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Abstract

We propose a novel two-stage detection method, D2Det,

that collectively addresses both precise localization and ac-

curate classification. For precise localization, we introduce

a dense local regression that predicts multiple dense box

offsets for an object proposal. Different from traditional re-

gression and keypoint-based localization employed in two-

stage detectors, our dense local regression is not limited to

a quantized set of keypoints within a fixed region and has

the ability to regress position-sensitive real number dense

offsets, leading to more precise localization. The dense lo-

cal regression is further improved by a binary overlap pre-

diction strategy that reduces the influence of background re-

gion on the final box regression. For accurate classification,

we introduce a discriminative RoI pooling scheme that sam-

ples from various sub-regions of a proposal and performs

adaptive weighting to obtain discriminative features.

On MS COCO test-dev, our D2Det outperforms ex-

isting two-stage methods, with a single-model performance

of 45.4 AP, using ResNet101 backbone. When using multi-

scale training and inference, D2Det obtains AP of 50.1. In

addition to detection, we adapt D2Det for instance seg-

mentation, achieving a mask AP of 40.2 with a two-fold

speedup, compared to the state-of-the-art. We also demon-

strate the effectiveness of our D2Det on airborne sensors

by performing experiments for object detection in UAV im-

ages (UAVDT dataset) and instance segmentation in satel-

lite images (iSAID dataset). Source code is available at

https://github.com/JialeCao001/D2Det.

1. Introduction

Recent years have witnessed formidable progress in ob-

ject detection thanks to the advances in deep neural net-

works. Modern object detectors can be broadly divided
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into single-stage [35, 42, 40, 29, 27, 4] and two-stage meth-

ods [18, 43, 17, 41, 8, 21]. Two-stage detection approaches

work by first generating a set of candidate proposals fol-

lowed by classification and regression of these proposals.

On the other hand, single-stage methods perform a direct

regression and classification of default anchors into boxes

by regular sampling grids on the image. Generally, two-

stage methods dominate in terms of accuracy on standard

benchmarks, compared to their single-stage counterparts.

High quality object detection requires both precise lo-

calization (bounding box) and accurate classification of the

target object. Most existing two-stage detectors [43, 31, 15]

share a similar design for the bounding box localization

module. A typical design choice is a regression module,

employed in most two-stage detectors, including the pop-

ular Faster R-CNN [43]. The regression module utilizes

several fully connected layers to predict a single box off-

set of the candidate proposal. Recently, Grid R-CNN [36]

extends Faster R-CNN by separating the classification and

regression into two branches, as opposed to a shared net-

work. Instead of the regression utilized in Faster R-CNN,

Grid R-CNN introduces a localization scheme, based on a

fully convolutional network, that searches for a set of key-

points in a fixed-sized region to identify an object boundary.

In this work, we introduce dense local regression for

precise target localization. Different from the traditional

regression employed in Faster R-CNN [43] that predicts

a single global offset by a fully-connected network, our

dense local regression predicts multiple local box offsets,

termed as dense box offsets, by a fully convolutional net-

work. Compared to the keypoint-based localization in Grid

R-CNN [36], our dense local regression can more accu-

rately localize an object due to its ability to regress any real

number offset and is therefore not limited to a quantized set

of keypoints within a fixed-sized region. In addition, while

Grid R-CNN aims to improve localization capabilities, our

method collectively addresses both precise localization and

accurate classification of target object. For classification,

we introduce a discriminative RoI pooling that extracts fea-

tures from various sub-regions of a proposal and performs
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adaptive weighting to obtain discriminative features.

Contributions: We propose a two-stage object detection

approach, D2Det, that targets both precise localization and

accurate classification. For precise target localization, we

introduce a dense local regression, where each sub-region

of a candidate proposal predicts its own relative box off-

sets towards the four sides of ground-truth bounding box.

As a result, multiple dense box offsets are obtained by a

fully convolutional network, which preserves the position-

sensitive characteristic for box offset prediction. To further

improve our dense local regression, we introduce a binary

overlap prediction that identifies each sub-region of a can-

didate proposal as an object region or background region,

thereby reducing the influence of background region. The

binary overlap prediction is trained by assuming all regions

inside the ground-truth bounding box as object. For accu-

rate classification of the target object, we introduce a dis-

criminative RoI pooling that first samples features from var-

ious sub-regions and then performs an adaptive weighted

pooling that aims to generate discriminative features.

