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Abstract

We introduce a novel learning-based method to recon-

struct the high-quality geometry and complex, spatially-

varying BRDF of an arbitrary object from a sparse set of only

six images captured by wide-baseline cameras under collo-

cated point lighting. We first estimate per-view depth maps

using a deep multi-view stereo network; these depth maps

are used to coarsely align the different views. We propose a

novel multi-view reflectance estimation network architecture

that is trained to pool features from these coarsely aligned

images and predict per-view spatially-varying diffuse albedo,

surface normals, specular roughness and specular albedo.

Finally, we fuse and refine these per-view estimates to con-

struct high-quality geometry and per-vertex BRDFs. We

do this by jointly optimizing the latent space of our multi-

view reflectance network to minimize the photometric error

between images rendered with our predictions and the in-

put images. While previous state-of-the-art methods fail on

such sparse acquisition setups, we demonstrate, via exten-

sive experiments on synthetic and real data, that our method

produces high-quality reconstructions that can be used to

render photorealistic images.

1. Introduction

Reconstructing the 3D geometry and reflectance proper-

ties of an object from 2D images has been a long-standing

problem in computer vision and graphics, with applications

including 3D visualization, relighting, and augmented and

virtual reality. Traditionally this has been accomplished

using complex acquisition systems [5, 17, 41, 45, 56] or

multi-view stereo (MVS) methods [13, 40] applied to dense

image sets [34, 49]. The acquisition requirements for these

methods significantly limits their practicality. Recently, deep

neural networks have been proposed for material estimation

from a single or a few images. However, many of these meth-

ods are restricted to estimating the spatially-varying BRDF

(SVBRDF) of planar samples [10, 15, 31]. Li et al. [32]

demonstrate shape and reflectance reconstruction from a sin-

gle image, but their reconstruction quality is limited by their

single image input.

Our goal is to enable practical and high-quality shape
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Figure 1: From six wide-baseline input images of an ob-

ject captured under collocated point lighting (top row), our

method reconstructs high-quality geometry and spatially-

varying, non-Lambertian reflectance (bottom row, a tone

mapping is performed on specular albedo to make it more

visible), allowing us to re-render the captured object under

novel viewpoint and illumination (bottom, right).

and appearance acquisition. To this end, we propose using

a simple capture setup: a sparse set of six cameras—placed

at one vertex and the centers of the adjoining faces of a

regular icosahedron, forming a 60◦ cone—with collocated

point lighting (Fig. 2 left). Capturing six images should

allow for better reconstruction compared to single image

methods. However, at such wide baselines, the captured

images have few correspondences and severe occlusions,

making it challenging to fuse information across viewpoints.

As illustrated in Fig. 2, we propose a two-stage approach

to address this problem. First, we design multi-view geome-

try and reflectance estimation networks that regress the

2D depth, normals and reflectance for each input view

by robustly aggregating information across all sparse

viewpoints. We estimate the depth for each input view using

a deep multi-view stereo network [50, 53] (Sec. 3.1). Be-

cause of our sparse capture, these depth maps contain errors

and cannot be used to accurately align the images to estimate

per-vertex BRDFs [34, 56]. Instead, we use these depth

maps to warp the images to one viewpoint and use a novel

deep multi-view reflectance estimation network to estimate

per-pixel normals and reflectance (parameterized by diffuse

albedo, specular albedo and roughness in a simplified Disney

BRDF model [24]) for that viewpoint (Sec. 3.2). This net-

work extracts features from the warped images, aggregates
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Figure 2: Our acquisition setup (leftmost figure) and framework. We capture six images with collocated cameras and lights

placed at a vertex (green circle 1) and five adjoining face centers (green circle 2-6) of an icosahedron. Using the six images,

we predict per-view depth (red block). We warp the input images using the predicted depths and pass them to a multi-view

SVBRDF estimation network to get per-view SVBRDFs (blue block). Finally, we reconstruct 3D geometry from the estimated

depth and normals, and perform a joint optimization to get refined geometry and per-vertex BRDFs (yellow block).

them across viewpoints using max-pooling, and decodes the

pooled features to estimate the normals and SVBRDF for

that viewpoint. This approach to aggregate multi-view in-

formation leads to more robust reconstruction than baseline

approaches like a U-Net architecture [38], and we use it to

recover normals and reflectance for each view.

