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Abstract

Adversarial perturbations are imperceptible changes to

input pixels that can change the prediction of deep learn-

ing models. Learned weights of models robust to such per-

turbations are previously found to be transferable across

different tasks but this applies only if the model architec-

ture for the source and target tasks is the same. Input

gradients characterize how small changes at each input

pixel affect the model output. Using only natural images,

we show here that training a student model’s input gradi-

ents to match those of a robust teacher model can gain ro-

bustness close to a strong baseline that is robustly trained

from scratch. Through experiments in MNIST, CIFAR-10,

CIFAR-100 and Tiny-ImageNet, we show that our proposed

method, input gradient adversarial matching, can transfer

robustness across different tasks and even across different

model architectures. This demonstrates that directly target-

ing the semantics of input gradients is a feasible way to-

wards adversarial robustness.

1. Introduction

Deep learning models have shown remarkable perfor-

mances in a wide range of computer vision tasks [15, 28, 17]

but can be easily fooled by adversarial examples [27].

These examples are crafted by imperceptible perturbations

and can manipulate a model’s prediction during test time.

Due to its potential security risk in deployment of deep neu-

ral networks, adversarial examples have received much re-

search attention with many new attacks [2, 19, 4] and de-

fenses [24, 20, 16, 9, 33, 1] proposed recently.

While there is still a wide gap between accuracy on clean

and adversarial samples, the strongest defenses rely mostly

on adversarial training (AT) [8, 18, 25]. Adversarial train-

ing’s main idea, simple yet effective, involves training the

model with adversarial samples generated in each training

loop. However, crafting strong adversarial training samples

is computationally expensive as it entails iterative gradient
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steps with respect to the loss function [13, 31].

To circumvent the cost of AT, a recent line of work ex-

plores transferring adversarial robustness from robust mod-

els to new tasks [11, 26]. To transfer to a target task, cur-

rent such techniques involve finetuning new layers on top

of robust feature extractors that were pre-trained on other

domains (source task). While this approach is effective

in transferring robustness across different tasks, it assumes

that the source task and target task models have similar ar-

chitecture as pre-trained weights are the medium of transfer.

Here, we propose a robustness transfer method that is

both task- and architecture-agnostic with input gradient as

the medium of transfer. Our approach, input gradient adver-

sarial matching (IGAM), is inspired by observations [29, 6]

that robust AT-trained models display visibly salient input

gradients while their non-robust standard trained models

have noisy input gradients (Figure 1). The value of input

gradient at each pixel defines how a small change there can

affect the model’s output and can be loosely thought as to

how important each pixel is for prediction. Here, we show

that learning to emulate how robust models view ‘impor-

tance’ on images through input gradients can result in ro-

bust models even without adversarial training examples.

The core idea behind our approach is to train a student

model with an adversarial objective to fool a discriminator

into perceiving the student’s input gradients as those from

a robust teacher model. To transfer across different tasks,

the teacher model’s logit layer is first briefly finetuned on

the target task’s data, like in [26]. Subsequently, the teacher

model’s weights are frozen while a student model is adver-

sarially trained with a separate discriminator network in a

min-max game so that the input gradients from the student

and teacher models are semantically similar, i.e., indistin-

guishable for the discriminator model [7].

Through experiments in MNIST, CIFAR-10, CIFAR-100

and Tiny-ImageNet, we show that input gradients are a fea-

sible medium to transfer robustness, outperforming finetun-

ing on transferred weights. Surprisingly, student models

even outperform their teacher models in both clean accu-

racy and adversarial robustness. In some cases, the student

model’s adversarial robustness is close to that of a strong
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baseline that is adversarially trained from scratch. Though

our method does not beat the state of the art robustness, it

shows that addressing the semantics of input gradients is a

new promising way towards robustness.

In summary, the key contributions of this paper are as

follows:

• For the first time, we show that robustness can transfer

across different model architectures.

• We achieve this by training the student model’s in-

put gradients to semantically match those of a robust

teacher model through our proposed method.

• Through extensive experiments, we show that input

gradients are a more effective and versatile medium to

transfer robustness than pre-trained weights.

