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Abstract

As Deep Learning continues to yield successful applica-

tions in Computer Vision, the ability to quantify all forms

of uncertainty is a paramount requirement for its safe and

reliable deployment in the real-world. In this work, we

leverage the formulation of variational inference in func-

tion space, where we associate Gaussian Processes (GPs)

to both Bayesian CNN priors and variational family. Since

GPs are fully determined by their mean and covariance

functions, we are able to obtain predictive uncertainty esti-

mates at the cost of a single forward pass through any cho-

sen CNN architecture and for any supervised learning task.

By leveraging the structure of the induced covariance matri-

ces, we propose numerically efficient algorithms which en-

able fast training in the context of high-dimensional tasks

such as depth estimation and semantic segmentation. Ad-

ditionally, we provide sufficient conditions for constructing

regression loss functions whose probabilistic counterparts

are compatible with aleatoric uncertainty quantification.

1. Introduction

Supervised learning, in its deterministic formulation, in-

volves learning a mapping f : X → Y given observed data

DN = {xi, yi}
N
i=1 = {XD,yD}. In a Deep Learning con-

text, f is parametrized by a neural network whose archi-

tecture expresses convenient inductive biases for the task

of interest and whose training consists on optimizing a loss

function with respect to its parameters by using stochastic

optimization techniques. Despite its widespread empirical

success, Deep Learning approaches are hardly ever trans-

parent, so that in certain domains, such as medical diag-

nosis or self-driving vehicles, it becomes unclear how to

map predictions on unseen inputs to a non-catastrophic de-

cision. Thus much research has been focused on obtaining

uncertainties from deep models for common computer vi-

sion tasks such as semantic segmentation [18, 16, 33], depth

estimation [20, 24], visual odometry [2, 46, 7, 6], SLAM [8]

and active learning [10].

A more reliable approach is to consider a Bayesian
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probabilistic formulation of deep supervised learning, also

known as Bayesian Deep Learning [32, 34], so that all

forms of predictive uncertainty may be quantified. There

are two types of uncertainty one may encounter: epistemic

and aleatoric [20], both which are naturally accounted for in

a Bayesian framework. Epistemic uncertainty is associated

with a model’s inability of finding a meaningful mapping

from inputs to outputs and will eventually vanish as it is

trained on a large and diverse dataset. Epistemic uncertainty

becomes particularly relevant when the trained model has to

make predictions on input examples which, in some sense,

differ significantly from training data: out-of-distribution

(OOD) inputs [13]. Aleatoric uncertainty is associated to

noise contained in the observed data and cannot be reduced

as more data is observed, nor does it increase on OOD in-

puts, so that it is not able to detect these by itself. Modelling

the combination of epistemic and aleatoric uncertainties is

therefore key in order to build deep learning based systems

which are transparent about their predictive capabilities.

1.1. General background

Denoting all parameters of a neural network as W ,

Bayesian Deep Learning starts with positing a prior dis-

tribution π(W ), typically multivariate normal, and a like-

lihood p(y|T (x;W )), where T (.;W ) is a neural network

with weights W . The solution to this bayesian inference

problem is the posterior over weights p(W |DN ), which is

unknown due to the intractable computation of marginal

likelihood p(DN ). Stochastic variational inference (SVI)

[12, 15] allows one to perform scalable approximate pos-

terior inference, hence being the dominant paradigm in

Bayesian Deep Learning. Denoting q(W ) as the variational

distribution and DB as a mini-batch of size B, the following

training objective is considered:

N

B

B
∑

i=1

Eq(W ) [log p(yi|T (xi;W ))]−KL (q(W )||π(W ))

(1)

This quantity is denoted as evidence lower bound

(ELBO), given that it is bounded above by log p(DN ). By

choosing a convenient family of distributions for q(W ) and
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suitably parametrizing it with neural network mappings, ap-

proximate bayesian inference amounts to maximizing the

ELBO with respect to its parameters over multiple mini-

batches DB . The success of variational inference (VI) de-

pends on the expressive capability of q(W ), which ideally

should be enough to approximate p(W |DN ). Even though

considerable work has been done in designing various vari-

ational families for BNN posterior inference [4, 29, 30, 42],

these are not easily applicable in computer vision tasks

which require large network architectures.

