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Abstract

The fusion of multimodal sensor streams, such as cam-

era, lidar, and radar measurements, plays a critical role in

object detection for autonomous vehicles, which base their

decision making on these inputs. While existing methods

exploit redundant information in good environmental

conditions, they fail in adverse weather where the sensory

streams can be asymmetrically distorted. These rare “edge-

case” scenarios are not represented in available datasets,

and existing fusion architectures are not designed to

handle them. To address this challenge we present a novel

multimodal dataset acquired in over 10,000 km of driving

in northern Europe. Although this dataset is the first large

multimodal dataset in adverse weather, with 100k labels for

lidar, camera, radar, and gated NIR sensors, it does not fa-

cilitate training as extreme weather is rare. To this end, we

present a deep fusion network for robust fusion without a

large corpus of labeled training data covering all asymmet-

ric distortions. Departing from proposal-level fusion, we

propose a single-shot model that adaptively fuses features,

driven by measurement entropy. We validate the proposed

method, trained on clean data, on our extensive validation

dataset. Code and data are available here https://

github.com/princeton-computational-imaging/

SeeingThroughFog.

1. Introduction

Object detection is a fundamental computer vision prob-

lem in autonomous robots, including self-driving vehicles

and autonomous drones. Such applications require 2D or

3D bounding boxes of scene objects in challenging real-

world scenarios, including complex cluttered scenes, highly

varying illumination, and adverse weather conditions. The

most promising autonomous vehicle systems rely on redun-

dant inputs from multiple sensor modalities [59, 6, 74], in-

cluding camera, lidar, radar, and emerging sensor such as

FIR [30]. A growing body of work on object detection us-

ing convolutional neural networks has enabled accurate 2D

and 3D box estimation from such multimodal data, typically

relying on camera and lidar data [65, 11, 57, 72, 67, 43, 36].

Image-only Detection

Lidar-only Detection

Proposed Fusion Architecture

Figure 1: Existing object detection methods, including effi-

cient Single-Shot detectors (SSD) [41], are trained on auto-

motive datasets that are biased towards good weather con-

ditions. While these methods work well in good condi-

tions [19, 59], they fail in rare weather events (top). Lidar-

only detectors, such as the same SSD model trained on pro-

jected lidar depth, might be distorted due to severe backscat-

ter in fog or snow (center). These asymmetric distortions

are a challenge for fusion methods, that rely on redundant

information. The proposed method (bottom) learns to tackle

unseen (potentially asymmetric) distortions in multimodal

data without seeing training data of these rare scenarios.

While these existing methods, and the autonomous sys-

tem that performs decision making on their outputs, per-

form well under normal imaging conditions, they fail in

adverse weather and imaging conditions. This is because

existing training datasets are biased towards clear weather

conditions, and detector architectures are designed to rely

only on the redundant information in the undistorted sen-

sory streams. However, they are not designed for harsh sce-

narios that distort the sensor streams asymmetrically, see

Figure. 1. Extreme weather conditions are statistically rare.

For example, thick fog is observable only during 0.01 %
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of typical driving in North America, and even in foggy re-

gions, dense fog with visibility below 50 m occurs only up

to 15 times a year [62]. Figure 2 shows the distribution

of real driving data acquired over four weeks in Sweden

covering 10,000 km driven in winter conditions. The nat-

urally biased distribution validates that harsh weather sce-

narios are only rarely or even not at all represented in avail-

able datasets [66, 19, 59]. Unfortunately, domain adaptation

methods [45, 29, 42] also do not offer an ad-hoc solution as

they require target samples, and adverse weather-distorted

data are underrepresented in general. Moreover, existing

methods are limited to image data but not to multisensor

data, e.g. including lidar point-cloud data.

Existing fusion methods have been proposed mostly for

lidar-camera setups [65, 11, 43, 36, 12], as a result of the

limited sensor inputs in existing training datasets [66, 19,

59]. These methods do not only struggle with sensor distor-

tions in adverse weather due to the bias of the training data.

Either they perform late fusion through filtering after inde-

pendently processing the individual sensor streams [12], or

they fuse proposals [36] or high-level feature vectors [65].