Experiments are performed on the MS COCO [33] and

UAVDT [11] datasets. Our D2Det achieves state-of-the-art

performance on both datasets. On MS COCO test-dev,

our method surpasses existing two-stage detectors, in terms

of single model accuracy, with a COCO style AP of 45.4 us-

ing a ResNet101 backbone (Fig. 1(a)). Further, an absolute

gain of 3.0% is obtained at AP@0.75, compared to the state-

of-the-art [28], demonstrating accurate localization capabil-

ities of our D2Det. Moreover, D2Det achieves a COCO

style AP of 50.1 when using a stronger backbone with

multi-scale training and inference. Additionally, we report

results for instance segmentation, obtained by modifying

the dense local regression branch of our two-stage detection

method and utilizing instance mask annotations. Experi-

ments are performed on two instance segmentation datasets:

MS COCO and the recently introduced iSAID [51]. Our

method obtains consistent improvement over existing meth-

ods on both datasets. On MS COCO test-dev, our ap-

proach achieves a Mask AP of 40.2 and provides a two-fold

speedup over the state-of-the-art HTC [6] (Fig. 1(b)).

2. Related Work

In recent years, two-stage detection approaches [18, 43,

17, 44, 28, 36, 5, 46] have shown continuous performance

improvements in terms of detection accuracy on standard

benchmarks [33, 13]. Among existing two-stage detectors,

Faster R-CNN [43] is one of the most popular frameworks

for object detection. In the first stage, Faster R-CNN uti-

lizes a region proposal network (RPN) to generate class-

agnostic region proposals. The second stage, also known as

Fast R-CNN [17], extracts a fixed-sized region-of-interest

(RoI) feature representation followed by the computation

of classification scores and regressed bounding-box coordi-
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Figure 1: Accuracy (AP) vs. speed (ms) comparison on

MS COCO test-dev. (a) Comparison with existing two-

stage detectors for object detection. (b) Comparison with

state-of-the-art approaches for instance segmentation. All

the methods in (a) use only box-level supervision. Further,

all methods in (a) and (b) utilize same settings: input size

(∼ 1333 × 800, except FPN which uses ∼ 1000 × 600),

ResNet101 with FPN (except TridentNet which introduces

an alternative to FPN) and without multi-scale training or

inference. The speed of all methods is reported on a Titan

Xp. In addition to overall COCO AP, we report AP@0.75

for comparison at a higher overlap threshold.

nates for each proposal. Several recent works have extended

this framework by, for example, integrating pyramid repre-

sentations [31, 28, 44, 5], extending to multi-stage detec-

tion [16, 2, 6, 24] and integrating a mask branch [19, 23, 34].

Most two-stage detectors represent each object in an im-

age based on a pre-defined anchor box. Alternatively, sev-

eral single-stage approaches [26, 22, 52, 50, 12] propose an

anchor box free strategy that eliminates the need for anchor

boxes. This typically involves using paired keypoints and

keypoint estimation to detect object bounding-box. These

approaches are bottom-up in that keypoints are directly gen-

erated from the entire image without defining object in-

stances. Different from these bottom-up approaches, Grid

R-CNN [36] is a top-down two-stage method which first de-

fines instances and then generates bounding box keypoints

using grid guided keypoint-based localization. This strategy

searches for a set of keypoints in a fixed-sized region, ob-

tained through an extended region mapping of RoI, to iden-

tify an object boundary. However, even an extended region

mapping may fail to encompass the entire object depend-

ing on the position of the candidate proposal with respect

to the ground-truth. Further, keypoint search occurs in a

fixed-resolution feature space (56 × 56), which is likely to

be problematic for large objects. In such a case (e.g., ob-

ject size > 100 × 100 image pixels) the relatively smaller

keypoint search space may lead to less accurate localiza-

tion. Moreover, Grid R-CNN only focuses on improving

the localization capabilities, while keeping the classification

branch similar to original Faster R-CNN. On MS COCO,

our dense local regression alone (without the proposed im-

provements in the classification branch) achieves a gain of
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Figure 2: (a) Overall architecture of our two-stage method. The RoI feature of each candidate proposal P , generated from

RPN, is passed through two different branches: dense local regression (b) and classification (c). Instead of treating RoI

feature as a single global vector, our dense local regression treats them as k × k local features extracted from k × k sub-

regions within RoI. These local features are used to predict multiple dense box offsets, implying each local feature pi ∈ P
predicts its own dense box offsets (l̂i, t̂i, r̂i, b̂i). To reduce the influence of background features, a binary overlap prediction

m̂ (in green) is utilized that classifies each local feature as either belonging to ground-truth bounding box G (in orange) or

background. To train m̂, the overlapping region m (in red) between G and P is assigned one (m = 1). For classification (c),

our discriminative RoI pooling first predicts the offsets of each RoI sub-region using a light-weight offset predictor, and then

performs an adaptive weighting (W (F )) that assigns higher weights to the discriminative sampling points of an RoI.