Alternatively, a nonparametric formulation of probabilis-

tic supervised learning is obtained by introducing a stochas-

tic process over a chosen function space. An F valued

stochastic process with index set X is a collection of ran-

dom variables {f(x)}x∈X whose distribution is fully de-

termined by its finite n-dimensional marginal distributions

p(fX), for any X = (x1, ..., xn) ∈ Xn, n ∈ N, and where

fX = (f(x1), ..., f(xn)). An important class are Gaussian

Processes (GPs) [39], which are defined by a mean func-

tion m(.) and covariance kernel k(., .), and all its finite di-

mensional marginal distributions are multivariate gaussians:

p(fX) = N (m(X), k(X,X)), where m(X) is a mean

vector and k(X,X) a covariance matrix.

Bayesian Neural Networks (BNNs) may also be viewed

as prior distributions over functions by means of a two-

step generative process. Firstly one draws a prior sample

W ∼ π(W ), and then a single function is defined by set-

ting f(.) = T (.;W ). BNNs are an example of implicit

stochastic processes [31], where for any finite set of inputs

X its distribution may be written as follows:

p
(

fX ∈ A
)

=

∫

{T (X;W )=fX∈A}

π(W )dW (2)

Where p(.) is a probability measure and A is an arbitrary

measurable set. Even though it is easy to sample from p(.),
it is not generally possible to exactly compute its value due

to non-invertibility of T (.;W ). Note that in this formula-

tion the dimensionality of the BNN prior does not depend

on the dimensionality of weight space, meaning that pos-

terior inference over a BNN with millions of weights only

depends on the number of inputs n and dimensionality of F ,

which is significantly smaller. Moreover, while p(W |DN )
may have complex structure due to the fact that many dif-

ferent values of W yield the same output values, this can

largely be avoided if one performs VI directly in function

space [31].

1.2. List of contributions

Our contributions are the following:

1. Given any loss function of interest for regression

tasks, we provide sufficient conditions for construct-

ing well-defined likelihoods which are compatible

with aleatoric uncertainty quantification, and provide a

practically relevant example based on the reverse Hu-

ber loss [26, 25].

2. Leveraging the functional VI framework from [44],

we propose a computationally scalable variant which

uses a suitably parametrized GP as the variational fam-

ily. Following [11], we are able to associate certain

Bayesian CNN priors with a closed-form covariance

kernel, which we then use to define a GP prior. Assum-

ing the prior is independent across its output dimen-

sions, we propose an efficient method for obtaining its

inverse covariance matrix and determinant, hence al-

lowing functional VI to scale to high-dimensional su-

pervised learning tasks. After training, this constitutes

a practically useful means of obtaining predictive un-

certainty (both epistemic and aleatoric) at the cost of a

single forward pass through the network architecture,

hence opening new directions for encompassing un-

certainty quantification into real-time prediction tasks

[20].

3. We apply this approach in the context of semantic seg-

mentation and depth estimation, where we show it dis-

plays well-calibrated uncertainty estimates and error

metrics which are comparable with other approaches

based on weight-space VI objectives.

2. Functional Variational Inference

2.1. Background

Even though GPs offer a principled way of handling

uncertainty in supervised learning, performing exact infer-

ence carries a cubic cost in the number of data points, thus

preventing its applicability to large and high-dimensional

datasets. Sparse variational methods [45, 14] overcome this

issue by allowing one to compute variational posterior ap-

proximations using subsets of training data, but it is difficult

to choose an appropriate set of inducing points in the con-

text of image-based datasets [41].

Functional Variational Bayesian Neural Networks

(FVBNNs) [44] use BNNs to approximate function posteri-

ors at finite sets of inputs. This is made possible by defin-

ing a KL divergence on general stochastic processes (see

[44] for the definition and proof). Building upon such di-

vergence, and defining X′ ∈ Xn′

, where n′ is fixed, and

setting X = XD ∪X′, it is possible to obtain a practically

useful analogue of ELBO in function space:

N
∑

i=1

Eq(f(xi)) [log p(yi|f(xi))]−KL
(

q(fX)||p(fX)
)

(3)

We refer to this equation as the functional VI objective,

whose structure will be discussed and simplified during the
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next sections in order to yield a more computationally fea-

sible version which does not use BNNs as the variational

family nor does so explicitly for its prior.