The network architecture of these approaches is designed

with the assumption that the data streams are consistent and

redundant, i.e. an object appearing in one sensory stream

also appears in the other. However, in harsh weather condi-

tions, such as fog, rain, snow, or extreme lighting condition,

including low-light or low-reflectance objects, multimodal

sensor configurations can fail asymmetrically. For exam-

ple, conventional RGB cameras provide unreliable noisy

measurements in low-light scene areas, while scanning li-

dar sensors provide reliable depth using active illumina-

tion. In rain and snow, small particles affect the color im-

age and lidar depth estimates equally through backscatter.

Adversely, in foggy or snowy conditions, state-of-the-art

pulsed lidar systems are restricted to less than 20 m range

due to backscatter, see Figure 3. While relying on lidar

measurements might be a solution for night driving, it is

not for adverse weather conditions.

In this work, we propose a multimodal fusion method for

object detection in adverse weather, including fog, snow,

and harsh rain, without having large annotated training

datasets available for these scenarios. Specifically, we han-

dle asymmetric measurement corruptions in camera, lidar,

radar, and gated NIR sensor streams by departing from ex-

isting proposal-level fusion methods: we propose an adap-

tive single-shot deep fusion architecture which exchanges

features in intertwined feature extractor blocks. This deep

early fusion is steered by measured entropy. The proposed

adaptive fusion allows us to learn models that generalize

across scenarios. To validate our approach, we address the

bias in existing datasets by introducing a novel multimodal

dataset acquired on three months of acquisition in northern

Europe. This dataset is the first large multimodal driving

dataset in adverse weather, with 100k labels for lidar, cam-

era, radar, gated NIR sensor, and FIR sensor. Although the

weather-bias still prohibits training, this data allows us to

validate that the proposed method generalizes robustly to

unseen weather conditions with asymmetric sensor corrup-

tions, while being trained on clean data.

Specifically, we make the following contributions:

• We introduce a multimodal adverse weather dataset

covering camera, lidar, radar, gated NIR, and FIR sen-

sor data. The dataset contains rare scenarios, such as

heavy fog, heavy snow, and severe rain, during more

than 10,000 km of driving in northern Europe.
• We propose a deep multimodal fusion network which

departs from proposal-level fusion, and instead adap-

tively fuses driven by measurement entropy.
• We assess the model on the proposed dataset, validat-

ing that it generalizes to unseen asymmetric distor-

tions. The approach outperforms state-of-the-art fu-

sion methods more than 8% AP in hard scenarios in-

dependent of weather, including light fog, dense fog,

snow, and clear conditions, and it runs in real-time.

2. Related Work

Detection in Adverse Weather Conditions Over the last

decade, seminal work on automotive datasets [5, 14, 19,

16, 66, 9] has provided a fertile ground for automotive

object detection [11, 8, 65, 36, 41, 20], depth estima-

tion [18, 40, 21], lane-detection [27], traffic-light detec-

tion [33], road scene segmentation [5, 2], and end-to-end

driving models [4, 66]. Although existing datasets fuel this

research area, they are biased towards good weather con-

ditions due to geographic location [66] and captured sea-

son [19], and thus lack severe distortions introduced by rare

fog, severe snow, and rain. A number of recent works

explore camera-only approaches in such adverse condi-

tions [52, 7, 1]. However, these datasets are very small with

less than 100 captured images [52] and limited to camera-

only vision tasks. In contrast, existing autonomous driv-

ing applications rely on multimodal sensor stacks, includ-

ing camera, radar, lidar, and emerging sensor, such as gated

NIR imaging [22, 23], and have to be evaluated on thou-

sands of hours of driving. In this work, we fill this gap and

introduce a large scale evaluation set in order to develop a

fusion model for such multimodal inputs that is robust to

unseen distortions.

