calculated making the same assumptions about the data

distributions as in MAGSAC, but, without requiring a num-

ber of expensive LS fittings. The proposed MAGSAC++

and σ-consensus++ methods lead to more accurate results

than the original MAGSAC algorithm, often, an order-of-

magnitude faster.

In practice, there are also other ways of speeding up ro-

bust estimation. NAPSAC [20] and PROSAC [4] modify

the RANSAC sampling strategy to increase the probabil-

ity of selecting an all-inlier sample early. PROSAC ex-

ploits an a priori predicted inlier probability rank of the

points and starts the sampling with the most promising ones.

PROSAC and other RANSAC-like samplers treat models

without considering that inlier points often are in the prox-

imity of each other. This approach is effective when find-

ing a global model with inliers sparsely distributed in the

scene, for instance, the rigid motion induced by changing

the viewpoint in two-view matching. However, as it is often

the case in real-world data, if the model is localized with

inlier points close to each other, robust estimation can be

significantly sped up by exploiting this in the sampling.

NAPSAC assumes that inliers are spatially coherent. It

draws samples from a hyper-sphere centered at the first, ran-

domly selected, point. If this point is an inlier, the rest of

the points sampled in its proximity are more likely to be

inliers than the points outside the ball. NAPSAC leads to

fast, successful termination in many cases. However, it suf-

fers from a number of issues in practice. First, the models

fit to local all-inlier samples are often imprecise due to the

bad conditioning the points. Second, in some cases, esti-

mating a model from a localized sample leads to degener-

ate solutions. For example, when fitting a fundamental ma-

trix by the seven-point algorithm, the correspondences must

originate from more than one plane. Therefore, there is a

trade-off between near, likely all-inlier, and global, well-

conditioned, lower all-inlier probability samples. Third,

when the points are sparsely distributed and not spatially

coherent, NAPSAC often fails to find the sought model.

We propose in this paper, besides MAGSAC++, the Pro-

gressive NAPSAC (P-NAPSAC) sampler which merges the

advantages of local and global sampling by drawing sam-

ples from gradually growing neighborhoods. Considering

that nearby points are more likely to originate from the same

geometric model, P-NAPSAC finds local structures earlier

than global samplers. In addition, it does not suffer from

the weaknesses of purely localized samplers due to progres-

sively blending from local to global sampling, where the

blending factor is a function of the input data.

The proposed methods were tested on homography and

fundamental matrix fitting on six publicly available real-

world datasets. MAGSAC++ combined with P-NAPSAC

sampler is superior to state-of-the-art robust estimators

in terms of speed, accuracy and failure rate. Example

model estimations when all tested robust estimators, except

MAGSAC++, failed, are shown in Fig. 1.

2. MAGSAC++

We propose a new quality function and model fitting pro-

cedure for MAGSAC [2]. It is shown that the new method

can be formulated as an M-estimation solved by the itera-

tively reweighted least squares (IRLS) algorithm.

The marginalizing sample consensus (MAGSAC) algo-

rithm is based on two assumptions. First, the noise level σ
is a random variable with density function f(σ). Having no

prior information, σ is assumed to be uniformly distributed,

σ ∼ U(0, σmax), where σmax is a user-defined maximum

noise scale. Second, for a given σ, the residuals of the in-

liers are described by the trimmed χ-distribution2 with n
degrees of freedom multiplied by σ with density

g(r | σ) = 2C(n)σ−n exp (−r2/2σ2)rn−1,

2The square root of χ2-distribution.
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for r < τ(σ) and g(r | σ) = 0 for r ≥ τ(σ). Constant

C(n) = (2n/2Γ(n/2))−1 and, for a > 0,

Γ(a) =

∫ +∞

0

ta−1 exp (−t)dt

is the gamma function, n is the dimension of Euclidean

space in which the residuals are calculated and τ(σ) is set to

a high quantile (e.g., 0.99) of the non-trimmed distribution.