Second, we propose a novel method to fuse these per-

view estimates into a single mesh with per-vertex BRDFs

using optimization in a learnt reflectance space. First, we

use Poisson reconstruction [25] to construct a mesh from the

estimated per-view depth and normal maps (Sec. 3.3). Each

mesh vertex has multiple reflectance parameters correspond-

ing to each per-view reflectance map, and we fuse these

estimates to reconstruct object geometry and reflectance

that will accurately reproduce the input images. Instead

of optimizing the per-vertex reflectance parameters, which

leads to outliers and spatial discontinuities, we optimize the

the latent features of our multi-view reflectance estimation

network (Sec. 3.4). We pass these latent features to the

reflectance decoder to construct per-view SVBRDFs, fuse

them using per-vertex blending weights, and render them

to compute the photometric error for all views. This entire

pipeline is differentiable, allowing us to backpropagate this

error and iteratively update the reflectance latent features

and per-vertex weights till convergence. This process refines

the reconstruction to best match the specific captured im-

ages, while leveraging the priors learnt by our reflectance

estimation network.

We train our networks with a large-scale synthetic dataset

comprised of procedurally generated shapes with complex

SVBRDFs [50, 52] and rendered using a physically-based

renderer. While our method is trained with purely synthetic

data, it generalizes well to real scenes. This is illustrated in

Figs. 1 and 8, where we are able to reconstruct real objects

with complex geometry and non-Lambertian reflectance. Pre-

vious state-of-the-art methods, when applied to sparse input

images for such objects, produce incomplete, noisy geometry

and erroneous reflectance estimates (Figs. 4 and 7). In con-

trast, our work is the first to reconstruct detailed geometry

and high-quality reflectance from sparse multi-view inputs,

allowing us to render photorealistic images under novel view

and lighting.

2. Related Works

3D reconstruction. To reconstruct 3D geometry from image

sets, traditional methods [14, 28, 40] find correspondences

between two or more images utilizing specific image fea-

tures. Such methods are sensitive to illumination changes,

non-Lambertian reflectance and textureless surfaces. The

existence of multiple points with similar matching costs also

require these methods to have a large number of images

to get high-quality reconstructions (we refer the interested

readers to [14] for more details). In contrast, our method

reconstructs high-quality geometry for complex real scenes

from an order of magnitude fewer images.

Recently, numerous learning-based methods have been

proposed to reconstruct 3D shape using various geometric

representations, including regular volumes [21, 36, 47], point

clouds [1, 42] and depth maps [18, 53]. These methods can-

not produce high-resolution 3D meshes. We extend recent

learning-based MVS frameworks [50, 53] to estimate depth

from sparse multi-view images of objects with complex re-

flectance. We combine this depth with estimated surface

normals to reconstruct 3D meshes with fine details.

SVBRDF acquisition. SVBRDF acquisition is a chal-

lenging task that often requires a dense input image set

[12, 34, 49]. Many methods utilize sophisticated hardware

[33] or light patterns [17, 22, 41]. Reconstruction from

sparse images has been demonstrated for planar objects

[3, 31, 51], and known geometry [56]. In contrast, we re-

construct the geometry and complex reflectance of arbitrary

objects from a sparse set of six input images.

Photometric stereo methods have been proposed to recon-

struct arbitrary shape and SVBRDFs [4, 16]; however, they

focus on single-view reconstruction and require hundreds
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of images. Recent works [19, 34] utilize images captured

by a collocated camera-light setup for shape and SVBRDF

estimation. In particular, Nam et al. [34] capture more than

sixty images and use multi-view reconstruction and physics-

based optimization to recover geometry and reflectance. In

contrast, by designing novel deep networks, we are able to

reconstruct objects from only six images.