Data Preprocessing in Adverse Weather A large body of

work explores methods for the removal of sensor distor-

tions before processing. Especially fog and haze removal

from conventional intensity image data have been explored

extensively [68, 71, 34, 54, 37, 7, 38, 47]. Fog results in

a distance-dependent loss in contrast and color. Fog re-

moval methods have not only been suggested for display
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application [25], it has also been proposed as preprocess-

ing to improve the performance of downstream semantic

tasks [52]. Existing fog and haze removal methods rely on

scene priors on the latent clear image and depth to solve the

ill-posed recovery. These priors are either hand-crafted [25]

and used for depth and transmission estimation separately,

or they are learned jointly as part of trainable end-to-end

models [38, 32, 73]. Existing methods for fog and visibility

estimation [58, 60] have been proposed for camera driver-

assistance systems. Image restoration approaches have also

been applied to deraining [10] or deblurring [37].

Domain Adaptation Another line of research tackles the

shift of unlabeled data distributions by domain adaptation

[61, 29, 51, 28, 70, 63]. Such methods could be applied

to adapt clear labeled scenes to demanding adverse weather

scenes [29] or through the adaptation of feature representa-

tions [61]. Unfortunately, both of these approaches struggle

to generalize, because, in contrast to existing domain trans-

fer methods, weather-distorted data in general, not only la-

beled data, is underrepresented. Moreover, existing meth-

ods do not handle multimodal data.

Multisensor Fusion Multisensor feeds in autonomous ve-

hicles are typically fused to exploit varying cues in the mea-

surements [44], simplify path-planning [15], to allow for

redundancy in the presence of distortions [48], or solve

for joint vision tasks, such as 3D object detection [65].

Existing sensing systems for fully-autonomous driving in-

clude lidar, camera, and radar sensors. As large automotive

datasets [66, 19, 59] cover limited sensory inputs, existing

fusion methods have been proposed mostly for lidar-camera

setups [65, 56, 11, 36, 43]. Methods such as AVOD [36] and

MV3D [11] incorporate multiple views from camera and li-

dar to detect objects. They rely on the fusion of pooled

regions of interest and hence perform late feature fusion

following popular region proposal architectures [50]. In a

different line of research, Qi et al. [49] and Xu et al. [65]

propose a pipeline model that requires a valid detection out-

put for the camera image and a 3D feature vector extracted

from the lidar point-cloud. Kim et al. [35] propose a gating

mechanism for camera-lidar fusion. In all existing meth-

ods, the sensor streams are processed separately in the fea-

ture extraction stage, and we show that this prohibits learn-

ing redundancies, and, in fact, performs worse than a single

sensor stream in the presence of asymmetric measurement

distortions.

3. Multimodal Adverse Weather Dataset

To assess object detection in adverse weather, we have

acquired a large-scale automotive dataset providing 2D and

3D detection bounding boxes for multimodal data with a

fine classification of weather, illumination, and scene type

in rare adverse weather situations. Table 1 compares our

DATASET KITTI [19] BDD [69] Waymo [59] NuScenes [6] Ours

SENSOR SETUP

RGB CAMERAS 2 1 5 6 2

RGB RESOLUTION 1242×372 1280×720 1920×1080 1600x900 1920x1024

LIDAR SENSORS 1 ✗ 5 1 2

LIDAR RESOLUTION 64 0 64 32 64

RADAR SENSOR ✗ ✗ ✗ 4 1

GATED CAMERA ✗ ✗ ✗ ✗ 1

FIR CAMERA ✗ ✗ ✗ ✗ 1

FRAME RATE 10 Hz 30 Hz 10 Hz 1 Hz/10 Hz 10 Hz

DATASET STATISTICS

LABELED FRAMES 15K 100k 198k 40K 13.5K

LABELS 80k 1.47M 7.87M 1.4M 100K

SCENE TAGS ✗ ✓ ✗ ✓ ✓

NIGHT TIME ✗ ✓ ✓ ✓ ✓

LIGHT WEATHER ✗ ✓ ✗ ✓ ✓

HEAVY WEATHER ✗ ✗ ✗ ✗ ✓

FOG CHAMBER ✗ ✗ ✗ ✗ ✓

Table 1: Comparison of the proposed multimodal adverse

weather dataset to existing automotive detection datasets.

dataset to recent large-scale automotive datasets, such as the

Waymo [59], NuScenes [6], KITTI [19] and the BDD [69]

dataset. In contrast to [6] and [69], our dataset contains

experimental data not only in light weather conditions but

also in heavy snow, rain, and fog. A detailed description of

the annotation procedures and label specifications is given

in the supplemental material. With this cross-weather an-

notation of multimodal sensor data and broad geographi-

cal sampling, it is the only existing dataset that allows for

the assessment of our multimodal fusion approach. In the

future, we envision researchers developing and evaluating

multimodal fusion methods in weather conditions not cov-

ered in existing datasets.