Suppose that we are given input point set P and model

θ estimated from a minimal sample of the data points as in

RANSAC. Let θσ = F (I(θ, σ,P)) be the model estimated

from the inlier set I(θ, σ,P) selected using τ(σ) around the

input model θ. Scalar τ(σ) is the threshold which σ im-

plies; function F estimates the model parameters from a set

of data points; function I returns the set of data points for

which the point-to-model residuals are smaller than τ(σ).
For each possible σ value, the likelihood of point p ∈ P

being inlier is calculated as

P(p | θσ, σ) = 2C(n)σ−nDn−1(θσ, p) exp

(

−D2(θσ, p)

2σ2

)

,

if D(θσ, p) ≤ τ(σ), where D(θσ, p) is the point-to-model

residual. If D(θσ, p) > τ(σ), likelihood P(p | θσ, σ) is 0.

In MAGSAC, the final model parameters are calculated

by weighted least-squares where the weights of the points

come from marginalizing the likelihoods over σ. When

marginalizing over σ, each P(p | θσ, σ) calculation requires

to select the set of inliers and obtain θσ by LS fitting on

them. This step is time consuming even with the number of

speedups proposed in the paper.

In MAGSAC++, we propose a new approach instead of the

original one, requiring several LS fittings when marginal-

izing over the noise level σ. The proposed algorithm is an

iteratively reweighted least squares (IRLS) where the model

parameters in the (i+ 1)th step are calculated as follows:

θi+1 = arg minθ

∑

p∈P

w(D(θi, p))D
2(θ, p), (1)

where the weight of point p is

w(D(θi, p)) =

∫

P(p | θi, σ)f(σ)dσ (2)

and θ0 = θ, i.e., the initial model from the minimal sample.

2.1. Weight calculation

The weight function defined in (2) is the marginal den-

sity of the inlier residuals as follows:

w(r) =

∫

g(r | σ)f(σ)dσ.

Let τ(σ) = kσ be the chosen quantile of the χ-distribution.

For 0 ≤ r ≤ kσmax,

w(r) =
1

σmax

∫ σmax

r/k

g(r|σ)dσ =

1

σmax

C(n)2
n−1

2

(

Γ

(

n− 1

2
,

r2

2σ2
max

)

− Γ

(

n− 1

2
,
k2

2

))

and, for r > kσmax, w(r) = 0. Function

Γ(a, x) =

∫ +∞

x

ta−1 exp (−t)dt

is the upper incomplete gamma function.

Weight w(r) is positive and decreasing on interval

(0, kσmax). Thus there is a ρ-function of an M-estimator

which is minimized by IRLS using w(r) and each iteration

guarantees a non-increase in its loss function ([13], chapter

9). Consequently, it converges to a local minimum. This

IRLS with τ(σ) = 3.64σ, where 3.64 is the 0.99 quantile

of χ-distribution, will be called σ-consensus++. For prob-

lems using point correspondences, n = 4. Parameter σmax

is the same user-defined maximum noise level parameter as

in MAGSAC, usually, set to a fairly high value, e.g., 10

pixels. The σ-consensus++ algorithm is applied for fitting

to a non-minimal sample and, also, as a post-processing to

improve the output of any robust estimator.

2.2. Model quality function

In order to be able to select the model interpreting the

data the most, quality function Q has to be defined. Let

Q(θ,P) =
1

L(θ,P)
, (3)

where

L(θ,P) =
∑

p∈P

ρ(D(θ, p)),

is a loss function of the M-estimator defined by our weight

function w(r). Function ρ(r) =
∫ r

0
xw(x)dx for r ∈

[0,+∞). For 0 ≤ r ≤ kσmax,

ρ(r) =
1

σmax

C(n)2
n+1

2 [
σ2

max

2
γ(

n+ 1

2
,

r2

2σ2
max

) +

r2

4
(Γ(

n− 1

2
,

r2

2σ2
max

)− Γ(
n− 1

2
,
k2

2
))].

For r > kσmax,

ρ(r) = ρ(kσmax) = σmaxC(n)2
n−1

2 γ(
n+ 1

2
,
k2

2
),

where

γ(a, x) =

∫ x

0

ta−1 exp (−t)dt
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is the lower incomplete gamma function. Weight w(r) can

be calculated precisely or approximately as in MAGSAC.

