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Figure 1: Qualitative results of PandaNet on JTA dataset [8] which consists in images with many people (up to 60), a large

proportion of people at low resolution and many occlusion situations. Most of the previous 3D human pose estimation studies

mainly focused on the single-person case or estimate 3D pose of few people at high resolution. In this paper, we propose an

anchor-based and single-shot multi-person 3D pose estimation framework that allows the pose estimation of a large number

of people at low resolution. Ground-truth translations and scales are used for visualisation.

Abstract

Recently, several deep learning models have been pro-

posed for 3D human pose estimation. Nevertheless, most

of these approaches only focus on the single-person case

or estimate 3D pose of a few people at high resolution.

Furthermore, many applications such as autonomous driv-

ing or crowd analysis require pose estimation of a large

number of people possibly at low-resolution. In this work,

we present PandaNet (Pose estimAtioN and Dectection

Anchor-based Network), a new single-shot, anchor-based

and multi-person 3D pose estimation approach. The pro-

posed model performs bounding box detection and, for each

detected person, 2D and 3D pose regression into a single

forward pass. It does not need any post-processing to re-

group joints since the network predicts a full 3D pose for

each bounding box and allows the pose estimation of a pos-

sibly large number of people at low resolution. To manage

people overlapping, we introduce a Pose-Aware Anchor Se-

lection strategy. Moreover, as imbalance exists between dif-

ferent people sizes in the image, and joints coordinates have

different uncertainties depending on these sizes, we pro-

pose a method to automatically optimize weights associated

to different people scales and joints for efficient training.

PandaNet surpasses previous single-shot methods on sev-

eral challenging datasets: a multi-person urban virtual but

very realistic dataset (JTA Dataset), and two real world 3D

multi-person datasets (CMU Panoptic and MuPoTS-3D).

1. Introduction

3D human pose estimation is a common addressed prob-

lem in Computer Vision. It has many applications such as

crowd analysis, autonomous driving, human computer in-

teraction or motion capture. 3D pose is a low dimensional

and interpretable representation that allows to understand

and anticipate human behavior. Great progresses have been

achieved thanks to large scale datasets with 2D annotations

(LSP [13], MPII [1], COCO [22], CrowdPose [18]) and

3D annotations (Human 3.6M [12], MPI-INF-3DHP [25],

MuCo-3D-HP [28], CMU Panoptic [14]). Nevertheless,

this problem remains hard as the human body is an articu-
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lated object whose terminal joints are very mobile and thus

difficult to be precisely located. In addition, real-world ap-

plications require to handle a large number of people and

crowded images like the ones in Figure 2b, 2c and 2d. To

handle these challenging conditions, models need to be ro-

bust to people occlusions and to low resolution (i.e people

that occupy a small portion of the image). They also need

to be fast and to handle a large number of people. Most

existing approaches focus on 3D pose estimation of either

a single person or a limited number of people that are rela-

tively close to the camera.

Although top-down and two-stage based methods are

currently considered as best performing in the state of the

art, these approaches become slow in crowded scenes as

their computation complexity increases with the number of

people. On the contrary, bottom-up approaches perform

their forward pass with a constant complexity. Existing

bottom-up single-shot methods rely on heatmaps prediction

followed by complex post-processing steps to properly re-

group joints detections into full human skeletons. 3D coor-

dinates of joints are stored in maps at their corresponding

2D position. Consequently, if 2D localisation or 2D associ-

ation of joints fails, 3D pose estimation will also fail. These

approaches can also fail for other reasons. First, they lack

precision at low resolution because of the downsampling

factor between the input image and the predicted heatmaps.

Second, heatmaps are usually not sharp enough to distin-

guish two very close joints of the same type. Finally, 3D

coordinates of two overlapping joints cannot be stored at

the same 2D location causing erroneous 3D pose estima-

tion. For all these reasons, we believe that heatmap based

approaches are not suited for robust 3D pose estimation for

occluded people at low resolution.

In this paper, we introduce PandaNet (Pose estimAtioN

and Dectection Anchor-based Network), a new single-shot

approach that performs bounding box detection in a dense

way and regresses 2D and 3D human poses for each de-

tected person. To this end, three contributions are proposed.