This objective is valid since it is bounded above by

log p(DN ) for any choice of X′ [44]. In practice DN is re-

placed by an expectation over a mini-batch DB , so that the

corresponding ELBO is only a lower-bound to log p(DB)
and not log p(DN ). During training X′ may be sampled at

random in order to cover the input domain, such as adding

gaussian noise to the existing training inputs. Whenever

X′ are far from training inputs, q(.) will be encouraged to

fit the prior process, whereas the data-driven term will dom-

inate on input locations closer to training data. In this way,

the question of obtaining reliable predictive uncertainty es-

timates on OOD inputs gets reduced to choosing a meaning-

ful prior distribution over functions. In this work we will be

choosing p(.) to be Bayesian CNNs, which constitute a di-

verse class of function priors on image space.

2.2. Logit attenuation for classification in functional
VI

We now consider classification tasks under the functional

VI objective (3), where we assume that Y = {0, 1}K , K is

the number of distinct classes and F = R
K . One of the lim-

itations of this objective is that it is not a lower bound to the

log-marginal likelihood of the training dataset. When the

true function posterior is not in the same class as q(.), there

is no guarantee that this procedure will provide reasonable

results [41]. We have observed this when we have first tried

it in our segmentation experiments, which has caused model

training to converge very slowly.

In order to mitigate this issue, we consider the following

discrete likelihood under the functional VI framework:

p(yk|f(x)) =
exp

(

f
′

k(x)
)

∑K

k=1 exp
(

f
′

k(x)
)

(4)

Where f
′

k(x) = fk(x)/σ
2
k(x), so that p(yk|f(x)) is a

Boltzmann distribution with re-scaled logits, where scale

parameter σ2
k(x) weighs its corresponding logit fk(x).

When included into the functional VI objective (3), this

parametrization enables the model to become robust to erro-

neous class labels contained in the training data, while also

avoiding over-regularization from the function prior which

may lead to underfitting. This effect of logit attenuation nat-

urally yields a change in aleatoric uncertainty, as measured

in entropy. Moreover, we note that each σ2
k(x) is not easily

interpretable in terms of inducing higher or smaller aleatoric

uncertainty according to its respective magnitude, so that

one has to rely on measuring the total predictive uncertainty

in terms of the predictive entropy. Additionally, when en-

compassed into deterministic models or the weight-space

ELBO in (1), re-scaling logits brings no added flexibility.

3. Functional VI with general regression loss

functions

It is often the case that best-performing non-probabilistic

approaches in computer vision tasks not only have care-

fully crafted network architectures, but also task-specific

loss functions which allow one to encode relevant induc-

tive biases. The most standard examples are the correspon-

dence between gaussian likelihood and L2 loss, and also

between laplacian likelihood and L1. However, various loss

functions of interest are not immediately recognized as be-

ing induced by a known probability distribution, so that

it would be of practical relevance to start with positing a

loss function and then derive its corresponding likelihood

model. Given any additive loss function ℓ : Y ×F → R≥0,

we define its associated likelihood as follows:

p(y|f(x)) =
exp (−ℓ(y, f(x)))

Z
(5)

This is known as the Gibbs distribution with energy

function ℓ and temperature parameter set to 1. Z =
∫

Y
exp (−ℓ(y, f(x))) dy is its normalization constant, po-

tentially depending on f(x), which can either be computed

analytically or using numerical integration. Any loss func-

tion ℓ(., .) for which Z is finite can be made into a likeli-

hood model, hence being consistent with Bayesian reason-

ing. Moreover, any strictly positive probability density can

be represented as in (5) for some appropriate choice of ℓ,
which follows from the Hammersley-Clifford theorem [1].

In the context of computer vision, typically involving large

amounts of labelled and noise-corrupted data, aleatoric un-

certainty tends to be the dominant component of predictive

uncertainty [20]. This means that, for each task of interest,

one needs to restrict from choosing arbitrary likelihoods to

the ones which are compatible with modelling this type of

uncertainty. In the following subsection we provide a means

of doing so for the task of regression.

3.1. Aleatoric uncertainty for regression

Without loss of generality, we assume that Y = F = R,

so that p(y|f(x)) is a univariate conditional density. This

covers most practical cases of interest, including per-pixel

regression tasks such as depth estimation, and simplifies the

notation considerably.