However, the precise calculation can be done very fast by

storing the values of the complete and incomplete gamma

functions in a lookup table. Then the weight and quality

calculation becomes merely a few operations per point.

MAGSAC++ algorithm uses (3) as quality function and

σ-consensus++ for estimating the model parameters.

3. Progressive NAPSAC sampling

We propose a new sampling technique which gradually

moves from local to global, assuming initially that localized

minimal samples are more likely to be all-inlier. If the as-

sumption does not lead to termination, the process gradually

moves towards the randomized sampling of RANSAC.

3.1. N Adjacent Points SAmple Consensus

The N Adjacent Points SAmple Consensus (NAPSAC)

sampling technique [20] builds on the assumption that the

points of a model are spatially structured and, thus, sam-

pling from local neighborhoods increases the inlier ratio lo-

cally. In brief, the algorithm is as follows:

1. Select an initial point pi randomly from all points.

2. Find the set Si,r of points lying within the hyper-sphere

of radius r centered at pi.

3. If the number of points in Si,r is less than the minimal

sample size then restart from step 1.

4. Point pi and points from Si,r selected uniformly form

the minimal sample.

There are three major issues of local sampling in practice.

First, models fit to local all-inlier samples are often too im-

precise (due to bad conditioning). Second, in some cases,

estimating a model from a local sample leads to degeneracy.

For example, for fundamental matrix fitting, the correspon-

dences must originate from more than one plane. This usu-

ally means that the correspondences are beneficial to be far.

Thus, purely localized sampling fails. Third, when having

global structures, e.g., the rigid motion of the background

in an image pair, local sampling is much slower than global.

We, therefore, propose a transition between local and global

sampling progressively blending from one into the other.

3.2. Progressive NAPSAC – P­NAPSAC

In this section, Progressive NAPSAC is proposed com-

bining the strands of NAPSAC-like local sampling and the

global sampling of RANSAC. The P-NAPSAC sampler

proceeds as follows: the first, location-defining, point in the

minimal sample is chosen using the PROSAC strategy. The

remaining points, are selected from a local neighbourhood,

according to their distances. The process samples from the

m points nearest to the center defined by the first point in

Algorithm 1 Outline of Progressive NAPSAC.

Input: P – points; S – neighborhoods; n – point number

1: t1, ..., tn := 0 ⊲ The hit numbers.

2: k1, ..., kn := m ⊲ The neighborhood sizes.

Repeat until termination:

Selection of the first point:

3: Let pi be a random point. ⊲ Selected by PROSAC.

4: ti := ti + 1 ⊲ Increase the hit number.

5: if (ti ≥ T ′
ki
∧ ki < n) then

6: ki := ki + 1 ⊲ Enlarge the neighborhood.

Semi-random sampleMi,ti of size m:

7: if Si,ki−1 6= P then

8: Put pi; the kith nearest neighbor; and m−2 random

points from Si,ki−1 into sampleMi,ti .

9: else

10: Select m− 1 points from P at random.

Increase the hit number of the points fromMi,ti :

11: for pj ∈Mi,ti \ pi do ⊲ For all points in the sample,

12: if pi ∈ Sj,kj
then ⊲ if the ith one is close,

13: tj := tj + 1 ⊲ increase the hit number.

Model parameter estimation

14: Compute model parameters θ from sampleMi,ti .

Model verification

15: Calculate model quality.

the minimal sample. The size of the local subset of points is

increased data-dependently, as described below. If no qual-

ity function is available, the first point is chosen at random

similarly as in RANSAC, the other points are selected uni-

formly from a progressively growing neighbourhood.

In the case of having local models, the samples are more

likely to contain solely inliers and, thus, trigger early ter-

mination. When the points of the sought model do not

form spatially coherent structures, the gradual increment of

neighborhoods leads to finding global structures not notice-

ably later than by using global samplers, e.g., PROSAC.

Growth function and sampling. The design of the growth

function defining how fast the neighbourhood grows around

a selected point pi must find the balance between the strict

NAPSAC assumption – entirely localized models – and the

RANSAC approach treating every model on a global scale.