First, an anchor based representation is adopted. An an-

chor that matches a subject stores its full 3D pose. This

avoids problems induced by occlusion of joints. Addition-

ally, this anchor-based formulation allows lower resolution

outputs than heatmap one since a single output pixel is

enough to store the entire subject’s pose. This property is

important to efficiently process people at low resolution.

Second, a Pose-Aware Anchor Selection strategy dis-

cards ambiguous anchors during inference. Indeed, am-

biguous anchors overlap parts of several people and do not

allow a readout of consistent 3D poses.

Third, an automatic weighting of losses with ho-

moscedastic uncertainty handles imbalance between people

sizes in the image and uncertainties associated to human

pose predictions.

(a) (b) (c) (d)

Figure 2: Different real-world contexts for 3D human

pose estimation. Recent 3D multi-person estimation ap-

proaches focus on 3D pose estimation of a few people close

to the camera like in a). This context is yet challenging

because of frequent inter-people occlusions. 3D pose esti-

mation is even more difficult in applications such as sport

analysis (b), autonomous driving (c) or crowd analysis (d)

with a large number of people at low resolution.

Contrary to previous top-down multi-person approaches,

PandaNet has a forward inference complexity that does not

depend on the number of people in the image. It can effi-

ciently process images with a large number of people (cf.

Figure 1). The proposed model is validated on three 3D

datasets. The first one is the Joint Track Auto dataset (JTA)

[8], a rich, synthetic but very realistic urban dataset with

a large number of people (up to 60) and occlusion situa-

tions. The second one is the Panoptic dataset [14], an indoor

dataset with many interactions and social activities. The

third one is the MuPoTS-3D dataset [28], a dataset with a

reduced number of people but various indoor and outdoor

contexts. Our results outperform those of previous single-

shot methods on all these datasets.

2. Related Work

2D multi-person pose estimation. Two main ap-

proaches in multi-person 2D pose estimation cas be distin-

guished: top-down and bottom-up approaches. Methods of

the former category first perform human detection then es-

timate a 2D pose within the detected bounding box. On the

other hand, bottom-up approaches localise all human body

keypoints in an input image and then group these keypoints

into full 2D human skeletons. Each of them has advantages

and disadvantages. Bottom-up methods are generally faster

and seems more suited for crowded scenes since they pro-

cess the entire image at once. However, available bench-

marks show that top-down approaches are more accurate as

they process all subjects at the same scale.

State of the art bottom-up approaches [4, 31, 16] differ

on their association method. Cao et al. [4] propose Part

Affinity Fields that are 2D vectors modeling the associa-

tions between children and parent joints. They are used

to regroup 2D predictions of joints into full 2D skeletons.

Newell et al. [31] perform this grouping by training the net-

work to predict similar tag values to joints belonging to the
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same person and different tag values for joints belonging

to different people. Kreiss el al. [17] propose a bottom-up

approach to handle people at low resolution in crowded im-

ages. Their model predicts Part Intensity Fields (PIF) that

are similar to the offsets and heatmaps in [32] and Part As-

sociative Field (PAF) that has a composite structure.

The methods in [11, 6, 32, 46, 19, 10] are top-down ap-

proaches. Mask R-CNN [11] detect keypoints as a segmen-

tation task. The method in [32] performs 2D offsets and 2D

heatmaps prediction and fuses these predictions to generate

more precise heatmaps. Chen et al. [6] propose a cascaded

pyramid network to generate 2D poses with a refinement

process that focuses on hard keypoints. Xiao et al. [46]

present a simple architecture with deep backbone and sev-

eral upsampling layers.

While top-down approaches achieve higher 2D pose es-

timation scores in standard benchmarks than bottom-up ap-

proaches, most of these approaches fail in scenes with fre-

quent and strong occlusions. Indeed, these methods de-

pend on the predicted bounding boxes. In crowded scenes,

bounding boxes, even if correct, may contain parts of other

people. This situation is not well managed by existing

methods. Li et al. [19] introduce a new benchmark to

evaluate 2D human pose models on crowded scenes and a

method that performs multi-peak predictions for each joint

and a global maximum joint association. Golda et al. [10]

propose an approach that explicitly detects occluded body

parts, uses a data augmentation method to generate occlu-

sions and exploits a synthetic generated dataset.

Single-person 3D pose estimation. There are two cate-

gories of single person 3D pose estimation approaches: di-

rect and reconstruction approaches. Direct approaches esti-

mate the 3D pose directly from an input image while recon-

struction methods first take as input 2D poses provided by a

2D pose estimation model and lift them to the 3D space.