2. Background

We review the concept of adversarial robustness for im-

age classification and its relationship with input gradients.

Adversarial Robustness We express an image classifier

as f(x; ✓) : x 7! R
k that maps an input image x to out-

put probabilities for k classes in set C, where classifier’s

parameters is defined as ✓. Denoting training dataset as D,

empirical risk minimization is the standard way to train a

classifier f , through min✓ E(x,y)⇠DL(x,y), where y 2 R
k

is the one-hot label for the image and L(x,y) is the standard

cross-entropy loss:

L(x,y) = E(x,y)⇠D

⇥

�y> log f(x)
⇤

(1)

With this training method, deep learning models typi-

cally show good performance on clean test samples but fail

in the classification of adversarial test samples. With an ad-

versarial perturbation of magnitude " at input x, a model is

considered robust against this attack if

argmax
i2C

fi(x; ✓) = argmax
i2C

fi(x+�; ✓) (2)

where 8� 2 Bp(") = � : k�kp  ". With small ", adver-

sarial perturbation with p = 1 is often imperceptible and

is the focus in this paper.

Input Gradients of Robust Models Input gradients char-

acterize how an infinitesimally small change to the input af-

fects the output of the model. Given a pair of input and la-

bel (x,y), its corresponding input gradient rxL(x,y) can

be computed through gradient backpropagation in a neural

network to its input layer. For classification tasks, the input

gradient can be loosely interpreted as a pixel map of what

the model thinks is important for its class prediction.

It was observed [29] that robust models that are adver-

sarially trained display an interesting phenomenon: they

produce salient input gradients that loosely resemble in-

put images while less robust standard models display nois-

ier input gradients (Figure 1). [6] shows in linear mod-

els that distance from samples to decision boundary in-

creases as the alignment between the input gradient and

input image grows but this weakens for non-linear neural

networks. While these previous studies show that robustly

trained models result in salient input gradients, our paper

studies input gradients as a medium to transfer robustness

across different models.

Figure 1: Input gradients of (middle) a non-robust model

and (right) robust model on CIFAR-10 images. The non-

robust model undergoes standard SGD training with natural

images while the robust model is trained with 7-step PGD

adversarial examples.

3. Related Work

We review prior art on defense against adversarial exam-

ples and highlight those that are most similar to our work.

Adversarial Training With the aim of gaining robustness

against adversarial examples, the core idea of adversarial

training (AT) is to train models with adversarial training ex-

amples. Formally, AT minimizes the loss function:

L(x,y) = E(x,y)⇠D



max
�2B(")

L(x+�,y)

�

(3)

where max�2B(") L(x+�,y) is computed via gradient-

based optimization methods. One of the strongest defenses

employ projected gradient descent (PGD) which carries out

the following gradient step iteratively:

�  Proj [� � ⌘ sign (r�L(x+�,y))] (4)

where Proj(x) = argmin✏2B(") kx�✏k.
AT has seen many adaptations since its introduction. A

recent work [32] seeks to generate more effective adversar-

ial training examples through maximizing feature match-

ing distance between those examples and clean samples. To

333



smoothen the loss landscape so that model prediction is not

drastically affected by small perturbations, [21] proposed

minimizing the difference between the linearly estimated

and real loss value of adversarial examples. Another work,

TRADES [33], reduces the difference between the predic-

tion of natural and adversarial examples through a regular-

ization term to smoothen the model’s decision boundary.

Non-Adversarial Training Defense Closely linked to

our method, there is a line of work that regularizes the in-

put gradients to boost robustness. Those prior art [23, 12]

focus on using double backpropagation [5] to minimize the

input gradients’ Frobenius norm. Those approaches aim to

constrain the effect that changes at individual pixels have

on the classifier’s output but not the overall semantics of the

input gradients like our method. [3] show that models can

be more robust when regularized to produce input gradients

that resemble input images.

Several recent methods fall under the category of prov-

able defenses that seeks to bound minimum adversarial per-

turbation for a subset of neural networks [10, 22, 30]. These

defenses typically first find a theoretical lower bound for

the adversarial perturbation and optimize this bound during

training to boost adversarial robustness.