Learning-based methods have been applied for normal

and SVBRDF acquisition. Deep photometric stereo meth-

ods reconstruct surface normals from tens to hundreds of

images [6, 7] but they do not address reflectance or 3D geom-

etry estimation. Most deep SVBRDF acquisition methods

are designed for planar samples [2, 10, 11, 15, 30, 31]. Some

recent multi-image SVBRDF estimation approaches pool la-

tent features from multiple views [11] and use latent feature

optimization [15] but they only handle planar objects. Li

et al. [32] predict depth and SVBRDF from a single image;

however, a single input does not provide enough information

to accurately reconstruct geometry and reflectance. By cap-

turing just six images, our approach generates significantly

higher quality results.

3. Algorithm

Our goal is to accurately reconstruct the geometry and

SVBRDF of an object with a simple acquisition setup. Re-

cent work has utilized collocated point illumination for re-

flectance estimation from a sparse set of images [2, 3, 10,

31]; such lighting minimizes shadows and induces high-

frequency effects like specularities, making reflectance es-

timation easier. Similarly, Xu et al. [50] demonstrate novel

view synthesis from sparse multi-view images of a scene

captured under a single point light.

Motivated by this, we utilize a similar capture system

as Xu et al.—six cameras placed at one vertex of a regu-

lar icosahedron and the centers of the five faces adjoining

that vertex. Unlike their use of a single point light for all

images, we capture each image under a point light (nearly)

collocated with the corresponding camera (see Fig. 2 left).

The setup is calibrated giving us a set of n = 6 input im-

ages, {Ii}
n
i=1

with the corresponding camera calibration.

This wide baseline setup—with an angle of 37◦ between the

center and boundary views—makes it possible to image the

entire object with a small set of cameras. In the following,

we describe how we reconstruct an object from these sparse

input images.

3.1. Multi­View Depth Prediction

Traditional MVS methods depend on hand-crafted fea-

tures such as Harris descriptors to find correspondence be-

tween views. Such features are not robust to illumination

changes or non-Lambertian surfaces, making them unusable

for our purposes. In addition, due to the sparse inputs and

large baselines, parts of the object may be visible in as few

as two views. These factors cause traditional MVS methods

to fail at finding accurate correspondences, and thus fail to

reconstruct high-quality geometry.

Instead, we make use of a learning-based method to esti-

mate the depth. Given the input images {Ii}
n
i=1

, we estimate

the depth map Di for view i. Similar to recent works on

learning-based MVS [20, 50, 53], our network consists of

two components: a feature extractor F and a correspondence

predictor C. The feature extractor is a 2D U-Net [38] that

extracts a 16-channel feature map for each image Ii. To

estimate the depth map at Ii, we warp the feature maps of all

views to view i using a set of 128 pre-defined depth levels,

and build a 3D plane sweep volume [9] by calculating the

variance of feature maps over views. The 3D volume is fur-

ther fed to the correspondence predictor C that is a 3D U-Net

to predict the probability of each depth level. We calculate

the depth as a probability-weighted sum of all depth levels.

The training loss is defined as the L1 loss between predicted

depths and ground truth depths. By learning the feature rep-

resentations and correspondence, the proposed framework is

more robust to illumination changes and specularities, thus

producing more accurate pixel-wise depth predictions than

traditional methods.

While such networks are able to produce reasonable

depth, the recovered depth has errors in textureless regions.

To further improve the accuracy, we add a guided filter mod-

ule [46] to the network, which includes a guided map ex-

tractor G as well as a guided layer g. Let the initial depth

prediction at view i be D′i. The guided map extractor G takes

image Ii as input and learns a guidance map G(Ii). The final

depth map is estimated as:

Di = g(G(Ii), D
′

i). (1)

The training loss is defined as the L1 distance between pre-

dicted depths and ground truth depths. All components are

trained jointly in an end-to-end manner.