3.7% on large objects, compared to Grid R-CNN.

The original Faster R-CNN employed RoIPool [17, 43]

for feature pooling of candidate proposals. Recently

RoIAlign [19] has replaced RoIPool in several works,

including latest variants of Faster R-CNN and Grid R-

CNN [36]. RoIAlign divides candidate proposals into

equally sized spatial sub-regions and considers features

from sub-regions inside the proposal. Four sampling points

are obtained within each sub-region which are averaged by

assigning equal weight to all points [19]. This can dete-

riorate the classification performance as discriminative re-

gions may not appear in equally spaced sub-regions. Dif-

ferent from RoIAlign, deformable RoI pooling [10] obtains

features that are used for both classification and regression,

from various sub-regions of a candidate proposal, disregard-

ing their distance. However, the sampling points are still

averaged with equal weight, as in RoIAlign. Here, we in-

troduce an approach that performs adaptive weighting to en-

hance discriminaitive features for classification.

3. Our Method

We base our method on the standard Faster R-CNN

framework [43]. In our method, the proposed dense local

regression (Sec. 3.1) replaces the traditional box offset re-

gression of Faster R-CNN, while the classification is im-

proved with a discriminative RoI pooling (Sec. 3.2). The

overall architecture of our two-stage detection framework

is shown in Fig. 2(a). We utilize a region proposal network

(RPN) in the first stage and employ separate classification

and regression branches in the second stage. The dense lo-

cal regression branch (Fig. 2(b)) aims at precise localization

of an object whereas the classification branch, based on dis-

criminative RoI pooling (Fig. 2(c)), intends to improve clas-

sification of candidate proposals.

3.1. Dense Local Regression

In a two-stage detection framework, the objective of the

bounding-box regression branch is to find a tight bounding-

box surrounding an object. Let P (xP , yP , wP , hP ) be a

candidate object proposal, and G (xG, yG, wG, hG) be the

target ground-truth box. The traditional regression in Faster

R-CNN predicts a single box offset (∆x,∆y,∆w,∆h), as:

∆x = (xG − xP )/wP ,

∆w = log(wG/wP ),

∆y = (yG − yP )/hP ,

∆h = log(hG/hP ),
(1)

where (x, y) indicates box centers and (w, h) represents

the width and height of a given box (i.e., either ground-

truth bounding box G or candidate proposal P ). For each
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candidate proposal P , feature pooling strategies, such as

RoIPool [17] or RoIAlign [19], are employed to obtain the

corresponding fixed-sized (k × k) RoI feature from equally

spaced k× k sub-regions within the proposal. The standard

Faster R-CNN treats these RoI features as a single vector,

termed here as global feature representation, and predicts

a single global box offset by passing them through several

fully connected layers (Fig. 3(a)).

Different from the aforementioned strategy, our dense lo-

cal regression approach considers the k×k dimensional RoI

feature as k2 spatially adjacent local features. One such lo-

cal feature is shown as pi in Fig. 2(b). These local RoI

features are then used to predict multiple local box offsets,

termed as dense box offsets, by passing through a fully con-

volutional network. The dense box offsets predict the dis-

tance of each local feature pi at location (xi, yi) to the top-

left and bottom-right corners of the ground-truth bounding

box G. Let (xl, yt) and (xr, yb) represent the top-left and

bottom-right corners of the ground-truth bounding box, and

l̂i, t̂i, r̂i and b̂i represent the dense box offsets predicted by

the local feature pi in left, top, right, and bottom directions,

respectively (Fig. 2(b)). The corresponding ground-truth

offsets (li, ti, ri, bi) at (index) location i, are computed,

li = (xi − xl)/wP ,

ri = (xr − xi)/wP ,

ti = (yi − yt)/hP ,

bi = (yb − yi)/hP .
(2)

Here, the normalization factors wP and hP denote the width

and height of the candidate proposal.