The approaches described in [9, 24] are reconstruction-

based methods. Martinez et al. [24] regress 3D pose from

2D pose input by using a simple architecture with residual

connections and batch normalisation. Fang et al. [9] use a

pose grammar model that takes into account the connections

between human joints. These reconstruction approaches are

limited by the 2D pose estimator performance and do not

take into account important images clues, such as contextual

information, to make the prediction.

The models in [20, 34, 42, 43, 44, 50, 47] are direct ap-

proaches. Li et al. [20] simultaneously learn 3D pose re-

gression and body part detection. Tekin et al. [44] predict

3D poses in an embedding space learned by an autoencoder.

Pavlakos et al. [33] adopt a volumetric representation and

a coarse to fine architecture to predict 3D poses. Sun et

al. [42] take into account the connection structure between

joints by proposing a compositional loss. Sun et al. [43]

use the soft-argmax layer to extract 3D coordinates from a

3D volumetric representation in a differentiable way. Zhou

et al. [50] use a geometric loss based on bones constraints

to weakly supervise the depth regression module on in the

wild images. Yang et al. [47] improve generalisation to in

the wild images thanks to an adversarial loss.

Multi-person 3D pose estimation. Multi-person 3D

pose estimation has been less studied. It is a difficult prob-

lem that adds to the 2D multi-person management difficulty,

that of depth estimation. Zanfir et al. [49] estimate the 3D

human shape from sequences of frames. A pipeline pro-

cess is followed by a 3D pose refinement based on a non-

linear optimisation process and semantic constraints. In a

top-down approach, Rogez et al. [39, 40] generate human

pose proposals that are classified into anchor-poses and fur-

ther refined using a regressor. Moon et al. [29] propose

a camera distance aware multi-person top-down approach

that performs human detection (DetectNet), absolute 3D

human localisation (RootNet) and root relative 3D human

pose estimation (PoseNet). These approaches perform re-

dundant estimations that need to be filtered or fused, and

scales badly with a large number of people.

All existing single-shot methods estimate both 2D and

3D human poses and rely on heatmaps to detect individual

joints in the image. Mehta et al. [28] propose a bottom-

up approach system that predicts Occlusion-Robust Pose

Maps (ORPM) and Part Affinity Fields [4] to manage multi-

person 3D pose estimation even for occluded and cropped

people. Benzine et al. [2, 3] perform single-shot multi-

person 3D pose estimation by extending the 2D multi-

person model in [31] to predict ORPM. ORPM based meth-

ods predict a fixed number of 2D heatmaps and ORPM,

whatever the number of people in the image. 3D coordi-

nates are stored multiple times in the ORPM allowing the

readout of 3D coordinates at non occluded and reliable 2D

positions. Nevertheless, this formulation implies potential

conflicts when similar joints of different people overlap. In

the same way, MubyNet [48] also uses a fixed number of

output maps to store 2D and 3D poses of all people in the

image. However, the full 3D pose vector is stored at all

2D positions of the subject skeleton increasing the number

of potential conflicts. The model learns to score the pos-

sible associations of joints to limbs and a global optimisa-

tion problem is solved to group the joints into full skeletons.

XNect [27] estimates 3D poses in two steps. The first step

improves the method of [28] by encoding only the joints’

immediate context, which reduces the number of potential

conflicts. The second step refines the 3D poses.

PandaNet is a single-shot approach like [48, 28, 2, 27]

but is anchor-based rather than heatmap-based. It is based

on LapNet [5], a single-shot object detection model which

has today the best accuracy/inference time trade-off. Unlike

LapNet that is a 2D object detector, PandaNet is intended

for multi- person 3D pose estimation and differs from Lap-
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Net in the prediction heads (introduced in subsection 3.1),

in the anchor selection strategy (described in subsection 3.4)

and in the automatic weighting of losses (described in sub-

section 3.5). It efficiently processes images with many peo-

ple, strong occlusion and various sizes in the image with a

complexity that does not depend on their number.

3. Method

3.1. Overview

Given an input image, PandaNet predicts a dense set

of human bounding boxes with their associated confidence

scores, 2D and 3D poses. These boxes are then filtered us-

ing non-maximum suppression to provide the final detec-

tions and human poses. As in most detection approaches

[37, 23, 35, 21, 5], our model uses predefined anchors.