3.2. Multi­View Reflectance Prediction

Estimating surface reflectance from sparse images is a

highly under-constrained problem. Previous methods either

assume geometry is known [2, 3, 31, 10] or can be recon-

structed with specific devices [17] or MVS [34]. In our

case, accurate geometry cannot be reconstructed from sparse

inputs with traditional MVS methods. While our learning-

based MVS method produces reasonable depth maps, they

too have errors, making it challenging to use them to align

the images and estimate per-vertex SVBRDF. Instead, for

each input image Ii, we first estimate its corresponding nor-

mals, Ii, and SVBRDF, represented by diffuse albedo Ai,

specular roughness Ri and specular albedo Si.

To estimate the SVBRDF at view i, we warp all input

images to this view using predicted depths Di. One ap-

proach for multi-view SVBRDF estimation could be to feed
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this stack of warped images to a convolutional neural net-

work like the commonly used U-Net [31, 38]. However,

the inaccuracies in the depth maps lead to misalignments in

the warped images, especially in occluded regions, and this

architecture is not robust to these issues.

We propose a novel architecture that is robust to depth

inaccuracies and occlusions. As shown in Fig. 3, our net-

work comprises a Siamese encoder [8], E , and a decoder,

D, with four branches for the four SVBRDF components.

To estimate the SVBRDF at a reference view i, the encoder

processes n pairs of inputs, each pair including image Ii as

well as the warped image Ii←j , where we warp image Ij at

view j to the reference view i using the predicted depth Di.

To handle potential occlusions, directly locating occluded

regions in the warped images using predicted depths and

masking them out is often not feasible due to inaccurate

depths. Instead we keep the occluded regions in the warped

images and include the depth information in the inputs, al-

lowing the network to learn which parts are occluded.

To include the depth information, we draw inspiration

from the commonly used shadow mapping technique [44].

The depth input consists of two components: for each pixel

in view i, we calculate its depths Zi←j in view j; we also

sample its depth Z∗i←j from the depth map Dj by finding

its projections on view j. Intuitively if Zi←j is larger than

Z∗i←j , then the pixel is occluded in view j; otherwise it is

not occluded. In addition, for each pixel in the reference

view i, we also include the lighting directions Li of the light

at view i, as well as the lighting direction of the light at view

j, denoted as Li←j . We assume a point light model here.

Since the light is collocated with the camera, by including

the lighting direction we are also including the viewing di-

rection of each pixel in the inputs. All directions are in the

coordinate system of the reference view. Such cues are criti-

cal for networks to infer surface normals using photometric

information. Therefore, the input for a pair of views i and j

is:

Hi,j = {Ii, Ii←j , Zi←j , Z
∗

i←j , Li, Li←j}. (2)

The input contains 14 channels in total, and there are a total

of n such inputs. We feed all the inputs to the encoder

network E and get the intermediate features fi,j . All these

intermediate features are aggregated with a max-pooling

layer yielding a common feature representation for view i,

f∗i :

fi,j = E(Hi,j) (3)

f∗i = max-pool({fi,j}
n
j=1

) (4)

f∗i is fed to the decoder to predict each SVBRDF component

for view i:

Ai, Ni, Ri, Si = D(f∗i ) (5)

Encoder

Encoder

…

Max 

pooling

SVBRDF

decoder…

1,6

1,2

1
∗

1 1 1←2 1←2 1←2∗
1←2

1 1 1←6 1←6 1←6∗
1←6

Figure 3: Our multi-view SVBRDF estimation network.

An encoder extracts features from reference and warped

image pairs. These features are max-pooled to get a single

reference-view feature map, which is decoded to predict

that view’s SVBRDF. Note the errors in the warped images;

max-pooling mitigates their effect on the output SVBRDF.

Compared to directly stacking all warped images together,

our proposed network architecture works on pairs of in-

put images and aggregates features across views using a

max-pooling layer. The use of max-pooling makes the net-

work more robust to occlusions and misalignments caused by

depth inaccuracies and produces more accurate results (see

Tab. 1). It also makes the network invariant to the number

and order of the input views, a fact that could be utilized

for unstructured capture setups. The training loss L of the

network is defined as:

L = LA + LN + LR + LS + LI (6)

where the first four terms are the L2 losses for each SVBRDF

component, and LI is the L2 loss between input images and

rendered images generated with our predictions.