The number of sub-regions or local features of the candi-

date proposal belonging to the ground-truth bounding box

depends on the overlap between the proposal and its cor-

responding ground-truth. Even in the case of higher over-

lap (majority of k2 local features belonging to the ground-

truth bounding box), several unwanted features (e.g., back-

ground) are included among these k2 local features. As a

consequence, the dense box offsets predicted by these back-

ground features are less precise and are therefore desired

to be ignored. With this aim, a binary overlap prediction

(shown in green in Fig. 2(a) and Fig. 2(b)) is utilized in

our dense local regression to classify each local feature as

either belonging to ground-truth bounding box region or

background. This binary overlap prediction is performed

by introducing an additional output m̂, along with the dense

box offsets. The local features in an overlapping region be-

tween the ground-truth bounding box G and the candidate

proposal P , are assigned with a ground-truth label 1, i.e.,

mi =

{

1, if pi ∈ G; ∀pi ∈ P,

0, otherwise.
(3)

Here, due to the unavailability of the ground-truth pixel-

level instance mask in generic object detection, we assume

all regions inside the ground-truth bounding box G as ob-

ject. Note that m̂ = {m̂i : i ∈ [1, k2]} and m = {mi : i ∈

Figure 3: Comparison of our dense local regression (c) with

traditional regression in Faster R-CNN (a) and keypoint-

based localization in Grid R-CNN (b). Traditional regres-

sion in Faster R-CNN predicts a single global offset for a

given proposal using a fully connected network. Grid R-

CNN predicts bounding box keypoints using a probability

heatmap. Instead, our approach yields multiple position-

sensitive local offsets, termed as dense box offsets, using a

fully convolutional network. Our approach can regress any

real number offset and is therefore not limited to a quantized

set of keypoints within a fixed region.

[1, k2]}. During training, the binary overlap prediction m̂i

at (index) location i is passed through sigmoid normaliza-

tion (σ), for computing the binary cross-entropy loss with

the ground-truth label mi. During inference, our dense local

regression module predicts five outputs, (l̂i, t̂i, r̂i, b̂i, m̂i), at

each local feature pi ∈ P . The predicted dense box offsets

at positions where σ(m̂i) > 0.5, are only used to compute

the top-left and bottom-right corner points of the predicted

box. Finally, the boxes predicted by multiple local features

(Fig. 3(c)) are averaged to obtain a single (final) regressed

bounding box (represented using top-left and bottom-right

corner points).

As discussed earlier, the traditional regression in Faster

R-CNN predicts a single global offset for a given candi-

date proposal using a fully connected network (Fig. 3(a)).

Different from the traditional regression, our dense local re-

gression yields multiple position-sensitive box offsets using

a fully convolutional network (Fig. 3(c)). Further, our bi-

nary overlap predictor reduces the influence of background

regions on the final box regression. Similar to our approach,

Grid R-CNN employs a fully convolutional network. How-

ever, in contrast to the keypoint-based localization strategy

used in Grid R-CNN (Fig. 3(b)), our dense local regres-

sion can more accurately localize an object due to its ability

to regress any real number offset and it is not limited to a

quantized set of keypoints within a fixed region-of-interest.

Further, our approach does not require deconvolution op-

erations to increase spatial resolution for box localization,
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thereby avoiding the additional computational overhead.

3.2. Discriminative RoI Pooling

Here, we describe the discriminative RoI pooling

(Fig. 2(c)) in our classification branch. Different from the

regression, the classification needs highly discriminative

features. The discriminative RoI pooling is inspired by de-

formable RoI pooling [10] and improves it for classification

in two ways. First, we use a light-weight offset prediction

that requires about one-fourth of the parameters, as com-

pared to the standard offset prediction in deformable RoI

pooling. The standard offset prediction employs a RoIAlign

operation to obtain features from k × k sub-regions and

passes these features through three fully connected layers.

Instead, the light-weight offset prediction only requires a
k
2
× k

2
sized RoIAlign followed by the fully connected lay-

ers (light-weight due to smaller input vector).

After offset prediction, the standard deformable RoI

pooling employs a RoIAlign, where all four sampling

points obtained within each sub-region are averaged by

assigning them equal weights. In contrast, the proposed

weighted pooling aims to adaptively assign higher weights

to discriminative sampling points and is motivated by [14].

Here, RoIAlign features in original sampling points, i.e.

F ∈ R2k×2k, are used to predict its corresponding weights

W (F ) ∈ R2k×2k, which indicates the discriminative ability

of the sampling points inside all k × k spatial sub-regions.

Fig. 2(c) shows some sampling points (s1
1
, s2

1
, s3

1
, s4

1
) and

their corresponding adaptive weights (w1

1
, w2

1
, w3

1
, w4

1
).