These anchors are computed on the training dataset with

the clustering method used in [5, 35]. We define NA to be

the number of predefined human anchors used in the model,

NK the number of human joints and H and W the height

and the width of the network output. The model returns:

(1) Score maps Ĉ ∈ R
H×W×NA that contain the prob-

ability of an anchor to contain a subject (2) Box offsets

maps B̂ ∈ R
H×W×NA×4 (3) 2D joints coordinates maps

P̂ 2D ∈ R
H×W×NA×NK×2 that contain the full 2D pose

vectors expressed relatively to their corresponding anchor

(4) 3D joints coordinates maps P̂ 3D ∈ R
H×W×NA×NK×3

that contain root relative 3D human poses.

PandaNet is a multi-task network based on LapNet, the

single-shot object detection model proposed in [5] which

has today the best accuracy/inference time trade-off. The

architecture of the proposed model, detailed in Figure 3,

slightly differs from LapNet. First, sub-pixel convolutions

are applied [41] to the feature maps to obtain higher resolu-

tion maps that are crucial to detect and estimate the human

pose of people at low resolution. Secondly, a 2D pose and

3D pose regression heads are added.

3.2. Anchor­based Multi­person Pose Formulation

For a given image I , we define B = {bn ∈ R
4} as the

set of ground truth bounding boxes n ∈ [1, . . . , N ] and N

is the number of visible people. P2D = {p2Dn ∈ R
2×NK}

and P3D = {p3Dn ∈ R
3×NK} are the sets of corresponding

2D and 3D human poses.

In order to train PandaNet, a grid of anchors A ∈
R

H×W×NA×4 is defined. Ai,j,a is an element of this grid at

output position (i, j) for anchor a. Let B ∈ R
H×W×NA×4

be the grid of matched bounding boxes, each of its element

is defined as:

Bi,j,a = argmax
bn∈B

IoU(bn, Ai,j,a) (1)

Similarly, P 2D and P 3D are defined respectively as the

grids of matched 2D poses and 3D poses:

P 2D
i,j,a = p2Dn | bn = Bi,j,a (2)

P 3D
i,j,a = p3Dn | bn = Bi,j,a (3)

In other words, P 2D
i,j,a and P 3D

i,j,a are the 2D and 3D hu-

man poses of the subject matched by the anchor Ai,j,a

The Per-Object Normalised Overlap (PONO) map [5] O

is used. Oi,j,a is the IoU between anchor Ai,j,a and ground

truth Bi,j,a, normalised by the maximum overlap between

Bi,j,a and all matched anchors to this ground truth.

The positive anchors A+ are the set of matched anchors

that have a PONO value greater than 0.5. Only bounding

boxes and human poses associated to anchors in A+ will be

supervised, like described in the next subsection.

3.3. Bounding box offsets and human poses super­
vision

3.3.1 IoU based bounding-box offsets supervision

Most detection approaches use SmoothL1 or Mean Squared

Error losses to predict bounding box offsets that fit the

ground truth bounding boxes. More recently, some methods

prefer to optimize the Intersection over Union (IoU) loss

[45, 5] or its extension [38] taking benefit of its invariance

to scale. We also used the IoU loss to supervise bounding

box offsets prediction and, for an anchor a at location (i, j),
we define the overlap function as:

Ôi,j,a = IoU(Bi,j,a, B̂i,j,a) (4)

where B̂i,j,a is the predicted box, i.e the anchor Ai,j,a

transformed with estimated offsets. The pixel-wise locali-

sation loss is then obtained with:

Lloc(i, j, a) =

{
∥

∥

∥
1− Ôi,j,a

∥

∥

∥

2

, if Ai,j,a ∈ A+

0, otherwise
(5)