Let {Mi,j}
T (i)
j=1 = {pi, pxi,j,1

, ..., pxi,j,m−1
}
T (i)
j=1 denote

the sequence of samples Mi,j ⊂ P
∗ containing point

pi ∈ P and drawn by some sampler (e.g., the uniform one

as in RANSAC) where m is the minimal sample size, P∗

is the power set of P , and xi,j,1, ..., xi,j,m−1 ∈ N
+ are in-

dices, referring to points in P . In eachMi,j , the points are

ordered with respect to their distances from pi and indices
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j denote the order in which the samples were drawn. The

objective is to find a strategy which draws samples consist-

ing of points close to the ith one and, then, samples which

contain data points farther from pi are drawn progressively.

Since the problem is quite similar to that of PROSAC,

the same growth function can be used. Let us define set

Si,k to be the smallest ball centered on pi and containing its

k nearest neighbours. Let Tk(i) be the number of samples

from {Mi,j}
T (i)
j=1 which contains pi and the other points are

from Si,k. For the expected number of Tk(i), holds:

E(Tk(i) |T (i)) = T (i)

(

k
m−1

)

(

n−1
m−1

) = T (i)

m−2
∏

j=0

k − j

n− 1− j
,

where n is the number of data points. In this case, ratio

E(Tk+1(i) |T (i)) /E(Tk(i) |T (i)) does not depend on i
and E(Tk+1(i) |T (i)) can be recursively defined as

E(Tk+1(i) |T (i)) =
k + 1

k + 2−m
E(Tk(i) |T (i)).

We approximate it by integer function T ′
k+1 = T ′

k +
⌈E(Tk+1(i) |T (i)) − E(Tk(i) |T (i))⌉, where T ′

1 = 1 for

all i. Thus, T ′
k is i-independent. Growth function g(t) =

min{k : T ′
k ≥ t}, i.e., for integer t, g(t) = k where

T ′
k = t. Let ti be the number of samples including pi. For

set Si,g(ti), ti is approx. the mean number of samples drawn

from Si,g(ti) if the random sampler of RANSAC is used.

In the proposed P-NAPSAC sampler, neighbourhood

Si,k of pi grows if g(ti) = k, i.e., the number of drawn

samples containing the ith point is approximately equal to

the mean number of the samples drawn from this neighbour-

hood by the random sampler.

The tith sample Mi,ti , containing pi, is Mi,ti =
{pi, p∗(g(ti))} ∪M

′
i,ti

, whereM′
i,ti
⊂ Si,g(ti)−1 is a set

of |M′
i,ti
| = m−2 data points, excluding pi and p∗(g(ti)),

randomly drawn from Si,g(ti)−1. Point p∗(g(ti)) is the

g(ti)-th nearest neighbour of point pi.

Growth of the hit number. Given point pi, the corre-

sponding ti is increased in two cases. First, ti ← ti + 1
when pi is selected to be the center of the hyper-sphere.

Second, ti is increased when pl is selected, the neighbor-

hood of pl contains pi and, also, that of pi contains pl. For-

mally, let pl be selected as the center of the sphere (l 6= i ∧
l ∈ [1, n]). Let sample Ml,j = {pl, pxl,j,1

, ..., pxl,j,m−1
}

be selected randomly as the sample in the previously de-

scribed way. If i ∈ {xl,j,1, ..., xl,j,m−1} (or equivalently,

pi ∈Ml,j) and pl ∈ Si,g(ti) then ti is increased by one.

The sampler (see Alg. 1) can be imagined as a PROSAC

sampling defined for every ith point independently, where

the sequence of samples for the ith point depends on its

neighbors. After the initialization, the first main step is to

select pi as the center of the sphere and update the corre-

sponding ti. Then a semi-random sample is drawn consist-

ing of the selected pi, its kith nearest neighbour and m− 2

(a) P-NAPSAC made 18 302 it-

erations in 0.49 secs. PROSAC

made 84 831 in 1.76 secs. Scene

”There”.

(b) P-NAPSAC made 65 842 it-

erations in 0.84 secs. PROSAC

made 99 913 in 1.28 secs. Scene

”Vin”.