In regression tasks, we are typically interested in writ-

ing loss functions of the form ℓ(y, f(x)) = ℓ
(

y−f(x)
σ(x)

)

,

where f(x) and σ(x) are location and scale parameters,

respectively. Writing ℓ(y) as the standardized loss, we

define the standard member of its family of Gibbs distri-

butions as p0(y) = 1
Z0

exp(−ℓ(y)). Then p(y|f(x)) =

1
Z
exp

(

−ℓ
(

y−f(x)
σ(x)

))

, where Z = σ(x)Z0, defines a valid

location-scale family of likelihoods. Moreover, we require
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its first and second moments to be finite, so that we may

compute or approximate means and variances of the pre-

dictive distribution. For instance, this excludes using the

Cauchy distribution as a likelihood. Substituting into equa-

tion 3 and ignoring additive constants, we obtain the follow-

ing training objective:

−
n
∑

i=1

(

Eq(f(xi))

[

ℓ

(

yi − f(xi)

σ(xi)

)]

+ log (σ(xi))

)

−KL
(

q(fX)||p(fX)
)

(6)

Similarly to [20, 21], we interpret each σ(xi) as a loss

attenuation factor which may be learned during training and

log(σ(xi)) as its regularization component.

In order to display the practical utility of this loss-based

construction, we consider the reverse Huber (berHu) loss

from [26], which has previously been considered in [25] for

improving monocular depth estimation, and derive its prob-

abilistic counterpart, which we denote as berHu likelihood

(see supplementary material).

4. Scaling Functional VI to high-dimensional

tasks

Various priors of interest in computer vision applica-

tions, including Bayesian CNNs, are implicitly defined

by probability measures whose value is not directly com-

putable. [44] have considered BNNs both as priors and

variational family, where the ELBO gradients have been es-

timated using Stein Spectral Gradient Estimator [43]. How-

ever, due to its reliance on estimating intractable quantities

from samples, this approach is not viable for computer vi-

sion tasks such as depth estimation, semantic segmentation

or object classification with large number of classes, all of

which display high-dimensional structure in both its inputs

and outputs. In order to overcome this issue, we propose

to first associate implicit priors with a Reproducing Kernel

Hilbert Space (RKHS) and then defining a multi-output GP

prior.

We consider X ⊆ R
d, where d = CHW pertains to

input images having C channels and H × W resolution,

and F ⊆ R
P , where P is the output dimension depend-

ing on the task. For example, P = HW for monocu-

lar depth estimation. Without loss of generality, we define

p(f(.)) as a zero-mean multi-output stochastic process on

L2(F) whose index set is X . Given two images xi and

xj , K(xi, xj) :=
∫

f(xi)
T f(xj)dp(f(xi), f(xj)) is the

covariance function of the process, which is a P × P sym-

metric positive semi-definite matrix for each pair (xi, xj).
We then posit a GP prior p̂(f(.)) with zero mean and co-

variance function K(., .), and write its pair-wise joint dis-

tribution p̂(f(xi), f(xj)) as follows:

(

f(xi)
f(xj)

)

∼ N

((

0
0

)

,

(

K(xi, xi) K(xi, xj)
K(xi, xj) K(xj , xj)

))

.

(7)

Writing the joint multivariate gaussian distribution for a

batch of B > 2 images is straightforward: it is BP di-

mensional with zero mean vector, and its BP ×BP covari-

ance matrix contains B2 blocks of P × P matrices, each

of which is the evaluation of K(., .) at the corresponding

pair of images. Matrices across the diagonal in the block

describe the covariances between pixel locations for each

image, whereas the off-diagonal ones describe the correla-

tion between pixel locations of different images.

In the dense case, obtaining the inverse of the full covari-

ance matrix is of complexity O(B3P 3) and carries a mem-

ory cost of O(B2P 2). Even if one is able to choose small B
under the functional VI framework, this case would still be

intractable for large P . A promising way of overcoming this

would be to construct prior covariance functions with spe-

cial structure across the P output dimensions. Recent work

done in [11, 35, 48, 49] has highlighted that Bayesian CNNs

do converge to Gaussian Processes as the number of chan-

nels of the hidden layers tends to infinity. In cases where

activation functions such as relu and tanh are considered,

and the architecture does not contain pooling layers, [11]

shows that it is possible to exactly compute a covariance

kernel which emulates the same behaviour as the Bayesian

CNN, which is denoted as the equivalent kernel. In other

words, given any Bayesian CNN of this form, in the limit

of large number of channels, the function samples they gen-

erate come from a zero-mean Gaussian Process given by

this covariance function (see [11] Figure 2 for an example).