Robustness Transfer There is a line of work that shows

robustness can transfer from one model to another. [11]

shows that robustness from adversarial training can be im-

proved if the models are pre-trained from tasks from other

domains. Another work shows that adversarially trained

learn robust feature extractors that can be directly trans-

ferred to a new task by finetuning a new logit layer on top

of these extractors [26]. Circumventing adversarial train-

ing, these transferred models can still retain a high degree

of robustness across tasks. Unlike our method, these two

work require that the source and target models both have

the same model architecture since pre-trained weights are

directly transferred.

4. Input Gradient Adversarial Matching

Our proposed training method consists of two phases: 1)

finetuning robust teacher model on target task and 2) adver-

sarial regularization of input gradients during the student

models’ training.

4.1. Finetuning Teacher Classifier

The first stage involves finetuning the weights of the

teacher model ft on the target task. Parameterizing the

model weights as  , the finetuning stage minimizes the

cross-entropy loss over the target task training data (x,y) ⇠
Dtarget:

L ,xent(x,y, ) = E(x,y)

⇥

�y> log ft(x)
⇤

(5)

where x 2 R
hwc for h⇥w-size images with c channels,

y 2 R
k is one-hot label vector of k classes.

To preserve the robust learned representations in the

teacher model [26], we freeze all the weights and replace the

final logits layer to finetune. Denoting the frozen weights as

 † and the new logits layer as  logit, the teacher model fine-

tuning objective is

 ⇤
logit = argmin

 logit

Lxent(z(x, 
†),y, logit) (6)

where z(x, †) represents the hidden features before the

logit layer. After finetuning the logits layer on the target

task, all the teacher model’s parameters ( ) are fixed, in-

cluding  logit.

4.2. Input Gradient Matching

The aim of the input gradient matching is to train the

student model to generate input gradients that semantically

resemble those from the teacher model. The input gradi-

ent characterizes how the loss value is affected by small

changes to each input pixel.

We express the classification cross entropy loss of the

student model fs on the target task dataset Dtarget as:

L✓,xent(x,y, ✓) = E(x,y)

⇥

�y> log fs(x)
⇤

(7)

Through gradient backpropagation, the input gradient of

the student model fs is

Js(x) := rxL✓,xent =



@L✓,xent

@x1
· · ·

@L✓,xent

@xd

�

(8)

where d = hwc.

Correspondingly, the input gradient of the teacher model

ft is

Jt(x) := rxL ,xent =



@L ,xent

@x1
· · ·

@L ,xent

@xd

�

(9)

4.2.1 Adversarial Regularization

To achieve the objective of training the student model’s in-

put gradient Js to resemble those from the teacher model

Jt, we draw inspiration from GANs, a framework compris-

ing a generator and discriminator model. In our case, we

train the fs to make it hard for the discriminator fdisc to

distinguish between Jt and Js. The discriminator output

value fdisc(J) represents the probability that J came from

the teacher model ft rather than fs. To train fs to produce

Js that fdisc perceive as Jt, we employ the following adver-

sarial loss:
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Ladv = EJt
[log fdisc(Jt)] + EJs

[log(1� fdisc(Js))] (10)

Combining this regularization loss with the classification

loss function Lxent in Equation (7), we can optimize through

stochastic gradient descent (SGD) to approximate the opti-

mal parameters for fs as follows,

✓⇤ = argmin
✓

(L✓,xent + �advLadv) (11)

where �adv control how much input gradient adversarial

regularization term dominates the training.

In contrast, the discriminator (fdisc) learns to correctly

distinguish the input gradients by maximizing the adversar-

ial loss term. Parameterizing fdisc with �, the discriminator

is also trained with SGD as such

�⇤ = argmax
�

Ladv (12)

4.2.2 Reconstruction Regularization

Apart from the adversarial loss term, we also employ a term

to penalize the l2 difference between the Js and Jt generated

from the same input image.