Weighted RoI feature F̃ of a candidate proposal is obtained

by,

F̃ = W (F )⊙ F, (4)

where ⊙ is the Hadamard product. Note that instead of us-

ing a fixed weight, the weight W (F ) is computed from F
using the convolution operations. Consequently, we employ

an average pooling operation with stride two on F̃ , and ob-

tain the discriminative RoI feature with size of k × k. The

discriminative RoI pooled feature of a candidate proposal is

treated as a single global vector, as in the standard Faster

R-CNN, followed by two fully-connected layers to obtain

the classification score of the candidate proposal.

Note that the predicted offsets samples sub-regions

within the candidate proposal as well its surroundings in

discriminative RoI pooling. As a result, the extracted fea-

tures are likely to contain discriminative information rele-

vant to both the object and its context, which is expected to

further improve the classification performance.

3.3. Instance Segmentation

The proposed method can be easily extended to instance

segmentation by modifying our dense local regression

branch. Instead of assuming all regions inside the ground-

truth bounding box G belong to the object (Sec. 3.1), the

ground-truth mask, available in instance segmentation, is

used to label local features pi ∈ P in Eq. 3. As a result, the

mask-based ground-truth binary overlap m is used to train

the binary overlap prediction m̂ and the offset prediction in

our dense regression branch (Fig. 2(b)). During inference,

the binary overlap prediction m̂ provides the instance mask

prediction. Further, we utilize two deconvolutional layers

that increase the output spatial resolution by four times (i.e.,

from 7 × 7 to 28 × 28) and two fully-connected layers for

efficient mask scoring. Our method provides an efficient

instance segmentation framework with competitive perfor-

mance (see Sec. 5).

4. Experiments

4.1. Datasets and Implementation Details

Datasets: We conduct extensive experiments on two object

detection benchmarks: MS COCO [33] and UAVDT [11].

MS COCO dataset contains 80 categories and consists of

three subsets: trainval, minival, and test-dev.

We perform training on the trainval set and report the

results on the test-dev set for state-of-the-art compari-

son. We follow the standard protocol where the overall per-

formance, in terms of average precision (AP), is measured

by averaging over multiple intersection-over-union (IoU)

thresholds, ranging from 0.5 to 0.95 with an interval of 0.05.

The detection track in UAVDT dataset [11] contains three

categories: car, truck and bus. Following the conventions

in [11, 48], the three categories are combined into a single

vehicle class, due to the highly imbalanced class distribu-

tion. We follow the same evaluation criteria in UAVDT [11]

and report the results using PASCAL VOC style AP with

the IoU threshold set to 0.7.

Implementation Details: The input image is resized during

training and testing such that the shorter edge is 800 pixels.

We adopt ResNet models (ResNet50 and ResNet101) [20]

with FPN [31] as the backbone. In our work, RPN [43]

is used to generate candidate object proposals similar to

[31, 36]. All RoIs with a ground-truth overlap greater than

0.5 are considered as positive samples. From each image,

we sample 512 RoIs by keeping a 1:3 positive to negative

ratio and these sampled RoIs are used to train the classifi-

cation branch. The dense local regression branch is trained

only using positive RoIs. Like [37], we use eight convo-

lutions of size 3 × 3 in dense local regression and a pool-

ing size of 7 × 7 (where k = 7) for both classification and

regression. Our method is trained on 8 GPUs (2 images

per GPU) and adopts the SGD for training optimization,

where the weight decay is 0.0001 and the momentum is

0.9. We adopt a 2× training scheme for all MS COCO ex-

periments. In our experiments, no data augmentation ex-

cept the traditional horizontal flipping is utilized. During

inference, we first classify proposals from RPN, following
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Methods Backbone Input Size AP AP@0.5 AP@0.75 APs APm APl

Single-Stage Methods:

RetinaNet w FPN [32] ResNet101 ∼ 1333× 800 39.1 59.1 42.3 21.8 42.7 50.2

ConRetinaNet w FPN [25] ResNet101 ∼ 1333× 800 40.1 59.6 43.5 23.4 44.2 53.3

EFGRNet [38] ResNet101 512× 512 39.0 58.8 42.3 17.8 43.6 54.5

CornerNet [26] Hourglass104 511× 511 40.5 56.5 43.1 19.4 42.7 53.9

FSAF w FPN [53] ResNet101 ∼ 1333× 800 40.9 61.5 44.0 24.0 44.2 51.3

RPDet w FPN [50] ResNet101 ∼ 1333× 800 41.0 62.9 44.3 23.6 44.1 51.7

FCOS w FPN [45] ResNet101 ∼ 1333× 800 41.5 60.7 45.0 24.4 44.8 51.6

HSD [3] ResNet101 768× 768 42.3 61.2 46.9 22.8 47.3 55.9

Two-Stage Methods:

FPN [31] ResNet101 ∼ 1000× 600 36.2 59.1 39.0 18.2 39.0 48.2

Libra R-CNN w FPN [39] ResNet101 ∼ 1333× 800 41.1 62.1 44.7 23.4 43.7 52.5

Grid R-CNN w FPN [36] ResNet101 ∼ 1333× 800 41.5 60.9 44.5 23.3 44.9 53.1

Grid R-CNN Plus w FPN [37] ResNet101 ∼ 1333× 800 42.0 60.5 45.6 23.4 45.2 53.2

LIP w FPN [14] ResNet101 ∼ 1333× 800 42.0 64.3 45.8 24.7 45.2 52.3

Auto-FPN [49] ResNet101 ∼ 1333× 800 42.5 - - - - -

TridentNet [28] ResNet101 ∼ 1333× 800 42.7 63.6 46.5 23.9 46.6 56.6

Cascade R-CNN w FPN [2] ResNet101 ∼ 1333× 800 42.8 62.1 46.3 23.7 45.5 55.2

D2Det (ours) w FPN ResNet101 ∼ 1333× 800 45.4 64.0 49.5 25.8 48.7 58.1

DCN v2 [54] ResNet101-deform v2 ∼ 1333× 800 44.0 65.9 48.1 23.2 47.7 59.6

D2Det (ours) ResNet101-deform v2 ∼ 1333× 800 47.4 65.9 51.7 27.2 50.4 61.3

D2Det* (ours) ResNet101-deform v2 50.1 69.4 54.9 32.7 52.7 62.1

Table 1: State-of-the-art object detection comparison (in terms of AP) on MS COCO test-dev. When using a ResNet101

backbone with FPN, our D2Det achieves the best single-model performance, with an overall AP of 45.4, surpassing all

existing two-stage methods employing the same backbone with FPN (TridentNet and Auto-FPN do not use FPN since they

introduce alternative approaches). Further, our D2Det outperforms DCN v2 [54] by a gain of 3.4%, when using the same

ResNet101-deform v2 backbone. In case of multi-scale training and inference, our D2Det* achieves an overall AP of 50.1.

which we employ NMS, and select few proposals (100-125)

for dense local regression, similar to [37]. On MS COCO

test-dev, soft-NMS [1] is employed on these few pro-

posals after dense local regression, which slightly improves

detection accuracy without a significant reduction in speed.

4.2. MS COCO Dataset

State-of-the-art Comparison: We first present a compari-

son (Tab. 1) of our detection method, D2Det, with existing

detectors in literature on MS COCO test-dev. Note that

several methods exist in the literature that exploit instance

mask annotations in addition to bounding box information

for object detection. For fair comparison, all detection

methods in Tab. 1 only use bounding box annotations. We

first discuss the results when using the popular ResNet101

backbone with FPN. Among existing two-stage detectors,

Libra R-CNN [39] and Grid R-CNN [36] achieve overall

AP scores of 41.1 and 41.5, respectively. Grid R-CNN

Plus [37] introduces several updates to improve the perfor-

mance and efficiency of Grid R-CNN and achieves 42.0

AP. TridentNet [28], which replaces FPN with a parallel

multi-branch architecture having different receptive fields,

achieves 42.7 AP. Cascade R-CNN [2] and LIP [14] obtain

the AP scores of 42.8 and 42.0, respectively. Our D2Det

significantly outperforms existing approaches by achieving

an AP score of 45.4. Further, a notable absolute gain of

3.0% is obtained at strict metric (AP@0.75), compared to

the state-of-the-art TridentNet [28], demonstrating the ac-

curate localization capabilities of our detection method.

Other than ResNet101 with FPN, DCN v2 [54] utilizes

a ResNet101-deform v2 backbone and reports 44.0 AP. Our

D2Det achieves 47.4 AP and obtains an absolute gain of

3.4% over DCN v2, when using the same backbone. Fur-

ther, our D2Det* obtains 50.1 AP in case of multi-scale

training and inference.

Qualitative Analysis: To further analyze our D2Det, we

utilize the error analysis protocol provided by [33]. Fig. 5

shows error plots on MS COCO minival for our D2Det

(bottom row) and Grid R-CNN Plus [37] (top row), when

using ResNet50 with FPN. As discussed earlier (Sec. 2),

Grid R-CNN and its improved variant Grid R-CNN Plus

utilize keypoint-based localization which is especially prob-

lematic for large objects. We therefore present error plots

for both overall (left) and large objects (right). The plots in

each sub-image represent a series of precision recall curves

with various evaluation settings, as defined in [33].