3.3.2 IoU based 2D human pose supervision

While our main objective is single-shot multi-person 3D

pose estimation, PandaNet also regresses 2D human poses

for two reasons. Firstly, the predicted 2D poses are needed

in the pose-aware pixel-wise classification loss defined in

subsection 3.4. Secondly, by minimizing the reprojection

loss between a 2D human pose and a root relative 3D hu-

man pose, one can obtain the 3D human pose in the camera

reference. Regressing 2D human poses is challenging be-

cause of large variations in scale between people. So, we

introduce a IoU loss to supervise this step. We designate by

P 2D
i,j,a,k the ground-truth 2D coordinates in the anchor coor-

dinate system of the joint k of the subject matched with the
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Figure 3: PandaNet architecture. The input image is passed through a backbone network. A second stage is used to compute

pyramid feature maps at several resolutions and semantic levels (like done by FPN [21]). Four 3x3 convolutions are applied

to these feature maps. The resulting maps are then upsampled to the size of the highest resolution feature map. After multi-

scale feature concatenation and subpixels convolution, four convolutional heads are used to provide the four outputs. Each

head is composed by four 3x3 convolutions and one final convolutional layer for the output.

anchor a. These coordinates are obtained from the coordi-

nates in the image space by translating them to the center of

the anchor and dividing them by the width and the height of

the anchor. P̂ 2D
i,j,a,k are the corresponding predicted coordi-

nates in the anchor space. Two unit squares in the anchor

space, Ŝi,j,a,k and Si,j,a,k, centred at positions P̂ 2D
i,j,a,k and

P 2D
i,j,a,k are defined to compute the IoU loss and the pixel-

wise 2D pose loss for joint k:

Ô2D
i,j,a,k = IoU(Si,j,a,k, Ŝi,j,a,k) (6)

L2D(i, j, a, k) =

{
∥

∥

∥
1− Ô2D

i,j,a,k

∥

∥

∥

2

, if Ai,j,a ∈ A+

0, otherwise

(7)

3.3.3 3D human pose supervision

PandaNet is trained to predict scale normalised 3D human

poses translated to the pelvis. The sum of the subject bones

length is equal to 1. As all 3D poses are predicted at the

same scale, an Euclidean distance is used as supervision.

The pixel-wise 3D pose loss for joint k between the ground-

truth 3D joints coordinates P 3D
i,j,a,k and their corresponding

predicted coordinates P̂ 3D
i,j,a,k is defined by :

(8)

L3D(i, j, a, k)

=

{
∥

∥

∥
P 3D
i,j,a,k − P̂ 3D

i,j,a,k

∥

∥

∥

2

, if Ai,j,a ∈ A+

0, otherwise

3.4. Pose­Aware Anchor Selection

As illustrated in Figure 4, some of the positive anchors in

A+ are not suited for the readout of consistent human poses.

When several subjects overlap, these anchors may contain

more than one person. This can lead to erroneous predicted

bounding boxes and incorrect human poses. Consequently,

at inference, precise readout locations are needed to deter-

mine the final bounding boxes and poses. To do so, the

(a) Input Im-

age

(b) Grid of

Anchors A.

(c) Matched

Anchors A+

(d) Selected

Anchors A++

Figure 4: Pose-Aware Anchors Selection. A grid of an-

chors A is first computed at all output 2D positions (Figure

4b). An example of an anchor is depicted in yellow. The

matched anchors A+ correspond to anchors with a suffi-

cient PONO (depicted in red and blue in Figure 4c ). Nev-

ertheless, some of these anchors are ambiguous (crossed

anchors in 4c) as they correspond to overlapping persons.

They are filtered by the Pose-Aware Anchors Selection

strategy to obtain the set of non-ambiguous positive readout

anchors A++ depicted in Figure 4d (best viewed in color).

network should be trained to consider ambiguous anchors

as negative. We define A++ to be the set of non ambiguous

readout anchors.

A way to filter A+ to get A++ is to threshold the product

of the overlap between ground truth and predicted bounding

boxes Ôi,j,a and the PONO value Oi,j,a , as it is done in

[5]. In other words, an anchor belongs to A++ if the box

predicted by this anchor correctly fit its associated ground

truth. For detection purpose this strategy may be sufficient

to solve ambiguities, but for pose estimation such a filtering

is too coarse. Anchors in A++ must lead to the readout

of valid and unambiguous human poses. To this end, we

introduce a Pose-Aware Anchor Selection strategy based on

2D poses overlap. This overlap Ô2D
i,j,a is defined as the mean

of Ô2D
i,j,a,k for all joints k of the subject.

Thus, the Positive Readout Anchors Labels (Ci,j,a) are

defined by :

Ci,j,a =

{

1 if Oi,j,a × Ô2D
i,j,a > 0.5

0 otherwise
(9)
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The pixel-wise classification loss is then defined by:

Lcls(i, j, a) = H(Ci,j,a, Ĉi,j,a) (10)

where H is the standard binary cross-entropy.