3.3. Geometry Reconstruction

The previous multi-view depth and SVBRDF estimation

networks give us per-view depth and normal maps at full-

pixel resolution. We fuse these per-view estimates to recon-

struct a single 3D geometry for the object. We first build a

point cloud from the depth maps, by generating 3D points

from each pixel in every per-view depth map. For each point,

we also get its corresponding normal from the estimated nor-

mal maps. Given this set of 3D points with surface normals,

we perform a Poisson reconstruction [26] to reconstruct the

fused 3D geometry. The initial point clouds may contain

outliers due to inaccuracies in the depth maps. To get rid

of undesired structures in the output geometry, we generate

a coarse initial geometry by setting the depth of the spatial

octree in Poisson reconstruction to 7—corresponding to an

effective voxel resolution of 1283. We refine this initial ge-

ometry in the subsequent stage. Compared to learning-based

3D reconstruction methods that directly generate geometry

(voxel grids [23, 37], implicit functions [35, 39] or trian-

gle meshes [43]) from images, this approach generalizes to

arbitrary shapes and produces more detailed reconstructions.
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3.4. SVBRDF and Geometry Refinement

Given the initial coarse geometry as well as the per-view

SVBRDF predictions, we aim to construct a detailed 3D

mesh with per-vertex BRDFs. For each vertex, a trivial way

to get its BRDF is to blend the predicted SVBRDFs across

views using pre-defined weights such as the dot product of

the viewing directions and surface normals. However, this

leads to blurry results (Fig. 5), due to the inconsistencies in

the estimated SVBRDFs and the geometry. Also note that

our SVBRDF predictions are computed from a single feed-

forward network pass, and are not guaranteed to reproduce

the captured input images exactly because the network has

been trained to minimize the reconstruction loss on the entire

training set and not this specific input sample.

We address these two issues with a novel rendering-based

optimization that estimates per-vertex BRDFs that minimize

the error between rendering the predicted parameters and

the captured images. Because of the sparse observations,

independently optimizing per-vertex BRDFs leads to arti-

facts such as outliers and spatial discontinuities, as shown in

Fig. 5. Classic inverse rendering methods address this using

hand-crafted priors. Instead, we optimize the per-view fea-

ture maps f∗i that are initially predicted from our SVBRDF

encoder ( Eqn. 4). These latent features, by virtue of the

training process, capture the manifold of object reflectances,

and generate spatially coherent per-view SVBRDFs when

passed through the decoder, D (Eqn. 5). Optimizing in this

feature space allows us to adapt the reconstruction to the

input images, while leveraging the priors learnt by our multi-

view SVBRDF estimation network.

Per-vertex BRDF and color. For each vertex vk, we rep-

resent its BRDF bk as a weighted average of the BRDF

predictions from multiple views:

bk =
n∑

i=1

wk,iD(pk,i; f
∗

i ), (7)

where pk,i is the corresponding pixel position of vk at view i,

D(pk,i; f
∗

i ) represents the SVBRDF prediction at pk,i from

view i by processing f∗i via the decoder network D, and

wk,i are the per-vertex view blending weights. The rendered

color of vk at view i is calculated as:

I∗i (pk,i) = Θ(bk, Li(pk,i)), (8)

where Li(pk,i) is the lighting direction and also the viewing

direction of vertex vk at view i, and Θ is the rendering

equation. We assume a point light source collocated with

the camera (which allows us to ignore shadows), and only

consider direct illumination in the rendering equation.