In case of overall results (on left), Grid R-CNN Plus ob-

tains 0.434 AP at strict AP@0.75, with AP likely increas-

ing to 0.669 in case of perfect localization. Our D2Det de-

tector (bottom row) achieves 0.463 AP at AP@0.75, with

AP likely increasing to 0.697 in case of perfect localization.

The improvement obtained by our D2Det is more promi-
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Figure 4: Qualitative results of D2Det on the COCO test-dev and UAVDT. In UAVDT, the black regions are ignored.
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Figure 5: Error analysis plots showing a comparison of

our D2Det (bottom row) with Grid R-CNN Plus (top row)

across all 80 categories, on the overall (left) and the large-

sized objects (right). As defined in [33], a series of precision

recall curves with different evaluation settings is shown in

the plots of each sub-image. We also show the area under

each curve (brackets in the legends). Our D2Det achieves

consistent improvements over Grid R-CNN Plus [37].

nent, when performing analysis on large-sized objects (on

right). In this case, our D2Det provides a gain of 4.6%

by achieving 0.624 AP at strict metric of AP@0.75, com-

pared to 57.8 by Grid R-CNN Plus. With perfect localiza-

tion, D2Det is likely to increase the AP to 0.820, compared

to 0.789 by Grid R-CNN Plus. Fig. 4(a) shows detection

examples with our D2Det on MS COCO test-dev.

Ablation Study: We perform an ablation study on the MS

COCO minival set. Tab. 2 shows the impact of our dense

local regression (Sec. 3.1) and discriminative RoI pooling

(Sec. 3.2). All results are reported using the ResNet50 back-

bone with FPN. Note that, as opposed to a shared network,

our baseline Faster R-CNN with FPN has separate fully

connected branches for regression and classification. This

Baseline DLR (Sec. 3.1) DRP (Sec. 3.2) AP AP@0.5 AP@0.75

X 38.0 59.2 41.5

X X 41.5 59.6 44.8

X X 39.3 61.4 42.2

X X X 42.7 61.5 46.3

Table 2: Impact of integrating our dense local regression

(DLR) and discriminative RoI pooling (DRP) into the base-

line, on MS COCO minival. Our final method based on

DLR and DRP achieves consistent improvement in perfor-

mance, with an overall gain of 4.7% over the baseline.

improves the AP from 37.7 to 38.0. The integration of our

dense local regression (DLR), in place of traditional regres-

sion, in the baseline leads to an AP score of 41.5, in which

an AP gain of 0.7 is provided by the binary overlap pre-

dictor. Notably, our DLR provides a significant absolute

gain of 3.3% at strict metric (AP@0.75), over the baseline.

This large gain in detection performance at AP@0.75 shows

the impact of our DLR towards achieving precise localiza-

tion. Further, the integration of our discrminative RoI pool-

ing (DRP) in the baseline leads to an overall AP score of

39.3, where our weighting scheme alone gives an AP gain

of 0.4. Our final method, D2Det, provides a consistent im-

provement over the baseline with a significant absolute gain

of 4.7% in terms of overall AP.

We also compare (Tab. 3) our dense local regression

(DLR) with the keypoint-based localization utilized in the

recently introduced Grid R-CNN [36] and its variant Grid

R-CNN Plus [37]. For fair comparison, our DLR alone uti-

lizes the same classification branch, as in Grid R-CNN. Fur-

ther, all results are reported using the same input size, train-

ing iterations and ResNet50 backbone with FPN. Our DLR

alone provides superior results compared to Grid R-CNN

and its variant. Particularly, a prominent improvement in

performance is obtained for large-sized objects, where our

DLR alone provides an absolute gain of 2.1% over Grid R-

CNN Plus. The best results in Tab. 3 are obtained by our

final D2Det, highlighting the importance of both precise lo-

calization (DLR) and accurate classification (DRP) to ob-

tain high quality object detection performance.
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Method AP AP@0.5 AP@0.75 APs APm APl

Grid R-CNN [36] 39.6 58.3 42.4 22.6 43.8 51.5

Grid R-CNN Plus [37] 40.2 58.4 43.4 22.7 44.1 53.1

Our DLR alone 41.5 59.6 44.8 23.3 44.9 55.2

Ours Final: D2Det 42.7 61.5 46.3 24.5 46.2 56.9

Table 3: Comparisons of our dense local regression (DLR)

with the grid guided keypoint-based localization utilized

in Grid R-CNN and Grid R-CNN Plus. Our DLR alone

provides superior results, especially for large objects, com-

pared to Grid R-CNN and its variant.