This covariance kernel can be computed very efficiently at

cost which is proportional to a single forward pass through

the equivalent CNN architecture with only one channel per

layer, which is due to the fact that the resulting GP is in-

dependent and identically distributed over the output chan-

nels. Moreover, in the absence of pooling layers [35], the

resulting kernel only contains the variance terms in its di-

agonal and all pixel-pixel covariances are 0. Thus, given a

mini-batch of B input images, the corresponding prior ker-

nel matrix K has only O(B2P ) non-zero entries and can

be written in block structure as follows:







K1,1 · · · KB,1

...
. . .

...

KB,1 · · · KB,B






(8)

Each sub-matrix Ki,j = K(xi, xj) is diagonal, hence

easy to invert and store. Let K :n,:n denote the nP × nP
sub-matrix obtained by indexing from the top-left corner of

K, where n = 1, ..., B, and consider the following block

sub-matrix K :n+1,:n+1:

12006



(

K :n,:n K :n,n+1

KT
:n,:n+1 Kn+1,n+1

)

(9)

Using the block-matrix inversion formula, we may write

K−1
:n+1,:n+1 as follows:

(

A:n,:n B:n,n

BT
:n,n S−1

n,n

)

,

A:n,:n = K−1
:n,:n(I +K :n,n+1S

−1
n,nK

T
:n,n+1K

−1
:n,:n),

B:n,n = K−1
:n,:nK :n,n+1S

−1
n,n,

Sn,n = Kn+1,n+1 −KT
:n,:n+1K :n,:nK :n,n+1

(10)

Where Sn,n is the Schur-complement of K :n+1,n+1.

This equivalence holds because K−1
:n+1,:n+1 is invertible if

and only if K :n,:n and Sn,n are invertible. Starting from

n = 1, K−1
:n+1,:n+1 can be recursively computed from

K−1
:n,:n, so that we obtain K−1 in the last iteration. This

algorithm is of complexity O(B2P ), where B is much

smaller than P since it is a batch-size, hence making func-

tional VI applicable in the context of dense prediction tasks

such as depth estimation and semantic segmentation. Ad-

ditionally, the determinant of K may also be obtained effi-

ciently by noting the following recurrence relation [38]:

det(K :n+1,:n+1) = det(K :n,:n)det(Sn,n) (11)

By efficiently and stably computing inverse covariance

matrices with the same block structure as K and its respec-

tive determinants, we are able to replace p(fX) in (3) with

the more convenient multi-output GP surrogate p̂(fX). In

this work we will only consider Bayesian CNN priors with-

out pooling layers, which are most convenient in dense pre-

diction tasks, in order to yield the structural advantages dis-

cussed above and leverage the methodology from [11, 35].

Nevertheless, given any square-integrable stochastic pro-

cess, it is possible to estimate K(xi, xj) using Monte Carlo

(MC) sampling and then associating a GP prior with the

estimated multi-output covariance function. This has been

done in [35] in order to handle the cases where Bayesian

CNN priors do contain pooling layers. Note that any cost

involved in computing p̂(fX) is only incurred during train-

ing.

Similarly, by choosing q(fX) to be a multi-output GP

with mean function h(.) and covariance function Σ(.)
parametrized by CNN mappings, we are able to compute

the corresponding Gaussian KL divergence term in closed

form. The expected log-likelihood term may be approxi-

mated with MC sampling, but in case of gaussian likeli-

hood it can also be computed in closed form. For each pair

Figure 1. Overview of our functional VI approach. XB is a batch

of rgb inputs, xn a newly generated one and D0 is the mean func-

tion of the GP prior.

of inputs (xi, xj), we parametrize the covariance kernel as

follows:

Σ(xi, xj) =
1

L

L
∑

k=1

gk(xi)⊙ gk(xj) +D(xi, xj)δ(xi, xj)

(12)

Where each gk(xi), gk(xj) is a P dimensional feature

mapping, ⊙ denotes the element-wise product and L < P ,

so that the left-term is the diagonal part of a rank-L pa-

rameterization. For example, in depth estimation these can

be obtained by defining g(.) as a CNN having its output

resolution associated with the P pixels and L output chan-

nels. D(xi, xj) is a diagonal P × P matrix containing per-

pixel variances which is considered only when xi = xj .