Ldiff = k Js� Jt k
2
2 (13)

The Ldiff term is analogous to the additional reconstruc-

tion loss in a VAE-GAN setup [14] where it has shown to

improve performance. For each given input image (x) in

IGAM, there is a corresponding target input gradient Jt for

the student model’s Js to match, allowing us to exploit this

instance matching loss (Ldiff). Adding this term with Equa-

tion 11, the final training objective of the student model is

✓⇤ = argmin
✓

(L✓,xent + �advLadv + �diffLdiff) (14)

where �diff determines the weight of the l2 penalty term

in the training.

Figure 2 shows a summary of IGAM training phase

while Algorithm 1 details the corresponding pseudo-codes.

4.3. Transfer With Different Input Dimensions

In the earlier sections, we assume that the input dimen-

sions of the teacher and student models are the same. Recall

that before finetuning, the teacher model ft was originally

trained on source task samples (xsrc,ysrc) ⇠ Dsrc,xsrc 2
R

dsrc where each xsrc is a hsrc ⇥ wsrc-size image with csrc

channels. In practice, the image dimensions may differ from

those from the task target, i.e., dsrc 6= dtar. To allow the gra-

dient backpropagation of the losses through the input gradi-

ents, we use affine functions to adapt the target task images

to match the dimension of the teacher model’s input layer:

disc

student

teacher

Figure 2: Training phase of input gradient adversarial

matching (IGAM).

Algorithm 1: Input gradient adversarial matching

Input: Target task training data Dtrain, Learning rates for teacher

model ft, student model fs and discriminator fdisc: (↵,�, �)

for each finetuning iteration do
Sample (x,y) ⇠ Dtrain

Lψ,xent  �y
> log ft(x) . Classification loss

 logit   logit � ↵rψlogit
Lψ,xent . Update teacher ft to

minimize Lψ,xent

for each training iteration do
Sample (x,y) ⇠ Dtrain

Lψ,xent  �y
> log ft(x) . Classification loss for teacher

Jt  rxLψ,xent . Compute teacher input gradient

Lθ,xent  �y
> log fs(x) . Classification loss for student

Js  rxLθ,xent . Compute student input gradient

Ladv  log fdisc(Jt) + log(1� fdisc(Js)) . Adversarial

loss

Ldiff  k Js� Jt k22 . l2 penalty loss

✓  ✓ � � rθ(Lθ,xent + �advLadv + �diffLdiff) . Update

the student fs to minimize Lθ,xent, Ladv and Ldiff

� �+ � rφLadv . Update discriminator fdisc to

maximize Ladv

x0
tar = A · xtar +b (15)

where x0
tar,b 2 R

dsrc ,xtar 2 R
dtar and A 2 R

dsrc⇥dtar .

Subsequently, cross-entropy loss for the teacher model

can be computed:

L ,xent(xtar,ytar, ) = E(xtar,ytar)

⇥

�y>
tar log ft(x

0
tar)

⇤

(16)

Since affine functions are continuously differentiable,

we can backprop to get the input gradient:

Jt(xtar) = rxtar
L ,xent (17)

We use a range of such transformations in our experi-

ments to cater for the difference of input dimensions from

various source-target dataset pairs.

4.3.1 Input Resizing

Image resizing is one such transformation where the resized

image can be expressed as the output of an affine func-

tion, i.e., x0
tar = A · xtar. In the case where the teacher
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model’s input dimension is smaller than the student model,

i.e., dtar > dsrc, we can use average pooling to downsize the

image. A 2⇥2 average pooling is equivalent to resizing with

bilinear interpolation when dtar is a multiple of dsrc. Fig-

ure 3a shows how we use input resizing to generate the input

gradient from the teacher model. For cases of dtar < dsrc,

we use image resizing with bilinear interpolation to upscale

the input dimension before feeding into the teacher model.

For the source-target pair of MNIST-CIFAR, we can simi-

larly reduce the number of channels by averaging the RGB

values of the CIFAR images before feeding to the teacher

model (trained on MNIST).

4.3.2 Input Cropping

Cropping is another way to downsize the image to fit a

smaller teacher model’s input dimension, i.e., dtar > dsrc.