Figure 2. Example image pairs from the EVD dataset for homogra-

phy estimation. Inlier correspondences are marked by a line seg-

ment joining the corresponding points.

random points from Si,ki−1 (i.e., the points in the sphere

around pi excluding the farthest one). Based on the random

sample, the corresponding t values are updated. Finally, the

implied model is estimated, and its quality is measured.

Relaxation of the termination criterion. We observed

that, in practice, the termination criterion of RANSAC is

conservative and not suitable for finding local structures

early. The number of required iterations r of RANSAC is

r = log(1− µ)/ log(1− ηm), (4)

where m is the size of a minimal sample, µ is the required

confidence in the results and η is the inlier ratio. This cri-

terion does not assume that the points of the sought model

are spatially coherent, i.e., the probability of selecting a all-

inlier sample is higher than ηm. Local structures typically

have low inlier ratio. Thus, in the case of low inlier ratio,

Eq. 4 leads to too many iterations even if the model is local-

ized and is found early due to the localized sampling.

A simple way of terminating early is to relax the termi-

nation criterion. The number of iterations r′ for finding a

model with η + γ inlier ratio is

r′ = log(1− µ)/ log(1− (η + γ)m), (5)

where γ ∈ [0, 1− η] is a relaxation parameter.

Fast neighbourhood calculation. Determining the spatial

relations of all points is a time consuming operation even

by applying approximating algorithms, e.g., the Fast Ap-

proximated Nearest Neighbors method [17]. In the sam-

pling of RANSAC-like methods, the primary objective is

to find the best sample early and, thus, spending significant

time initializing the sampler is not affordable. Therefore,
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we propose a multi-layer grid for the neighborhood estima-

tion which we describe for point correspondences. It can be

straightforwardly modified considering different input data.

Suppose that we are given two images of size wl×hl (l ∈
{1, 2}) and a set of point correspondences {(pi,1, pi,2)}

n
i=1,

where pi,l = [ui,l, vi,l]
T. A 2D point correspondence can

be considered as a point in a four-dimensional space. There-

fore, the size of a cell in a four-dimensional grid Gδ con-

strained by the sizes of the input image is w1

δ ×
h1

δ ×
w2

δ ×
h2

δ ,

where δ is parameter determining the number of divisions

along an axis. Function Σ(Gδ, [ui,1, vi,1 ui,2, vi,2]
T) re-

turns the set of correspondences which are in the same 4D

cell as the ith one. Thus, |Σ(Gδ, ...)| is the cardinality of

the neighborhood of a particular point. Having multiple

layers means that we are given a sequence of δs such that:

δ1 > δ2 > ... > δd ≥ 1. For each δ, the corresponding

Gδk grid is constructed. For the ith correspondence during

its tith selection, the finest layer Gδmax
is selected which

has enough points in the cell in which pi is stored. Pa-

rameter δmax is calculated as δmax := max{δk : k ∈
[1, d] ∧ |Si,g(ti)−1| ≤ |Σ(Gδk , ...)|}.

In P-NAPSAC, d = 5, δ1 = 16, δ2 = 8, δ3 = 4, δ4 = 2
and δ5 = 1. When using hash-maps and an appropriate

hashing function, the implied computational complexity of

the grid creation is O(n). For the search, it is O(1). Note

that δ5 = 1 leads to a grid with a single cell and, therefore,

does not require computation.

4. Experimental Results

In this section, we evaluate the accuracy and speed of

the two proposed algorithms. First, we test MAGSAC++

on fundamental matrix and homography fitting on six pub-

licly available real-world datasets. Second, we show that

Progressive NAPSAC sampling leads to faster robust esti-

mation than the state-of-the-art samplers. Note that these

contributions are orthogonal and, therefore, can be used to-

gether to achieve high performance efficiently – by using

MAGSAC++ with P-NAPSAC sampler.

4.1. Evaluating MAGSAC++

Fundamental matrix estimation was evaluated on the

benchmark of [3]. The [3] benchmark includes: (1) the TUM

dataset [25] consisting of videos of indoor scenes. Each

video is of resolution 640× 480. (2) The KITTI dataset [6]

consists of consecutive frames of a camera mounted to a

moving vehicle. The images are of resolution 1226 × 370.