In Figure 2, we plot the weather distribution of the pro-

posed dataset. The statistics were obtained by manually an-

notating all synchronized frames at a frame rate of 0.1 Hz.

We guided human annotators to distinguish light from dense

fog when the visibility fell below 1 km [46] and 100 m, re-

spectively. If fog occurred together with precipitation, the

scenes were either labeled as snowy or rainy depending on

the environment road conditions. For our experiments, we

combined snow and rainy conditions. Note that the statistics

validate the rarity of scenes in heavy adverse weather, which

is in agreement to [62] and demonstrates the difficulty and

critical nature of obtaining such data in the assessment of

truly self-driving vehicles, i.e. without the interaction of re-

mote operators outside of geo-fenced areas. We found that

extreme adverse weather conditions occur only locally and

change very quickly.

The individual weather conditions result in asymmetri-

cal perturbations of various sensor technologies, leading to

asymmetric degradation, i.e. instead of all sensor outputs

being affected uniformly by a deteriorating environmental

condition, some sensors degrade more than others, see Fig-

ure 3. For example, conventional passive cameras perform

well in daytime conditions, but their performance degrades

in night-time conditions or challenging illumination settings

such as low sun illumination. Meanwhile, active scanning

sensors as lidar and radar are less affected by ambient light

changes due to active illumination and a narrow bandpass
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Figure 2: Right: Geographical coverage of the data collection campaign covering two months and 10,000 km in Germany,

Sweden, Denmark, and Finland. Top Left: Test vehicle setup with top-mounted lidar, gated camera with flash illumination,

RGB camera, proprietary radar, FIR camera, weather station, and road friction sensor. Bottom Left: Distribution of weather

conditions throughout the data acquisition. The driving data is highly unbalanced with respect to weather conditions and only

contains adverse conditions as rare samples.

Figure 3: Multimodal sensor response of RGB camera,

scanning lidar, gated camera, and radar in a fog chamber

with dense fog. Reference recordings under clear condi-

tions are shown in the first row, recordings in fog with visi-

bility of 23 m are shown in the second row.

on the detector side. On the other hand, active lidar sensors

are highly degraded by scattering media as fog, snow or

rain, limiting the maximal perceivable distance at fog den-

sities below 50 m to 25 m, see Figure 3. Millimeter-wave

radar waves do not strongly scatter in fog [24], but currently

provide only low azimuthal resolution. Recent gated im-

ages have shown robust perception in adverse weather [23],

provide high spatial resolution, but are lacking color infor-

mation compared to standard imagers. With these sensor-

specific weaknesses and strengths of each sensor, multi-

modal data can be crucial in robust detection methods.

3.1. Multimodal Sensor Setup

For acquisition we have equipped a test vehicle with sen-

sors covering the visible, mm-wave, NIR, and FIR band, see

Figure 2. We measure intensity, depth, and weather condi-

tion.

Stereo Camera As visible-wavelength RGB cameras,

we use a stereo pair of two front-facing high-dynamic-

range automotive RCCB cameras, consisting of two On-

Semi AR0230 imagers with a resolution of 1920 × 1024,

a baseline of 20.3 cm and 12 bit quantization. The cameras

run at 30 Hz and are synchronized for stereo imaging. Using

Lensagon B5M8018C optics with a focal length of 8 mm, a

field-of-view of 39.6 ° × 21.7 ° is obtained.

Gated camera We capture gated images in the NIR band

at 808 nm using a BrightwayVision BrightEye camera op-

erating at 120 Hz with a resolution of 1280× 720 and a bit

depth of 10 bit. The camera provides a similar field-of-view

as the stereo camera with 31.1 ° × 17.8 °. Gated imagers

rely on time-synchronized camera and flood-lit flash laser

sources [31]. The laser pulse emits a variable narrow pulse,

and the camera captures the laser echo after an adjustable
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delay. This enables to significantly reduce backscatter from

particles in adverse weather [3]. Furthermore, the high im-

ager speed enables to capture multiple overlapping slices

with different range-intensity profiles encoding extractable

depth information in between multiple slices [23]. Follow-

ing [23], we capture 3 broad slices for depth estimation and

additionally 3-4 narrow slices together with their passive

correspondence at a system sampling rate of 10 Hz.