The cropped image is output of x0
tar = A · xtar where A

is a row-truncated identity matrix. For input cropping, the

initial Jt would have zero values at the region where the im-

age was cropped out since those pixel values are multiplied

by zero. To prevent the discriminator from exploiting this

property to distinguish Jt from Js, we feed into the discrimi-

nator Jt and Js that are cropped to size dsrc. Figure 3b shows

how we use cropping to generate the cropped input gradient

from the teacher model.

4.3.3 Input Padding

In contrast to cropping, padding can be used for cases where

dtar < dsrc. With the same form of affine function x0
tar = A ·

xtar, A is a identity matrix preppended and appended with

zero-valued rows. Figure 3c shows how we generate the

input gradient from the teacher model with input padding.

teacher

(a) Input resizing

teacher

(b) Input cropping

teacher

(c) Input padding

Figure 3: Transformations to fit images to teacher model’s

input dimensions.

5. Experiments

We conducted experiments with IGAM on source-target

data pairs comprising of MNIST, CIFAR-10, CIFAR-100

and Tiny-ImageNet. These datasets allow us to validate the

effectiveness of IGAM in transferring across tasks with dif-

ferent image dimensions. Unless otherwise stated, adver-

sarial robustness is evaluated based on l1 adversarial ex-

amples with " = 8
255 ). IGAM’s hyperparameters such as

�adv,�diff and fdisc for each experiment are included in the

supplementary material.

5.1. CIFAR-10 Target Task

In our experiments with CIFAR-10 as the target task, we

study two types of robustness transfer. The upwards trans-

fer involves employing IGAM to transfer robustness from

a smaller model trained on the simpler MNIST dataset to

a larger CIFAR-10 classifier. Conversely, the downwards

transfer experiments involve transferring robustness from a

200-class Tiny-ImageNet model to a CIFAR-10 classifier.

5.1.1 Upwards Transfer

Setup CIFAR-10 is a 10-class colored image dataset com-

prising of 50k training and 10k test images, each of size

32 ⇥ 32 ⇥ 3. For the CIFAR-10 student model, we use a

Wide-Resnet 32-10 model with similar hyperparameters to

[18] and train it for 200 epochs on natural training images

with IGAM. The MNIST dataset consists of 60k training

and 10k test binary-colored images, each of size 28⇥28⇥1.

For the robust teacher model trained on MNIST, we also

follow the same adversarial training setting and 2-CNN lay-

ered architecture as [18] 1. The teacher model is finetuned

on natural CIFAR-10 images for 10 epochs before using it to

train the student model with IGAM. Since the input dimen-

sions of CIFAR-10 and MNIST are different, we average

pool pixel values across the color channels of CIFAR-10

images to get dimension 32⇥ 32⇥ 1 and subsequently cen-

ter crop them into 28⇥ 28⇥ 1 input images for the MNIST

teacher model. With this same input transformation, we also

finetune the final logit layer of a robust MNIST model on

CIFAR-10 images similar to [26] for 100 epochs, to com-

pare as a baseline (FT-MNIST). We also train a strong ro-

bust classifier, with 7-step PGD adversarial training like in

[18], with the same architecture as the IGAM student model

to compare.

Results In the face of adversarial examples, the IGAM-

trained student model outperforms the standard and fine-

tuned baselines by large margins (Table 1). Despite the

difference between the dataset domains and model archi-

tectures, IGAM can transfer robustness from the teacher to

the student model to almost match that from a strong ad-

versarially trained (AT) model. The IGAM student model

has higher clean test accuracy than the robust PGD7-trained

1Robust MNIST pre-trained model downloaded from

https://github.com/MadryLab/MNIST challenge
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baseline which we believe is a result of using natural (not

adversarially perturbed) images as training data in IGAM.

We note that though finetuning was previously showed

to have positive results in transferring robustness across

relatively similar domains like between CIFAR10 and CI-

FAR100 [25], it fails to transfer successfully here. This

is likely due to the bigger difference between the MNIST

and CIFAR-10 dataset, as well as the requirement of a more

sophisticated model architecture for the more challenging

CIFAR-10 dataset.