3.5. Automatic weighting of losses with ho­
moscedastic uncertainty

A classical problem in training a multi-task network is to

properly weight each task. Kendall et al. [15] propose a loss

based on the homoscedastic uncertainty (i.e independent of

the input data) to weight multiple losses in a multi-task net-

work. Another issue in single-shot multi-person pose esti-

mation is the imbalance between subject’s sizes in the im-

age. In real-world images, there are both a large range of

distances to the camera and an imbalance in people sizes

in the image. In Lapnet [5], anchor weights are learned

to solve this problem for rigid object detection. In multi-

person pose estimation tasks of PandaNet, uncertainties re-

lated to joints have to be managed. Indeed, as joints have

different degrees of freedom, predictions associated to hips

are more certain than predictions associated to hands for

instance. Uncertainty also depends on people sizes in the

image. A network is less precise for people at low resolu-

tion than for high resolution people. Furthermore, far from

the camera people are more prone to occlusions than other

people making the regressed coordinates associated to these

people more uncertain. This is why we propose to learn

joint specific regression weights for each predefined anchor

and introduce the following loss functions:

(11)

Lcls =
λcls

HWNA

∑

a

λa
cls

∑

i,j

Lcls(i, j, a)

+ log(
1

λcls

) +
1

NA

∑

a

log(
1

λa
cls

)

(12)

Lloc =
λloc

N+

∑

a

λa
loc

∑

i,j

Lloc(i, j, a)

+ log(
1

λloc

) +
1

NA

∑

a

log(
1

λa
loc

)

(13)

L2D =
λ2D

NKN+

∑

i,j,a,k

λ
a,k
2DL2D(i, j, a, k)

+
1

NKNA

∑

a,k

log(
1

λ
k,a
2D

)

(14)

L3D =
λ3D

NKN+

∑

i,j,a,k

λ
a,k
3DL3D(i, j, a, k)

+
1

NKNA

∑

a,k

log(
1

λ
k,a
3D

)

where λcls, λloc, λPose2D and λPose3D are the task

weights, λa
cls and λa

loc are the anchors weights and λ
a,k
Pose2D

and λ
a,k
Pose3D are the anchor-joint regression weights. N+

is the number of anchors in A+. All weights λ are train-

able variables. All terms log( 1
λ
) are regularisation terms

that avoid all λ to converge to 0. The final total loss is :

(15)Ltotal = Lcls + Lloc + L2D + L3D

4. Experimental Results

PandaNet’s performance is evaluated on three datasets:

JTA [8], CMU-Panoptic [14] and MuPoTS-3D [28].

Evaluation Metrics: To evaluate multi-person 3D pose

approaches, we use two metrics. The first one is the Mean

per Joint Position Error (MPJPE) that corresponds to the

mean Euclidean distance between the ground truth and the

prediction for all people and all joints. The second one is

the 3DPCK which is the 3D extension of the Percentage of

Correct Keypoints (PCK) metric used for 2D pose evalua-

tion. A joint is considered correctly estimated if the error in

its estimation is less than 150mm. If an annotated subject

is not detected by an approach, we consider all of its joints

to be incorrect in the 3DPCK metric. The human detection

performance is evaluated with the Average Precision (AP)

used in the PASCAL VOC challenge [7].

Training Procedure: The method was implemented and

tested with TensorFlow 1.12. In all our experiments, the

model is trained with mini-batches of 24 images. SGD op-

timiser is used with a momentum of 0.9, an initial learning

rate of 0.005 and a polynomial decay policy of 0.9. Ran-

dom crops and random scales are used for data augmenta-

tion. Synchronized batch normalisation across GPU is used.

Darknet-53 [36] is used as backbone. The number of an-

chors NA is set to 10 in all experiments.

4.1. JTA dataset results

JTA (Joint Track Auto) is a dataset for human pose esti-

mation and tracking in urban environment. It was collected

from the realistic video-game the Grand Theft Auto V and

contains 512 HD videos of 30 seconds recorded at 30 fps.