Both in KITTI and TUM, the image pairs are short-baseline.

(3) The Tanks and Temples (T&T) dataset [10] provides

images of real-world objects for image-based reconstruc-

tion and, thus, contains mostly wide-baseline pairs. The im-

ages are of size from 1080×1920 up to 1080×2048. (4) The

Community Photo Collection (CPC) dataset [30] con-

tains images of various sizes of landmarks collected from

Flickr. In the benchmark, 1 000 image pairs are selected

randomly from each dataset. SIFT [12] correspondences

are detected, filtered by the standard SNN ratio test [12]

and, finally, used for estimating the epipolar geometry.

The compared methods are RANSAC [5], LMedS [22],

MSAC [28], GC-RANSAC [1], MAGSAC [2], and

MAGSAC++. All methods used P-NAPSAC sampling, pre-

emptive model validation and degeneracy testing as pro-

posed in USAC [21]. The confidence was set to 0.99. For

each method and problem, we chose the threshold maximiz-

ing the accuracy. For homography fitting, it is as follows:

MSAC and GC-RANSAC (5.0 pixels); RANSAC (3.0 pix-

els); MAGSAC and MAGSAC++ (σmax was set considering

50.0 pixels threshold). For fundamental matrix fitting, it is

as follows: RANSAC, MSAC and GC-RANSAC (0.75 pix-

els); MAGSAC and MAGSAC++ (σmax which 5.0 pixels

threshold implies). The used error metric is the symmetric

geometric distance [31] (SGD) which compares two fun-

damental matrices by iteratively generating points on the

borders of the images and, then, measuring their epipolar

distances. All methods were in C++.

In Fig. 3, the cumulative distribution functions (CDF)

of the SGD errors (horizontal) are shown. MAGSAC++

is the most accurate robust estimator on CPC, Tanks and

Temples and TUM datasets since its curve is always higher

than that of the other methods. In KITTI, the image pairs

are subsequent frames of a camera mounted to a car, thus,

having short baseline. These image pairs are therefore easy

and all methods lead to similar accuracy.

In Table 1, the median errors (in pixels), the failure rates

(in percentage) and processing times (in milliseconds) are

reported. We report the median values to avoid being af-

fected by the failures – which are also shown. A test is

considered failure if the error of the estimated model is big-

ger than the 1% of the image diagonal. The best values are

shown in red, the second best ones are in blue. For funda-

mental matrix fitting (first four datasets), MAGSAC++ is the

best method on three datasets both in terms of median error

and failure rate. On KITTI, all methods have similar accu-

racy – the difference between the accuracy of the least and

most accurate ones is 0.3 pixel. There, MAGSAC++ is the

fastest. On the tested datasets, MAGSAC++ is usually as

fast as other robust estimators while leading to superior ac-

curacy and failure rate. MAGSAC++ is always faster than

MAGSAC, e.g., on KITTI by two orders of magnitude.

In the left plot of Fig. 5, the avg. log10 errors over

all datasets are plotted as the function of the inlier-outlier

threshold. Both MAGSAC and MAGSAC++ are signifi-

cantly less sensitive to the threshold than the other robust

estimators. Note that the accuracy of LMeDS is the same

for all threshold values since it does not require an inlier-

outlier threshold to be set.
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Fundamental matrix (Fig. 3) Homography (Fig. 4)

Method / Dataset KITTI [6] TUM [25] T&T [10] CPC [30] Homogr [11] EVD [11]