Table 1: Accuracy (%) on clean and adversarial CIFAR-10

test samples with upwards transfer.

Model Clean FGSM PGD5 PGD10 PGD20

Standard 95.0 13.4 0 0 0

FT-MNIST 33.4 1.51 0.44 0.15 0.12

IGAM-MNIST 93.6 67.8 63.6 56.9 43.5

PGD7-trained 87.3 56.2 55.5 47.3 45.9

5.1.2 Downwards Transfer

Setup Tiny-ImageNet is a 200-class image dataset where

each class contains 500 training and 50 test images. Each

Tiny-ImageNet image has dimension of 64 ⇥ 64 ⇥ 3. For

the robust teacher model trained on Tiny-ImageNet, we

use a similar Wide-Resnet 32-10 model since it is com-

patible with a larger input dimension due to its global av-

erage pooling operation of the feature maps before fully

connected layers. We robustly train this teacher model

on Tiny-ImageNet, following the same adversarial training

hyperparameters in [18] where robust models are trained

with l1 adversarial examples generated by 7-step PGD.

Before using it to train the student model with IGAM, the

teacher model is finetuned on natural CIFAR-10 images for

6 epochs. Since the input dimensions of CIFAR-10 and

Tiny-ImageNet are different, we resize the 32 ⇥ 32 ⇥ 3
CIFAR-10 images with bilinear interpolation to get dimen-

sion 64 ⇥ 64 ⇥ 3 for finetuning the teacher model. For the

IGAM student model, we use the same Wide-Resnet 32-10

model and hyperparameters as in § 5.1.1. We also finetune

the final logit layer of a robust Tiny-ImageNet model on

upsized CIFAR-10 images similar to [26] for 100 epochs,

to compare as a baseline (FT-TinyImagenet). We also in-

vestigate two more types of input transformation for IGAM

here. The first is a trained 3 ⇥ 3 transpose convolutional

filter, with stride 2, to upscale the CIFAR-10 images to size

64 ⇥ 64 ⇥ 3. This single transpose convolutional layer is

trained together with the teacher model while finetuning on

natural CIFAR-10 images. The second type of input trans-

formation is padding, as detailed in § 4.3.3, of which we

explore two variants: center-padding and random-padding.

Results With input padding or input resizing, the IGAM-

trained student model outperforms the standard and fine-

tuned baselines in adversarial robustness (Table 2). From

our experiments, using padding or resizing is more effec-

tive for downwards transfer of robustness, with slightly

better results for resizing. With the downwards trans-

fer, the student model can match the strong PGD7-trained

baseline even more closely than in the upwards transfer

case (Table 1). This is expected since the teacher model

was robustly trained in a more challenging Tiny-ImageNet

task and would likely learn even more robust representa-

tions than if it were trained on the simpler datasets like

MNIST. Compared to upwards transfer, the finetuning base-

line transfers robustness and clean accuracy performance to

a larger extent but is still outperformed by IGAM.

5.1.3 Input Gradients

When comparing the input gradients of the various base-

line and IGAM models (Figure 4), we can observe that

there is a diverse degree of saliency. The IGAM models’

input gradients appear less noisy than a standard trained

model as what we aim to achieve with our proposed method.

Interestingly, the IGAM-MNIST model’s input gradients

have a degree of saliency despite the sparse input gradi-

ents from its FT-MNIST teacher model. For IGAM models

with a Tiny-ImageNet teacher, the more robust variants like

IGAM-Upsize and IGAM-Pad display less noisy input gra-

dients than the less robust IGAM-RandomPad and IGAM-

TransposeConv. More input gradient samples are displayed

in Figure 6 of the supplementary material.

5.2. CIFAR-100 Target Task

We further study IGAM performance in upwards transfer

of robustness with CIFAR-100 as the target task, MNIST

and CIFAR-10 as the source task.

Setup CIFAR-100 is a 100-class colored image dataset

comprising of 50k training and 10k test images. Similar

to CIFAR-10, each image has a dimension of 32 ⇥ 32 ⇥ 3.