Per-view warping. Vertex vk can be projected onto view

i using the camera calibration; we refer to this projection

as uk,i. However, the pixel projections onto multiple views

might be inconsistent due to inaccuracies in the reconstructed

geometry. Inspired by Zhou et al. [55], we apply a non-rigid

warping to each view to better align the projections. In

particular, for each input view, we use a T × T grid with

C = T 2 control points (T = 11 in our experiments) to

construct a smooth warping field over the image plane. Let

ti,c be the translation vectors of control points at view i. The

resulting pixel projection, pk,i, is given by:

pk,i = uk,i +
C∑

c=1

θc(uk,i)ti,c, (9)

where θc returns the bilinear weight for a control point ti,c
at pixel location uk,i.

SVBRDF optimization. We optimize per-view latent fea-

tures f∗i , per-vertex blending weights wk,i and per-view

warping fields ti,c to reconstruct the final SVBRDFs. The

photometric consistency loss between the rendered colors

and ground truth colors for all K vertices is given by:

Ephoto(f
∗

i , w, t) =
1

n ·K

K∑

k=1

n∑

i=1

||I∗i (pk,i)− Ii(pk,i)||
2

2
.

We clamp the rendered colors to the range of [0, 1] before

calculating the loss. To prevent the non-rigid warping from

drifting, we also add an L2 regularizer to penalize the norm

of the translation vectors:

Ewarp(t) =
1

n · C

n∑

i=1

C∑

c=1

||ti,c||
2

2
. (10)

Therefore the final energy function for the optimization is:

E = Ephoto(f
∗, w, t) + λEwarp(t). (11)

We set λ to 100 , and optimize the energy function with

Adam optimizer [27] with a learning rate of 0.001.

Geometry optimization. We use the optimized per-vertex

normal, nk, to update the geometry of the object by re-

solving the Poisson equation (Sec. 3.3). Unlike the initial

geometry reconstruction, we set the depth of the spatial oc-

tree to 9—corresponding to a voxel resolution of 5123—to

better capture fine-grained details of the object. We use

this updated geometry in subsequent SVBRDF optimization

iterations. We update the geometry once for every 50 itera-

tions of SVBRDF optimization, and we perform 400− 1000
iterations for the SVBRDF optimization.

Per-vertex refinement. The bottleneck in our multi-

view SVBRDF network—that we use as our reflectance

representation—may cause a loss of high-frequency details

in the predicted SVBRDFs. We retrieve these details back
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by directly optimizing the BRDF parameters bk of each ver-

tex to minimizing the photometric loss in Eqn. (10). Note

that after the previous optimization, the estimated BRDFs

have already converged to good results and the rendered

images are very close to the input images. Therefore, in this

stage, we use a small learning rate (0.0005), and perform the

optimization for a small number (40− 100) of iterations.

4. Implementation and Results

Training data. We follow Xu et al. [50] and procedurally

generate complex scenes by combining 1 to 5 primitive

shapes such as cylinders and cubes displaced by random

height maps. We generate 20, 000 training and 400 testing

scenes. We divide the high-quality materials from the Adobe

Stock dataset1 into a training and testing set, and use them

to texture the generated scenes separately. For each scene,

following the setup discussed in Sec. 1, we render the 6 input

view images with a resolution of 512× 512 using a custom

Optix-based global illumination renderer with 1000 samples

per pixel. We also render the ground truth depth, normals,

and SVBRDF components for each view.

Network architecture. For depth estimation, we use a 2D

U-Net architecture [38] for the feature extractor, F , and

guidance map extractor, G. Both networks have 2 downsam-

pling/upsampling blocks. The correspondence predictor C is

a 3D U-Net with 4 downsampling/upsampling blocks. For

multi-view SVBRDF estimation, both the encoder E and

decoder D are 2D CNNs, with 3 downsampling layers in

E and 3 upsampling layers in D. Note that we do not use

skip connections in the SVBRDF network; this forces the

latent feature to learn a meaningful reflectance space and

allows us to optimize it in our refinement step. We use group

normalization [48] in all networks. We use a differentiable

rendering layer that computes local shading under point

lighting without considering visibility or global illumination.

This is a reasonable approximation in our collocated lighting

setup. For more details, please refer to the supplementary

document.