ǫmed λ t ǫmed λ t ǫmed λ t ǫmed λ t ǫmed λ t ǫmed λ t

MAGSAC++ 3.6 2.4 8 3.5 16.4 13 3.9 0.4 142 6.4 7.8 156 1.1 0.0 6 2.6 10.4 173

MAGSAC [2] 3.5 2.8 117 3.7 17.7 18 4.2 0.7 267 7.0 7.8 261 1.3 0.8 32 2.6 12.0 426

GC-RANSAC [1] 3.7 2.3 11 4.1 25.1 11 4.5 2.2 126 7.5 12.1 144 1.1 0.0 25 2.6 18.3 66

RANSAC [5] 3.8 2.7 9 5.4 22.1 11 6.3 2.6 133 16.9 29.5 151 1.1 0.0 26 4.0 26.1 68

LMedS [22] 3.6 2.7 11 4.3 23.9 12 4.9 1.1 166 10.7 17.8 187 1.5 12.5 31 89.9 60.0 82

MSAC [28] 3.8 2.6 10 5.5 36.2 11 7.0 2.2 133 16.5 33.8 153 1.1 0.0 24 3.2 23.7 64

Table 1. The median errors (ǫmed; in pixels), failure rates (λ; in percentage) and average processing times (t, in milliseconds) are reported

for each method (rows from 4th to 9th) on all tested problems (1st row) and datasets (2nd). The error of fundamental matrices is calculated

from the ground truth matrix as the symmetric geometric distance [31] (SGD). For homographies, it is the RMSE re-projection error from

ground truth inliers. A test is considered failure if the error is bigger than the 1% of the image diagonal. For each method, the inlier-outlier

threshold was set to maximize the accuracy and the confidence to 0.99. The best values in each column are shown by red and the second

best ones by blue. Note that all methods, excluding MAGSAC and MAGSAC++, finished with a final LS fitting on all inliers.
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Figure 3. The cumulative distribution functions (CDF) of the SGD

errors (horizontal axis) of the estimated fundamental matrices, on

datasets CPC, T&T, KITTI and TUM. Being accurate is interpreted

by a curve close to the top.
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Figure 4. The cumulative distribution functions (CDF) of the

RMSE re-projection errors (horizontal axis) of the estimated ho-

mographies on datasets EVD and homogr. Being accurate is inter-

preted by a curve close to the top.
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Figure 5. The average log
10

errors on the datasets for fundamen-

tal matrix (left; SGD error) and homography (right; RMSE re-

projection error) fitting plotted as the function of the inlier-outlier

threshold (in pixels). In the small plot inside the right one, the

threshold goes up to 100 pixels.

For homography estimation, we downloaded homogr (16

pairs) and EVD (15 pairs) datasets [11]. They consist of im-

age pairs of different sizes from 329×278 up to 1712×1712
with point correspondences provided. The homogr dataset

contains mostly short baseline stereo images, whilst the

pairs of EVD undergo an extreme view change, i.e., wide

baseline or extreme zoom. In both datasets, inlier cor-

respondences of the dominant planes are selected manu-

ally. All algorithms applied the normalized four-point al-

gorithm [8] for homography estimation and were repeated

100 times on each image pair. To measure the quality of the

estimated homographies, we used the RMSE re-projection

error calculated from the provided ground truth inliers.

The CDFs of the errors are shown in Fig. 4. On EVD,

the MAGSAC++ goes the highest – it is the most accurate

method. On homogr, all methods but the original MAGSAC

and LMedS have similar accuracy. The last two datasets in

Table 1 report the median errors, failure rates and runtimes.

On EVD, MAGSAC++ failed the least often, while having
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the best median accuracy and being 2.5 times faster than

MAGSAC. All of the faster methods fail to return the sought

model significantly more often. On homogr, MAGSAC++,

GC-RANSAC, RANSAC and MSAC have similar results.

MAGSAC++ is the fastest by almost an order of magnitude.

In the right plot of Fig. 5, the avg. log10 errors are plot-

ted as the function of the inlier-outlier threshold (in px).

Both MAGSAC and MAGSAC++ are significantly less sen-

sitive to the threshold than the other robust estimators. In

the small figure, inside the bigger one, the threshold value

goes up to 100 pixels. For MAGSAC and MAGSAC++,

parameter σmax was calculated from the threshold value.

In summary, the experiments showed that MAGSAC++

is more accurate on the tested problems and datasets than all

the compared state-of-the-art robust estimators with being

significantly faster than the original MAGSAC.