For the CIFAR-100 student model, we use a Wide-Resnet

32-10 model with similar hyperparameters as § 5.1.1 ex-

cept for the final logit layer, which has 100 instead of 10

class outputs. We train the student model for 200 epochs

on natural CIFAR-100 training images with IGAM. The ro-

bust MNIST teacher model used is similar to the one in

§ 5.1.1. For the robust CIFAR-10 teacher model, we also

follow the same adversarial training setting and architecture

as [18] 2. During IGAM training with MNIST as the source

task, the input transformation same as in § 5.1.1 is used to

resize CIFAR-100 images into 28 ⇥ 28 ⇥ 1 inputs for the

2Robust CIFAR-10 pre-trained model downloaded from

https://github.com/MadryLab/cifar10 challenge
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Table 2: Accuracy (%) on clean and adversarial CIFAR-10 test samples with downwards transfer.

Model Clean FGSM PGD5 PGD10 PGD20 PGD50 PGD100

Standard 95.0 13.4 0 0 0 0 0

FT-TinyImagenet 77.2 37.7 33.9 28.0 24.9 23.0 22.5

IGAM-TransposeConv 93.2 65.0 58.8 44.5 32.4 22.4 18.7

IGAM-RandomPad 88.3 35.8 43.9 40.1 38.6 37.8 37.6

IGAM-Pad 87.9 51.6 52.2 46.6 44.0 43.0 42.5

IGAM-Upsize 88.7 54.0 52.5 47.6 45.1 43.5 43.0

PGD7-trained 87.25 56.22 55.5 47.3 45.9 45.4 45.3

Image Standard FT-MINST IGAM-
MNIST

PGD7-
Trained

FT-
TinyImagenet

IGAM-
Upsize

IGAM-
TransposeConv

IGAM-
Pad

IGAM-
RandomPad

Car 
58

Bird 
32

Cat 

Figure 4: Input gradients of different models.

teacher model. No input transformation is used when the

source task is CIFAR-10 since its images have the same di-

mensions as CIFAR-100’s. The final logit layers of MNIST

and CIFAR-10 teacher models are finetuned for 10 and 6

epochs, respectively, on natural CIFAR-100 images before

been used to transfer robustness in IGAM. We also fine-

tune the final logit layer of a robust CIFAR-10 model on

CIFAR-100 for 100 epochs, to compare as a baseline (FT-

CIFAR10). We also train a strong robust classifier, with

7-step PGD adversarial training like in [18], with the same

architecture as the IGAM student model to compare.

Results Similar to our findings in § 5.1, IGAM-trained

models outperform standard and finetuned baselines in ad-

versarial robustness (Table 3). Expectedly, using CIFAR-

10 as the source task yields higher transferred robustness

than using MNIST for IGAM. Since CIFAR-10 is closer to

CIFAR-100 and more challenging than MNIST, the CIFAR-

10 teacher model likely has more robust and relevant repre-

sentations that are reflected as more robust input gradients.

We note that though CIFAR-10 and CIFAR-100 are the

most similar datasets in our experiments, the finetuned base-

line has lower clean accuracy and adversarial robustness

compared to IGAM models. Finetuned models’ weights are

frozen up until the final logit layer to retain learned robust

representations. While weight freezing maintains a degree

of robustness to outperform standard training, it may restrict

the model from learning new representations relevant to the

target task, explaining its lower clean accuracy. We believe

this restriction also explains its lower robustness compared

to IGAM since IGAM models are free to learn representa-

tions important for the target task.

Table 3: Accuracy (%) on clean and adversarial CIFAR-100

test samples.

Model Clean FGSM PGD5 PGD10 PGD20

Standard 78.7 7.95 0.13 0.03 0

FT-CIFAR10 49.3 17.2 15.3 11.7 10.5

IGAM-MNIST 73.16 41.41 33.09 23.35 17.67

IGAM-CIFAR10 62.39 34.31 29.59 24.05 21.74

PGD7-trained 60.4 29.1 29.3 24.3 23.5

Roles of Loss Terms Improvements from the two terms

are additive to each other, as reflected in Table 4 and 5.