Training details. All the networks are trained with the

Adam optimizer [27] for 50 epochs with a learning rate

of 0.0002. The depth estimation networks are trained on

cropped patches of 64 × 64 with a batch size of 12, and

the SVBRDF estimation networks are trained on cropped

320 × 320 patches with a batch size of 8. Training took

around four days on 4 NVIDIA Titan 2080Ti GPUs.

Run-time. Our implementaion has not been optimized for

the best timing efficiency. In practice, our method takes

around 15 minutes for full reconstruction from images with

a resolution of 512 × 512, where most of the time is for

geometry fusion and optimization.

1https://stock.adobe.com/search/3d-assets

Diffuse Normal Roughness Specular

Naive U-Net 0.0060 0.0336 0.0359 0.0125

Ours 0.0061 0.0304 0.0275 0.0086

Li et al. [32] 0.0227 0.1075 0.0661 —

Ours (256× 256) 0.0047 0.0226 0.0257 0.0083

Table 1: Quantitative SVBRDF evaluation on a synthetic

test set. We report the L2 error. Since Li et al. [32] work

on 256× 256 images, we downsample and evaluate at that

resolution. Also, they do not predict the specular albedo.

4.1. Evaluation on Synthetic Data

We evaluate our max-pooling-based multi-view SVBRDF

estimation network on our synthetic test set. In particu-

lar, we compare it with a baseline U-Net (with 5 down-

sampling/upsampling blocks) that takes a stack of all the

coarsely aligned images (Hi,j∀j in Eqn. 2) as input for its

encoder, and skip connections from the encoder to the four

SVBRDF decoders. This architecture has been widely used

for SVBRDF estimation [10, 31, 32]. As can be seen in

Tab. 1, while our diffuse albedo prediction is slightly (1.7%)

worse than the U-Net we significantly outperform it in spec-

ular albedo, roughness and normal predictions, with 31%,

23% and 9.5% lower L2 loss respectively. This is in spite of

not using skip-connections in our network (to allow for opti-

mization later in our pipeline). We also compare our results

with the state-of-the-art single-image shape and SVBRDF

estimation method of Li et al. [32]. Unsurprisingly, we out-

perform them significantly, demonstrating the usefulness of

aggregating multi-view information.

4.2. Evaluation on Real Captured Data

We evaluate our method on real data captured using a

gantry with a FLIR camera and a nearly collocated light to

mimic our capture setup. Please refer to the supplemen-

tary material for additional results.

Evaluation of geometry reconstruction. Our framework

combines our predicted depths and normals to reconstruct

the initial mesh. Figure 4 shows the comparison between our

reconstructed mesh and the mesh from COLMAP, a state-of-

the-art multi-view stereo framework [40]. From such sparse

inputs and low-texture surfaces, COLMAP is not able to

find reliable correspondence across views, which results in a

noisy, incomplete 3D mesh. In contrast, our initial mesh is

already more complete and detailed, as a result of our more

accurate depths and normals. Our joint optimization further

refines the per-vertex normals and extracts fine-scale detail

in the object geometry.

Evaluation of SVBRDF optimization. We compare our

SVBRDF and geometry optimization scheme (Sec. 3.4) with

averaging the per-view predictions using weights based on

5965



COLMAP Our ini�al geometry Our op�mized geometry 
Figure 4: Comparison on geometry reconstruction.

COLMAP fails to reconstruct a complete mesh from the

sparse inputs. In contrast, our initial mesh is of much higher

quality, and our joint optimization recovers even more fine-

grained details on the mesh. Input image in Fig. 8 (top).

No op�miza�on Direct op�miza�on Ground truthOur op�miza�on
Figure 5: Comparison on SVBRDF optimization. Simple

averaging without optimization produces blurry results, and

direct per-vertex optimization results in outliers and discon-

tinuities. In comparison, our optimization generates more

visually plausible results.