4.2. Evaluating Progressive NAPSAC

In this section, the proposed P-NAPSAC sampler is eval-

uated on homography and fundamental matrix fitting using

the same datasets as in the previous sections. Every tested

sampler is combined with MAGSAC++. The compared

samplers are the uniform sampler of plain RANSAC [5],

NAPSAC [20], PROSAC [4], and the proposed P-NAPSAC.

Since both the proposed P-NAPSAC and NAPSAC assumes

the inliers to be localized, they used the relaxed termination

criterion with γ = 0.1. Thus, they terminate when the prob-

ability of finding a model which leads to at least 0.1 incre-

ment in the inlier ratio falls below a threshold. PROSAC

used its original termination criterion and the quality func-

tion for sorting the correspondences.

Example image pairs are shown in Fig. 2. Inlier corre-

spondences are marked by line segments joining the cor-

responding points. The numbers of iterations and process-

ing times of PROSAC or P-NAPSAC samplers are reported

in the captions. In both cases, P-NAPSAC leads to signif-

icantly fewer iterations than PROSAC. The results of the

samplers, compared to P-NAPSAC and averaged over all

datasets, are shown in Fig. 6a. The number of iterations and,

thus, the processing time is the lowest for P-NAPSAC. It is

approx. 1.6 times faster than the second best, i.e., PROSAC,

while being similarly accurate with the same failure rate.

The relaxed termination criterion was tested by applying

P-NAPSAC to all datasets using different γ values. We then

measured how each property (i.e., error, failure rate, run-

time, and iteration number) changes. Fig. 6b plots the aver-

age (over 100 runs on each scene) of the reported properties

as the function of γ. The relative values are shown. Thus,

for each test, the values are divided by the maximum. For

instance, if P-NAPSAC draws 100 iterations when γ = 0,

the number of iterations is divided by 100 for every other γ.

The error and failure ratio slowly increase from approx-

imately 0.8 to 1.0. The trend seems to be close to linear.

Samplers compared to P-NAPSAC

iters. time error fails
0

0.5

1

1.5

2

2.5

3

3.5

R
e

la
ti

v
e

 v
a

lu
e

s

P-NAPSAC

PROSAC

NAPSAC

Uniform

(a)

0 0.2 0.4 0.6 0.8 1

Relaxation parameter 

0

0.2

0.4

0.6

0.8

1

1.2

R
e
la

ti
v
e
 v

a
lu

e

# of iters. # of fails time error

(b)

Figure 6. (a) Comparison of samplers to P-NAPSAC (blue

bar; divided by the values of P-NAPSAC; all combined with

MAGSAC++) on the datasets of Table 1. The reported properties

are: the # of iterations; processing time; average error; and failure

rate. (b) The relative (i.e., divided by the maximum) error, num-

ber of fails, processing time, and number of iterations are plotted

as the function of the relaxation parameter γ (from Eq. 5) of the

relaxed RANSAC termination criterion.

Simultaneously, the number of iterations and, thus, the pro-

cessing time decrease dramatically. Around γ = 0.1 there

is significant drop from 1.0 to 0.3. If γ > 0.1 both values

decrease mildly. Therefore, selecting γ = 0.1 as the re-

laxation factor does not lead to noticeably worse results but

speeds up the procedure significantly.

5. Conclusion

In the paper, two contributions were made. First, we for-

mulate a novel marginalization procedure as an iteratively

re-weighted least-squares approach and we introduce a new

model quality (scoring) function that does not require the

inlier-outlier decision. Second, we propose a new sampler,

Progressive NAPSAC, for RANSAC-like robust estimators.

Reflecting the fact that nearby points often originate from

the same model in real-world data, P-NAPSAC finds lo-

cal structures earlier than global samplers. The progressive

transition from local to global sampling does not suffer from

the weaknesses of purely localized samplers.

The two orthogonal improvements are combined with

the ”bells and whistles” of USAC [21], e.g., pre-emptive

verification, degeneracy testing. On six publicly available

real-world datasets for homography and fundamental ma-

trix fitting, MAGSAC++ produces results superior to the

state-of-the-art robust methods. It is faster, more geomet-

rically accurate and fails less often.
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