Radar For radar sensing, we use a proprietary frequency-

modulated continuous wave (FMCW) radar at 77 GHz with

1 ° angular resolution and distances up to 200 m. The radar

provides position-velocity detections at 15 Hz.

Lidar On the roof of the car, we mount two laser scanners

from Velodyne, namely HDL64 S3D and VLP32C. Both are

operating at 903 nm and can provide dual returns (strongest

and last) at 10 Hz. While the Velodyne HDL64 S3D pro-

vides equally distributed 64 scanning lines with an angular

resolution of 0.4 °, the Velodyne VLP32C offers 32 non-

linear distributed scanning lines. HDL64 S3D and VLP32C

scanners achieve a range of 100 m and 120 m, respectively.

FIR camera Thermal images are captured with an Axis

Q1922 FIR camera at 30 Hz. The camera offers a resolu-

tion of 640 × 480 with a pixel pitch of 17 µm and a noise

equivalent temperature difference (NETD) < 100 mK.

Environmental Sensors We measured environmen-

tal information with an Airmar WX150 weather station

that provides temperature, wind speed and humidity, and

a proprietary road friction sensor. All sensors are time-

synchronized and ego-motion corrected using a proprietary

inertial measurement unit (IMU). The system provides a

sampling rate of 10 Hz.

3.2. Recordings

Real-world Recordings All experimental data has been

captured during two test drives in February and December

2019 in Germany, Sweden, Denmark, and Finland for two

weeks each, covering a distance of 10,000 km under dif-

ferent weather and illumination conditions. A total of 1.4

million frames at a frame rate of 10 Hz have been collected.

Every 100th frame was manually labeled to balance scene

type coverage. The resulting annotations contain 5,5k clear

weather frames, 1k captures in dense fog, 1k captures in

light fog, and 4k captures in snow/rain. Given the extensive

capture effort, this demonstrates that training data in harsh

conditions is rare. We tackle this approach by training only

on clear data and testing on adverse data. The train and

test regions do not have any geographic overlap. Instead

of partitioning by frame, we partition our dataset based on

independent recordings (5-60 min in length) from different

locations. These recordings originate from 18 different ma-

jor cities illustrated in Figure 2 and several smaller cities

along the route.

Controlled Condition Recordings To collect image and

range data under controlled conditions, we also provide

measurements acquired in a fog chamber. Details on the fog

chamber setup can be found in [17, 13]. We have captured

35k frames at a frame rate of 10 Hz and labeled a subset

of 1,5k frames under two different illumination conditions

(day/night) and three fog densities with meteorological vis-

ibilities V of 30 m, 40 m and 50 m. Details are given in the

supplemental material, where we also do comparisons to a

simulated dataset, using the forward model from [52].

4. Adaptive Deep Fusion

In this section, we describe the proposed adaptive deep

fusion architecture that allows for multimodal fusion in the

presence of unseen asymmetric sensor distortions. We de-

vise our architecture under real-time processing constraints

required for self-driving vehicles and autonomous drones.

Specifically, we propose an efficient single-shot fusion ar-

chitecture.

4.1. Adaptive Multimodal Single­Shot Fusion

The proposed network architecture is shown in Figure 4.

It consists of multiple single-shot detection branches, each

analyzing one sensor modality.

Data Representation The camera branch uses conven-

tional three-plane RGB inputs, while for the lidar and

radar branch, we depart from recent bird’s eye-view (BeV)

projection [36] schemes or raw point-cloud representa-

tions [65]. BeV projection or point-cloud inputs do not

allow for deep early fusion as the feature representations

in the early layers are inherently different from the camera

features. Hence, existing BeV fusion methods can only fuse

features in a lifted space, after matching region proposals,

but not earlier. Figure 4 visualizes the proposed input data

encoding, which aids deep multimodal fusion. Instead of

using a naive depth-only input encoding, we provide depth,

height, and pulse intensity as input to the lidar network. For

the radar network, we assume that the radar is scanning in a

2D-plane orthogonal to the image plane and parallel to the

horizontal image dimension. Hence, we consider radar in-

variant along the vertical image axis and replicate the scan

along vertical axis. Gated images are transformed into the

image plane of the RGB camera using a homography map-

ping, see supplemental material. The proposed input en-

coding allows for a position and intensity-dependent fusion

with pixel-wise correspondences between different streams.