This parametrization yields a P × P diagonal matrix for

each pair of inputs, so that the full BP × BP covariance

matrix has the same block structure as in (8). In this way

q(fX) is able to account for posterior correlations between

different images while being practical to train with mini-

batches. Additionally, if one considers regression tasks

whose likelihoods are of location-scale family, predictive

variances can be computed in closed-form at no additional

sampling cost (see supplementary material for an example

under the berHu likelihood). In the case of discrete like-

lihoods, which includes semantic segmentation, computing

entropy or mutual-information of the predictive distribution

may also be done with a single forward pass plus a small

number of gaussian samples, which adds negligible compu-

tational cost and is trivially paralellizable.

In practice, for each input image x, we may obtain all

quantities of interest as an R× (LC + 3C) tensor by split-

ting the output channels of any suitable CNN architecture,

where R is the desired output resolution, C = 1 for tasks

such as monocular depth estimation or C equal to the num-

ber of classes for tasks such as semantic segmentation. In

Figure 1 we display a more clear overview of the differ-

ent components which form our proposed functional VI ap-

proach.
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5. Related work

Monte Carlo Dropout (MCDropout) [9] interprets

dropout as positing a variational family in weight-space and

uses it at test time in order to compute epistemic uncertainty

estimates. MCDropout has since then yielded applications

in semantic segmentation tasks [19, 18, 20, 16, 33], mon-

cular depth estimation [20], visual odometry [2] and active

learning [10]. Despite being convenient to implement dur-

ing training, the need for multiple forward passes at test

time renders MCDropout impractical for both large network

architectures (with many dropout layers) and tasks requiring

high throughput, such as real-time computer vision. Alter-

natively, our proposed method allows one to obtain predic-

tive epistemic uncertainty with a single forward pass and to

consider a broad range of loss functions whose probabilistic

counterparts are consistent with aleatoric uncertainty quan-

tification.

In the ML literature, various approaches which consider

the function space view of BNNs have been discussed in

[13, 47, 31, 36, 22]. Gaussian Process Inference Networks

(GPNet) [41] constitutes an alternative to inducing point

methods on GPs, and shares some of the motivation of

our work in that it also leverages the functional VI ob-

jective from [44] and chooses both variational family and

prior to be GPs. In contrast to any of these, our work fo-

cuses on making training and inference practical in the con-

text of dense prediction tasks, which is enabled by suit-

ably parametrizing the variational GP approximation and

exploiting special structure in the covariance matrices.

Recently [37] have proposed a scalable method which

yields predictive epistemic uncertainty at the cost of a single

forward pass. In contrast to it, ours naturally handles all

forms of uncertainty, both at training and test times.

6. Results

In order to parametrize the variational GP approxima-

tion, we use the FCDenseNet 103 architecture [17] without

dropout layers. We also adopt this architecture for all other

baselines and experiments, using a dropout rate of 0.2. Even

though our initial goal was to closely mimic the setup from

[20], we were not able to reproduce their RMSprop results.

Thus, in order to perform a clear comparison, we have de-

cided to compare all methods with the exact same optimizer

configurations. For MCDropout, we compute predictions

using S = 50 forward passes at test time.

We choose L = 20 for the covariance parametrization in

(12) and add a constant of 10−3 to its diagonal during train-

ing in order to ensure numerical stability. In order to im-

plement the prior covariance kernel equivalent to a densely

connected Bayesian CNN, which has been discussed in sec-

tion 3, we use the PyTorch implementation made available

by the authors in [11]. For both the segmentation and depth

estimation experiments, we compute the equivalent kernel

of a densely connected CNN architecture, composed of var-

ious convolutions and up-convolutions (see supplementary

material), and add a white noise component of variance 0.1.

For the depth experiments, we posit a prior mean of 0.5
while for segmentation we set it to 1.0. In order to generate

the inducing inputs X′ included in the KL divergence term

from equation (3) during training, we randomly pick one

image in the mini-batch and add per-pixel gaussian noise

with variance 0.1.