RetinaNet [32] LRF-Net [47] FPN [31] NDFT [48] D2Det

AP 33.95 37.81 49.05 52.03 56.92

Table 4: Object detection performance comparison on

UAVDT test set. Other than LRF-Net, all methods employ

ResNet101 with FPN. Our D2Det achieves superior results

compared to the recently introduced NDFT detector.

4.3. UAVDT Dataset

Here, we present the results (Tab. 4) of our detec-

tor, D2Det, on UAVDT [11]. In addition to category-

level annotation, all frames in UAVDT are annotated with

UAV-specific nuisances: flying altitude, camera views, and

weather conditions. The dataset is particularly challenging

due to variations in view angle, illumination, altitude, and

object scale. As in [48], we use ResNet101 with FPN. Fol-

lowing the authors of UAVDT [11], the results are reported

using PASCAL VOC AP with IoU= 0.7. Among existing

methods, the recently introduced NDFT detector [48] which

explicitly learns domain-robust features by exploiting free

metadata obtains 52.03 AP. Our D2Det outperforms NDFT

by achieving Ap score of 56.92. Fig. 4(b) shows qualitative

results on the UAVDT test set.

5. Instance Segmentation

In addition to object detection, we present the effec-

tiveness of our D2Det, with the modifications described

in Sec. 3.3, for instance segmentation task. Tab. 5 shows

the state-of-the-art comparison on MS COCO test-dev.

Among existing instance segmentation methods, the Hybrid

Task Cascade (HTC) [6] which interweaves box and mask

branches and employs a semantic segmentation branch to

capture spatial context, obtains a mask AP of 39.7. Our

method provides a two-fold speedup over HTC, while

achieving a mask AP of 40.2.

We also report results (Tab. 6) on recently introduced

iSAID dataset [51] for instance segmentation in satellite im-

agery. It contains 655,451 instances for 15 classes (round-

about, baseball diamond, large vehicle, plane, storage tank,

ship, ground track field, tennis court, swimming pool, bas-

ketball court, harbor, small vehicle, bridge, helicopter, and

soccer ball field). The dataset is challenging due to presence

of large number of objects per image, limited appearance

details, variety of small objects, large scale variations and

Methods Backbone Time Mask AP AP@0.5 AP@0.75

MNC [9] ResNet101 - 24.6 44.3 24.8

FCIS [30] ResNet101 - 29.2 49.5 -

MaskLab [7] ResNet101 - 35.4 57.4 37.4

Mask R-CNN [19] ResNet101 116 35.7 58.0 37.8

PANet [34] ResNet50 - 36.6 58.0 39.3

MS R-CNN [23] ResNet101 116 38.3 58.8 41.5

Cascade Mask R-CNN [6] ResNet101 156 38.4 60.2 41.4

HTC [6] ResNet101 339 39.7 61.8 43.1

D2Det (Ours) ResNet101 168 40.2 61.5 43.7

Table 5: State-of-the-art instance segmentation compari-

son (with a single model performance) in Mask AP on MS

COCO test-dev. Other than MNC, FCIS and MaskLab,

all methods employ FPN. The speed of all the methods

is reported on Titan Xp. Our D2Det provides a two-fold

speedup over HTC, while achieving a 40.2 mask AP.

Methods Backbone Mask AP AP@0.5 AP@0.75

Mask R-CNN [19] ResNet101 25.7 51.3 22.7

PANet [34] ResNet101 34.2 56.6 35.8

D2Det (Ours) ResNet101 37.5 61.0 39.8

Table 6: State-of-the-art instance segmentation comparison

in Mask AP on iSAID test set.

Figure 6: Instance segmentation results of our D2Det on

COCO test-dev (top row) and iSAID test (bottom row).

high class imbalance. Our D2Det achieves superior results

compared to existing works reported on this dataset [51].

Fig. 6 shows qualitative results on MS COCO test-dev

(first row) and iSAID test set (second row).

6. Conclusions

We propose a two-stage detection method that addresses

both precise object localization and accurate classification.

For precise localization, we introduce dense local regres-

sion that predicts multiple dense box offsets for a proposal.

Further, a discriminative RoI pooling scheme is proposed

which performs adaptive weighting to enhance discrimina-

tive features. Our D2Det achieves state-of-the-art detection

results on MS COCO and UAVDT. Additionally, we present

results for instance segmentation on MS COCO and iSAID,

achieving promising results compared to existing methods.
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