The collected videos feature a vast number of different body

poses, in several urban scenarios at varying illumination

conditions and viewpoints. People perform different ac-

tions like walking, sitting, running, chatting, talking on the

phone, drinking or smoking. Each image contains a number

of people ranging between 0 and 60 with an average of 21

people. The distance from the camera ranges between 0.1 to

100 meters, resulting in pedestrian heights between 20 and

1100 pixels. No existing dataset with annotated 3D poses is

comparable with JTA dataset in terms of number and sizes

of people. An input image size of 928x576 is used.
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Anchor Selection AP 3DPCK

No 84.1 80.7

BB-Aware [5] 85.1 81.9

Pose-Aware (Ours) 85.3 83.2

Table 1: Influence of the Anchor Selection Strategy. All the

models are trained with the Automatic Weighting of Losses.

task anchor joint AP 3DPCK

1 1 1 21.7 15.8

learned 1 1 84.1 80.8

learned learned 1 85.2 81.7

learned learned learned 85.3 83.2

Table 2: Influence of the Automatic Weighting of Losses.

task, anchor and joint represent the type of trainable λ

weights. All the models are trained with the Pose-Aware

Anchor Selection Strategy.

4.1.1 Ablation Studies

Pose-Aware Anchor Selection strategy: Table 1 results

show the effectiveness of the Pose-Aware Anchor Selection.

We compare three variants of PandaNet. The first variant

(first line) is a model where no anchor selection strategy is

used. It corresponds to a model where only the PONO over-

lap Oi,j,a is considered in equation 9. Using the Bounding-

box Aware Anchor Selection [5] (second row), improves

the model performance over this baseline. Box detection

and 3D pose estimation take all benefit of this anchor selec-

tion strategy. Using the proposed Pose-Aware Anchor Se-

lection (third row) maintain the AP value while improving

the 3DPCK, showing its effectiveness for choosing better

anchors for 3D pose estimation.

Automatic Weighting of Losses: The influence of Au-

tomatic Weighting of Losses is detailed in Table 2. When

the λ’s are all set to 1 (first line) and not trained, the model

has poor performance on all tasks. Learning task-specific

λloc, λcls, λ2D and λ3D (second row) allow the network

to converge and to achieve good performances on all tasks.

Learning anchor weights λa
loc and λa

cls (third row) improves

detection and 3D pose estimation performances. The best

results are obtained when all λ’s are learned, showing the

importance of the proposed automatic weighting of losses.

4.1.2 Comparison with prior work

The approach in [3] is the only method that provides 3D

results on the JTA dataset. We compare PandaNet with the

best model in [3] i.e the model with multi-scale inference.

Table 3 provides 3DPCK results according to the dis-

tance of people to the camera. PandaNet outperforms the

model of Benzine et al. [3] on all camera distances demon-

Dist. <10 10-20 20-30 30-40 >40 All

[3] 55.8 61.6 42.2 36.0 41.7 43.9

Ours 95.6 93.7 87.3 80.5 71.2 83.2

Table 3: Distance wise 3DPCK on the JTA dataset. Dis-

tance are in meters.

strating the ability of PandaNet to properly process people

at all scales. While our model achieve very good results for

people close to the camera (less than 20m), it also correctly

handles people who are further from the camera.

Table 4 provides joint-wise results on the JTA dataset.

PandaNet outperforms the model of Benzine et al. [3] for

all joints. In particular, it has no difficulties to estimate

3D coordinates for the joints that have the fewest degrees

of freedom (head, neck, clavicles , hips and spines) with

a 3DPCK for these joints greater than 92%. PandaNet in-

creases the 3DPCK for the shoulders by 44.6% and for the

elbows by 34.9%. Terminal joints (wrists and ankles) are

the most difficult joints with a 3DPCK of 60.1% and 58.0%

for these joints against 19.0% and 8.9% for [3].

4.2. CMU­Panoptic results

CMU Panoptic [14] is a dataset containing images with

several people performing different scenarios in a dome

where many cameras are placed. Although it was acquired

in a simple and controlled environment, this dataset is chal-

lenging because of complex interactions and difficult cam-

era viewpoints. We evaluate PandaNet using the protocol

used in [48, 49, 2]. The test set is composed of 9600 frames

from HD cameras 16 and 30 and for 4 scenarios: Haggling,

Mafia, Ultimatum, Pizza. The model is trained on the other

28 HD cameras of CMU Panoptic. An input image size of

512x320 is used on all Panoptic experiments.