6.1. Semantic Segmentation

In this section, we consider semantic segmentation on

CamVid dataset [5]. All models have been trained with

SGD optimizer, momentum of 0.9 and weight decay of

10−4 for 1000 epochs with batches of size 4 containing ran-

domly cropped images of resolution 224 × 224, with an

initial learning rate of 10−3 and annealing it every epoch

by a factor of 0.998. Then we finish with training for one

epoch on full-sized images with batch size of 1. We have

considered this setup because, while performing our initial

experiments by monitoring on the validation set, we have

observed that our approach, even though it consistently ben-

efits from fine-tuning on full-sized images in terms of its ac-

curacy measures, the quality of its uncertainty estimates (in

terms of calibration score [23]) has degraded significantly.

For our proposed method, we have used the Boltzmann

likelihood with re-scaled logits as given in equation (4),

which we denote as Ours-Boltzmann. Even though re-

scaling logits provides no increase in flexibility to non-

functional VI approaches, in order to have the same com-

parison setup, we chose to parametrize it in the same

way for both the deterministic baseline and MCDropout:

Deterministic-Boltzmann and MCDropout-Boltzmann, re-

spectively.

From Table 1 we observe that our method performs

best, both in terms of IoU score (averaged over all classes)

and accuracy. In Figure 2 we display a test example

of MCDropout-Boltzmann (top) and Ours-Boltzmann (bot-

tom), where we have masked-out the void class label as yel-

low. We can see that the uncertainty estimates are reason-

able, being higher on segmentation edges and unknown ob-

jects. We also include the calibration curve, as computed

in [20], where the green dashed line corresponds to per-

fect calibration. In order to assess the overall quality of the

uncertainty estimates, it is common to compute calibration

plots for all pixels in the test set [20, 23]. Unfortunately,

this is not feasible to compute for our functional VI ap-

proach, due to the fact that it captures correlations between

multiple images, so that approximating the predictive dis-

tribution would require sampling from a high-dimensional

non-diagonal gaussian. Thus, in order to enable a sim-

ple comparison which works for both Ours-Boltzmann and
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Figure 2. Semantic segmentation on CamVid. MCDropout-Boltzmann (top) and Ours-Boltzmann (bottom). From left to right: rgb input,

ground truth, predicted, entropy, calibration plot (as depicted in [20])

MCDropout-Boltzmann, we compute the calibration score

(see [23]) for each image in the test set and then average,

which is given in Table 2.

Table 1. Results from training and testing on CamVid.
IoU Accuracy

Deterministic-Boltzmann 0.568 0.895

MCDropout-Boltzmann 0.556 0.893

Ours-Boltzmann 0.623 0.905

Table 2. Mean calibration score, computed with 10 equally spaced

intervals, averaged over all test set examples. Lower is better.
Mean Calibration

MCDropout-Boltzmann 0.058

Ours-Boltzmann 0.053

6.2. Pixel­wise Depth Regression

In this section, we consider depth estimation on Make3d

dataset [40]. All models have been trained with AdamW

optimizer [28] with constant learning rate and weight de-

cay set to 10−4. We have re-sized all images to a resolution

of 168 × 224, and trained with a batch size of 4 for 3000
epochs. We consider our approach using 3 different like-

lihoods: Ours-Laplace, Ours-Gaussian and Ours-berHu (as

derived in section 3.1.1). We compare with MCDropout-

Laplace and two deterministic baselines: Deterministic-L1

and Deterministic-berHu using the reverse Huber loss [25].

Test results are displayed in Table 3, where MCDropout

performs best on all accuracy metrics. To a certain extent,

this happened because our proposed method is more sensi-

tive to the choice of batch-size, due to the fact that the func-

tional VI objective is not a lower bound to the log marginal

likelihood of the dataset, so that it has underfitted slightly

more than MCDropout-Laplace and deterministic methods.

Additionally, we had to use a learning rate of 10−4, as

higher values would result in more unstable training for all

our functional VI approaches.

In Figure 7 we plot one test prediction for MCDropout-

Laplace (top) and Ours-Laplace (bottom). In this case, we

observe one of the benefits of our approach: around the

sky area in the image, MCDropout-Laplace is overconfident

about its predicted depth map, while ours correctly outputs

high predictive uncertainty. Note that this is not reflected in

the calibration curves, as all pixels with depth greater than

70m are masked out due to long-range inaccuracies in the

dataset [25].

In Table 4 we display the calibration scores for the

probabilistic methods (see [23]), averaged over all test im-

ages, where Ours-Laplace performs slightly better than

MCDropout-Laplace, despite not faring so well in terms of

accuracy metrics.