We encode missing measurement samples with zero value.

Feature Extraction As feature extraction stack in each

stream, we use a modified VGG [55] backbone. Similar to

[36, 11], we reduce the number of channels by half and cut

the network at the conv4 layer. Inspired by [41, 39], we use

six feature layers from conv4-10 as input to SSD detection
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Figure 4: Overview of our architecture consisting of four single-shot detector branches with deep feature exchange and

adaptive fusion of lidar, RGB camera, gated camera, and radar. All sensory data is projected into the camera coordinate

system following Sec. 4.1. To steer fusion in-between sensors, the model relies on sensor entropy, which is provided to each

feature exchange block (red). The deep feature exchange blocks (white) interchange information (blue) with parallel feature

extraction blocks. The fused feature maps are analyzed by SSD blocks (orange).

layers. The feature maps decrease in size1, implementing a

feature pyramid for detections at different scales. As shown

in Figure 4, the activations of different feature extraction

stacks are exchanged. To steer fusion towards the most reli-

able information, we provide the sensor entropy to each fea-

ture exchange block. We first convolve the entropy, apply a

sigmoid, multiply with the concatenated input features from

all sensors, and finally concatenate the input entropy. The

folding of entropy and application of the sigmoid generates

a multiplication matrix in the interval [0,1]. This scales the

concatenated features for each sensor individually based on

the available information. Regions with low entropy can

be attenuated, while entropy rich regions can be amplified

in the feature extraction. Doing so allows us to adaptively

fuse features in the feature extraction stack itself, which we

motivate in depth in the next section.

4.2. Entropy­steered Fusion

To steer the deep fusion towards redundant and reliable

information, we introduce an entropy channel in each sen-

sor stream, instead of directly inferring the adverse weather

type and strength as in [58, 60]. We estimate local measure-

ment entropy,

ρ =

w,h
∑

m,n

255
∑

i=0

pmn
i log (pmn

i ) ,with

pmn
i =

1

MN

M,N
∑

j,k

δ (I(m+ j, n+ k)− i) .

(1)

The entropy is calculated for each 8 bit binarized stream I
with pixel values i ǫ [0, 255] in the proposed image-space

1
We use a feature map pyramid [(24, 78), (24, 78), (12, 39), (12, 39), (6, 20), (3, 10)]

data representation. Each stream is split into patches of

size M × N = 16px × 16 px resulting in a w × h =
1920 px × 1024 px entropy map. The multimodal entropy

maps for two different scenarios are shown in Figure 5: the

left scenario shows a scene containing a vehicle, cyclist, and

pedestrians in a controlled fog chamber. The passive RGB

camera and lidar suffer from backscatter and attenuation

with decreasing fog visibilities, while the gated camera sup-

presses backscatter through gating. Radar measurements

are also not substantially degraded in fog. The right sce-

nario in Figure 5 shows a static outdoor scene under vary-

ing ambient lighting. In this scenario, active lidar and radar

are not affected by changes in ambient illumination. For the

gated camera, the ambient illumination disappears, leaving

only the actively illuminated areas, while the passive RGB

camera degenerates with decreasing ambient light.

The steering process is learned purely on clean weather

data, which contains different illumination settings present

in day to night-time conditions. No real adverse weather

patterns are presented during training. Further, we drop

sensor streams randomly with probability 0.5 and set the

entropy to a constant zero value.