On this dataset, PandaNet improves the results over the

recent state of the art methods on all scenarios (Table 5).

The average MPJPE is improved by 25.8mm compared to

the best previous approach. While the results on JTA prove

the ability of the model to deal with realistic urban scenes

with many people at low resolution, results on the Panoptic

dataset show that the approach is effective to manage people

overlaps and crops that frequently occur in this dataset.

4.3. MuPoTS­3D results

MuPoTS-3D [28] is a dataset containing 20 sequences

with ground truth 3D poses for up to three subjects. Pan-

daNet is trained on the MuCo-3DHP dataset that is gen-

erated by compositing the existing MPI-INF-3DHP 3D

single-person pose estimation dataset [26], and on the

COCO-dataset [22] to ensure better generalisation. Each

mini-batch consists of half MuCo-3DHP and half COCO

images. For COCO data, the loss value for the 3D regres-
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Method head neck clavicles shoulders elbows wrists spines hips. knees ankles all

[3] 41.1 44.6 44.9 33.8 27.2 19.0 74.4 73.9 25.7 8.9 43.9

Ours 92.7 99.1 97.0 78.4 72.1 60.1 99.9 87.8 71.8 58.0 83.2

Table 4: Joint wise 3DPCK.

Method Haggling Mafia Ultimatum Pizza Mean

[48] 140.0 165.9 150.7 156.0 153.4

[49] 72.4 78.8 66.8 94.3 72.1

[2] 70.1 66.6 55.6 78.4 68.5

Ours 40.6 37.6 31.3 55.8 42.7

Table 5: MPJPE in mm on the Panoptic dataset.

Method 3DPCK

Two-Stage

LCR-Net[39] 53.8

LCR-Net++ [40] 70.6

Moon et al. [29] 81.8

Single-Shot

Mehta et al. [28] 66.0

XNect [27] 70.4

PandaNet 72.0

Table 6: 3DPCK on the MuPoTS-3D dataset.

Figure 5: Running time comparison with the approach of

Moon et al. [30] according to the number of people per

image. Experiments are performed on a NVIDIA Titan X

GPU. Images come from JTA Dataset [8].

sion task is set to zero. An input image size size of 512x512

is used and Subpixel convolutions are removed.

Table 6 provides 3DPCK results on this dataset. Pan-

daNet achieve higher 3DPCK than previous single-shot ap-

proaches. It improves over an ORPM method [28] by 6%

and over XNect [27] by 1.6%. XNect is composed of two

different models. The first one predicts partial 2D and 3D

pose encoding and the second one refines these encodings

to get final full 3D poses. Consequently, the weaknesses

of the first model (like joints occlusions and people crops)

are compensated by the second one. We achieve better re-

sults with a single model without any refinement process.

Compared to two-stage models, PandaNet achieves better

results than LCR-Net [39] and LCR-Net++ [40]. Com-

pared to the approach of Moon et al. [30], PandaNet has

a lower 3DPCK. This top-down approach uses an external

two-stage object detector (Faster-R CNN [37]) to compute

human bounding boxes and forward each cropped subject

to a single-person 3D person approach [43]. Therefore,

the computation complexity of their model depends on the

number of people in the image like illustrated in Figure 5.

If the number of people is large, this approach scales badly.

On the contrary, the proposed single-shot model allows a

nearly constant inference time regarding the number of peo-

ple. The inference time of PandaNet is about 140ms for

images with 60 people on a NVIDIA Titan X GPU.

5. Conclusion

PandaNet is a new anchor-based single-shot multi-

person pose estimation model that efficiently handles scene

with a large number of people, large variation in scale and

people overlaps. This model predicts in a single-shot way

people bounding boxes and their corresponding 2D and 3D

pose. To properly manage people overlaps, we introduce

a Pose-Aware Anchor Selection strategy that discards am-

biguous anchors. Moreover, an automatic weighting has

been provided for three main purposes. It balances task-

specific losses, it compensates imbalance in people sizes

and it manages uncertainty related to joints coordinates.

The experiments validate the proposed Anchor-based

Multi-person Pose Regression framework and prove the

importance of the Pose-Aware Anchor Selection strategy

and of the Automatic Weighting. Furthermore, large-scale

experiments, on JTA, CMU Panoptic, and MuPoTS-3D

datasets demonstrate that PandaNet outperforms previous

single-shot state of the art methods.
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