Table 3. Results from training and testing on Make3d dataset.
rel log10 rms

Deterministic-L1 0.212 0.085 5.29

Deterministic-berHu 0.222 0.084 5.08

MCDropout-Laplace 0.210 0.081 5.05

Ours-Laplace 0.264 0.092 5.74

Ours-berHu 0.237 0.088 5.68

Ours-Gaussian 0.254 0.089 5.65

Table 4. Mean calibration score, computed with 10 equally spaced

intervals, averaged over all test set examples. Lower is better.
Mean Calibration

MCDropout-Laplace 0.427

Ours-Laplace 0.409

Ours-berHu 0.631

Ours-Gaussian 0.491

6.3. Inference time comparison

Let F be the inference time of one forward pass from

a neural network on a RGB input. Our method’s infer-

ence time (for obtaining predictive mean and uncertainty)

is then F + c1, while for MCDropout is SF + c2, where

c1, c2 are extra time costs needed to obtain the predictive

uncertainties. In computer vision F is often the dominant

term, since it often involves large network architectures, of

which the FCDenseNet 103 architecture is an example. We

have tested these claims by performing multiple runs on an

NVIDIA RTX6000 GPU, the same device in which all mod-

els have been trained and tested. The inference times for

depth estimation and semantic segmentation are displayed
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Figure 3. Depth estimation on Make3d. MCDropout-Laplace (top) and Ours-Laplace (bottom). From left to right: rgb input, ground truth,

predictive mean, predictive standard deviation, calibration plot (as depicted in [23])

in Table 5 and Table 6, respectively. On depth estima-

tion our method and deterministic had equivalent inference

times. On segmentation c1 depends on the number of gaus-

sian samples taken, but is significantly cheaper than F and

trivially amenable to parallelization, so that our method still

displayed cost of same order as deterministic model. In both

cases, MCDropout was approximately S = 50 times slower

than its deterministic counterpart.

Table 5. Depth estimation on Make3D. Inference time comparison

over 100 independent runs.
mean ± std (ms)

Deterministic-L1 51.29 ± 1.88

Deterministic-berHu 51.28 ± 1.62

MCDropout-Laplace 2615.65 ± 13.75

Ours-Laplace 50.98 ± 1.74

Ours-berHu 51.43 ± 2.12

Ours-Gaussian 51.13 ± 2.20

Table 6. Semantic segmentation on CamVid. Inference time com-

parison over 100 independent runs.
mean ± std (ms)

Deterministic-Boltzmann 111.64 ± 0.27

MCDropout-Boltzmann 5763.63 ± 1.95

Ours-Boltzmann 128.59 ± 1.86

7. Conclusion

We have proposed a method which, by leveraging the

functional VI objective from [44], enables efficient train-

ing of Bayesian Deep Learning models and whose predic-

tive inference requires only one forward pass, for any su-

pervised learning task and network architecture. This is

made possible by replacing the intractable BNN prior by

a GP with covariance kernel as derived in [11], parametriz-

ing the variational family as a GP with a suitably structured

covariance kernel and by leveraging efficient algorithms for

matrix inversion and determinant computation during train-

ing. Furthermore, we have discussed how to start with

a well-defined loss function in regression and then derive

its probabilistic counterpart in a way which is consistent

with aleatoric uncertainty quantification, having provided

the derivation of the berHu likelihood as an example.

Our framework may readily be applied to other pixel-

wise supervised learning tasks. Extending to tasks which

benefit from having pooling layers, such as object classifi-

cation, is also possible but requires some caution. This is

because Bayesian CNN priors which contain pooling lay-

ers no longer induce GPs which have the special covariance

structure displayed in (8), given that pooling induces local

correlations between different pixel locations [35].

As a direction of future work, it would be relevant to

extend our proposed methodology to account for tempo-

ral information. This would be particularly important in

monocular depth estimation, which is naturally prone to

display high aleatoric uncertainty and would benefit from

refined uncertainty estimates over consecutive time-frames

[27]. Another direction of future work would be to over-

come any potential underfitting occurring in pixel-wise re-

gression tasks, as observed in our Make3D depth regres-

sion experiment, in which choosing more meaningful func-

tion priors and better variational distribution’s covariance

parametrizations could help.
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