4.3. Loss Functions and Training Details

The number of anchor boxes in different feature layers

and their sizes play an important role during training and

are given in the supplemental material. In total, each anchor

box with class label yi and probability pi is trained using the

cross entropy loss with softmax,

H(p) =
∑

i

(yi log(pi) + (1− yi) log(1− pi)). (2)

11687



Projected Entropies: Gated Image Lidar Radar

Projected Measurements: Gated Image Lidar Radar
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Figure 5: Normalized entropy with respect to the clear reference recording for a gated camera, RGB camera, radar, and lidar in

varying fog visibilities (left) and changing illumination (right). The entropy has been calculated based on a dynamic scenario

within a controlled fog chamber illustrated in Figure 3 (left) and a static scenario with changing natural illumination settings

(right). Quantitative numbers have been calculated following Eq. (1). Note the asymmetric sensor failure for different sensor

technologies. Qualitative results are given below and are connected via arrows to their corresponding fog density/daytime.

The loss is split up for positive and negative anchor boxes

with a matching threshold of 0.5. For each positive anchor

box, the bounding box coordinates x are regressed using a

Huber loss H(x) given by,

H(x) =

{

x2/2, if |x| < 1
|x| − 0.5, if |x| > 1

(3)

The total number of negative anchors is restricted to 5× the

number of positive examples using hard example mining

[41, 53]. All networks are trained from scratch with a con-

stant learning rate and L2 weight decay of 0.0005.

5. Assessment

In this section, we validate the proposed fusion model

on unseen experimental test data. We compare the method

against existing detectors for single sensory inputs and fu-

sion methods, as well as domain adaptation methods. Due

to the weather-bias of training data acquisition, we only use

the clear weather portion of the proposed dataset for train-

ing. We assess the detection performance using our novel

multimodal weather dataset as a test set, see supplemental

data for test and training split details.

We validate the proposed approach in Table 2, which we

dub Deep Entropy Fusion, on real adverse weather data.

We report Average Precision (AP) for three different dif-

ficulty levels (easy, moderate, hard) and evaluate on cars

following the KITTI evaluation framework [19] at various

fog densities, snow disturbances, and clear weather condi-

tions. We compare the proposed model against recent state-

of-the-art lidar-camera fusion models, including AVOD-

FPN [36], Frustum PointNets [49], and variants of the pro-

posed method with alternative fusion or sensory inputs. As

baseline variants, we implement two fusion and four sin-

gle sensor detectors. In particular, we compare against late

fusion with image, lidar, gated, and radar features concate-

nated just before bounding-box regression (Fusion SSD),

and early fusion by concatenating all sensory data at the

early beginning of one feature extraction stack (Concat

SSD). The Fusion SSD network shares the same structure

as the proposed model, but without the feature exchange

and the adaptive fusion layer. Moreover, we compare the

proposed model against an identical SSD branch with sin-

gle sensory input (Image-only SSD, Gated-only SSD, Lidar-

only SSD, Radar-only SSD). All models were trained with

identical hyper-parameters and anchors.

Evaluated on adverse weather scenarios, the detection
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WEATHER clear light fog dense fog snow/rain