Our ini�al geometry [Nam et al. 2018] Our op�mized geometry 

Figure 6: Comparison with Nam et al. [34]. While both

have the same initialization, our learning-based refinement

produces more accurate, detailed geometry. Input in Fig. 8.

the angle between the viewpoint and surface normal, as well

as this averaging followed by per-vertex optimization. From

Fig. 5 we can see that the weighted averaging produces blurry

results. Optimizing the per-vertex BRDFs brings back detail

but also has spurious discontinuities in appearance because

of the lack of any regularization. In contrast, our latent-space

optimization method recovers detailed appearance without

these artifacts.

Comparisons against Nam et al. [34] We also compare

our work with the state-of-the-art geometry and reflectance

reconstruction method of Nam et al. Their work captures

60+ images of an object with a handheld camera under col-

located lighting; they first use COLMAP [40] to reconstruct

the coarse shape and use it to bootstrap a physics-based opti-

mization process to recover per-vertex normals and BRDFs.

COLMAP cannot generate complete meshes from our sparse

inputs (see Fig. 4). Therefore, we provided our input images,

camera calibration, and initial geometry to the authors who

processed this data. As can be seen in Fig. 6, our final recon-

structed geometry has significantly more details than their

final optimized result in spite of starting from the same ini-

tialization. Since they use a different BRDF representation

than ours, making direct SVBRDF comparisons difficult, in

Fig. 7 we compare renderings of the reconstructed object

under novel lighting and viewpoint. These results show that

they cannot handle our sparse input and produce noise, er-

roneous reflectance (CAT scene) or are unable to recover

the specular highlights of highly specular objects (CACTUS)

scene. In comparison, our results have significantly higher

visual fidelity. Please refer to the supplementary video for

more renderings.

More results on real data. Figure 8 shows results from

our method on additional real scenes. We can see here that

our method can reconstruct detailed geometry and appear-

ance for objects with a wide variety of complex shapes and

reflectance. Comparing renderings of our estimates under

novel camera and collocated lighting against ground truth

captured photographs demonstrates the accuracy of our re-

constructions. We can also photorealistically render these

objects under novel environment illumnination. Please refer

to the supplementary document and video for more results.

Limitations. Our method might fail to handle highly non-

convex objects, where some parts are visible in as few as

a single view and there are no correspondence cues to in-

fer correct depth. In addition, we do not consider global

illumination in SVBRDF optimization. While it is a rea-

sonable approximation in most cases, it might fail in some

particular scenes with strong inter-reflections. For future

work, it would be interesting to combine our method with

physics-based differentiable rendering [29, 54] to handle

these complex light transport effects.

5. Conclusion

We have proposed a learning-based framework to recon-

struct the geometry and appearance of an arbitrary object

from a sparse set of just six images. We predict per-view

depth using learning-based MVS, and design a novel multi-

view reflectance estimation network that robustly aggregates

information from our sparse views for accurate normal and

SVBRDF estimation. We further propose a novel joint
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[Nam et al. 2018]

with our geometry
OursCaptured object

[Nam et al. 2018]

with our geometry
Ours

Figure 7: Comparison with Nam et al. [34]. We render two reconstructed objects under novel viewpoints and lighting. Nam

et al. are not able to accurately reconstruct appearance from sparse views, and produce noisy edges and incorrect specular

highlights (top) or miss the specular component completely (bottom). In contrast, our method produces photorealistic results.

Novel view ground truth Point-light rendering GeometryDiffuse albedo Normal Roughness Env-map rendering

Figure 8: Results on real scenes. For each scene, we show our reconstructed geometry, normal map and SVBRDF components

(please refer to supplementary materials for specular albedo). We compare our point-light rendering results (second column)

under novel viewpoints and lighting with captured ground truth photographs (first column). We also show a rendering of the

object with our reconstructed appearance under environment lighting (last column).

optimization in latent feature space to fuse and refine our

multi-view predictions. Unlike previous methods that require

densely sampled images, our method produces high-quality

reconstructions from a sparse set of images, and presents a

step towards practical appearance capture for 3D scanning

and VR/AR applications.
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