DIFFICULTY easy mod. hard easy mod. hard easy mod. hard easy mod. hard

DEEP ENTROPY FUSION (THIS WORK) 89.84 85.57 79.46 90.54 87.99 84.90 87.68 81.49 76.69 88.99 83.71 77.85

DEEP FUSION (THIS WORK) 90.07 80.31 77.82 90.60 81.08 79.63 86.77 77.28 73.93 89.25 79.09 70.51

FUSION SSD 87.73 78.02 69.49 88.33 78.65 76.54 74.07 68.46 63.23 85.49 75.28 67.48

CONCAT. SSD 86.12 76.62 68.61 87.98 78.24 70.17 77.99 69.16 67.07 83.63 73.65 66.26

ADDA [61]1 85.27 70.51 67.86 87.83 78.68 70.38 87.64 78.12 74.37 84.17 74.25 66.86

CYCADA [29]1 88.50 77.84 69.56 89.08 79.36 75.58 87.24 77.04 73.38 85.56 74.80 67.22

IMAGE-ONLY SSD 85.43 75.75 67.79 87.76 78.52 70.43 87.89 78.25 74.96 84.33 74.38 67.01

GATED-ONLY SSD 77.10 61.95 58.27 80.65 69.64 61.75 75.16 66.76 61.68 77.32 61.31 57.23

LIDAR-ONLY SSD 73.46 57.32 54.62 68.43 54.82 51.91 28.98 25.24 24.56 67.50 52.26 46.83

RADAR-ONLY SSD 10.26 8.54 8.23 16.92 13.24 12.66 16.33 13.57 13.00 12.94 10.95 10.40

AVOD-FPN [36] 66.47 58.71 51.63 60.40 52.51 51.92 33.95 26.29 26.17 59.55 51.91 50.54

FRUSTUM POINTNET [49] 80.06 75.89 67.70 84.06 76.88 75.44 76.69 73.62 68.49 78.34 74.34 66.52

Table 2: Quantitative detection AP on real unseen weather-affected data from dataset split across weather and difficulties

easy/moderate/hard following [19]. All detection models except domain adaptation approaches are trained solely on clean

data without weather distortions. The best model is highlighted in bold.

performance decrease for all methods. Note that assessment

metrics can increase simultaneously as scene complexity

changes between the weather splits. For example, when

fewer vehicles participate in road traffic or the distance be-

tween vehicles increases in icy conditions, fewer vehicles

are occluded. While the performance for image and gated

data is almost steady, it decreases substantially for lidar data

while it increases for radar data. The decrease in lidar per-

formance can be described by the strong backscatter, see

Supplemental Material. As a maximum of 100 measure-

ment targets limits the performance of the radar input, the

reported improvements are resulting from simpler scenes.

Overall, the large reduction in lidar performance for

foggy conditions affects the lidar only detection rate by a

drop in 45.38 % AP. Furthermore, it also has a strong impact

on camera-lidar fusion models AVOD, Concat SSD and Fu-

sion SSD. Learned redundancies no longer hold, and these

methods even fall below image-only methods.

Two-stage methods, such as Frustum PointNet [49], drop

quickly. However, they asymptotically achieve higher re-

sults compared to AVOD, because the statistical priors

learned for the first stage are based on Image-only SSD that

limits its performance to image-domain priors. AVOD is

limited by several assumptions that hold for clear weather,

such as the importance sampling of boxes filled with li-

dar data during training, achieving the lowest fusion per-

formance overall. Moreover, as the fog density increases,

the proposed adaptive fusion model outperforms all other

methods. Especially under severe distortions, the proposed

adaptive fusion layer results in significant margins over

the model without it (Deep Fusion). Overall the proposed

method outperforms all baseline approaches. In dense fog,

it improves by a margin of 9.69 % compared to the next-best

feature-fusion variant.

For completeness, we also compare the proposed model

to recent domain adaptation methods. First, we adapt our

Image-Only SSD features from clear weather to adverse

weather following [61]. Second, we investigate the style

1Requires large corpus of adverse weather data for training.

transfer from clear weather to adverse weather utilizing [29]

and generate adverse weather training samples from clear

weather input. Note that these methods have an unfair ad-

vantage over all other compared approaches as they have

seen adverse weather scenarios sampled from our validation

set. Note that domain adaptation methods cannot be directly

applied as they need target images from a specific domain.

Therefore, they do also not offer a solution for rare edge

cases with limited data. Furthermore [29] does not model

distortions, including fog or snow, see experiments in the

Supplemental Material. We note that synthetic data aug-

mentation following [52] or image-to-image reconstruction

methods that remove adverse weather effects [64] do nei-

ther affect the reported margins of the proposed multimodal

deep entropy fusion.

6. Conclusion and Future Work

In this paper we address a critical problem in au-

tonomous driving: multi-sensor fusion in scenarios, where

annotated data is sparse and difficult to obtain due to nat-

ural weather bias. To assess multimodal fusion in adverse

weather, we introduce a novel adverse weather dataset cov-

ering camera, lidar, radar, gated NIR, and FIR sensor data.

The dataset contains rare scenarios, such as heavy fog,

heavy snow, and severe rain, during more than 10,000 km

of driving in northern Europe. We propose a real-time deep

multimodal fusion network which departs from proposal-

level fusion, and instead adaptively fuses driven by mea-

surement entropy. Exciting directions for future research

include the development of end-to-end models enabling the

failure detection and an adaptive sensor control as noise

level or power level control in lidar sensors.
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