From Figure 7 in the supplementary material, we observe

that both the Ladv and Ldiff smoothen the decision bound-

aries and lower cross-entropy values in the loss landscape

compared to the standard trained baseline.

Table 4: IGAM-CIFAR10 accuracy (%) with varying �diff.

�diff 0 2.5 5 10

PGD20 16.0 16.3 21.7 21.7

Clean 58.9 61.8 62.9 62.4

Table 5: IGAM-CIFAR10 accuracy (%) with varying �adv.

�adv 0 0.5 1 2

PGD20 3.9 4.34 7.37 21.7

Clean 78.4 77.4 74.3 62.4

Compute Time Since finetuning is conducted once, we

amortize its time taken over each IGAM epoch to arrive at

347s, which is lower than the 815s taken for a 7-step PGD

epoch. Even though IGAM involves an additional discrimi-

nator update step on top of standard training, the parameter

size of the discriminator is much smaller than the classifier

model.
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5.3. Tiny-ImageNet Target Task

We study if robustness can transfer through the input gra-

dients when the target task has significantly larger input di-

mensions than the source task, with Tiny-ImageNet as the

target task and CIFAR-10/100 as the source task.

Setup For the robust CIFAR-10/100 teacher model, we

follow the same adversarial training setting and Wide-

Resnet 32-10 architecture as [18]. We use a similar Wide-

Resnet 32-10 model for the Tiny-ImageNet student model

due to its compatible with larger input dimension due to

its global average pooling layer. The robust CIFAR-10/100

teacher models are finetuned for 5 epochs on natural Tiny-

ImageNet images before being used for IGAM. Since the

input dimensions of Tiny-ImageNet and CIFAR-10/100 are

different, we study two types of input transformation to re-

shape the image dimension from 64⇥64⇥3 to 32⇥32⇥3
for finetuning the teacher model. The first is image resiz-

ing with bilinear interpolation (§ 4.3.1), which is equivalent

to a 2 ⇥ 2 average pooling layer with stride 2. The second

transformation is center-cropping as detailed in § 4.3.2. The

models’ adversarial robustness is evaluated based on 5-step

PGD attacks on test Tiny-ImageNet samples.

Results Similar to previous target-source task pairs,

IGAM can transfer robustness even to much more challeng-

ing dataset, to a degree to outperform the standard trained

and finetuned baselines (Figure 5). There is no visible dif-

ference in robustness transferred when using image resizing

or center-cropping as the input transformation.

Figure 5: Accuracy (%) on clean and adversarial Tiny-

ImageNet test samples.

6. Theoretical Discussion

To understand how robustness transfer across input gra-

dients of the student and teacher models, we first look at the

link between robustness and saliency of input gradients in

a single network. The link is formalized in Theorem 2 of

[6] which states that a network’s linearized robustness (⇢)

around an input x is upper bounded by alignment term ↵:

⇢(x)  ↵(x) +
C

kgk
(18)

where g is the Jacobian of the difference between the top

two logits, ↵(x) = |hx,gi|
kgk and C is a positive constant. An

important notion here is that a model with high linearized

robustness (⇢) retains its original prediction in face of large

perturbation but may still perform poorly on clean test data

with incorrect original outputs, such as finetuned teachers.

Different finetuned teacher models (FT-MINST and FT-

TinyImagnet) display visually different input gradients

which we speculate to be a result of being ‘locked’ into their

dataset-specific robust features. Different from natural im-

ages which have smooth pixel value distributions, MNIST

pixels take extreme binary values. From the robustness-

alignment link, one can expect the input gradient to also

take extreme values, explaining the sparse J of FT-MINST.

With Theorem 6.1 below, IGAM’s Ladv term encourages

the teacher and student models’ input gradients and, conse-

quently, their input alignment terms (↵) to match well.

Theorem 6.1. The global minimum of Ladv is achieved

when Js = Jt.

Its proof is in the supplementary material (§ B). As a re-

sult, the high linearized robustness upper bound of teacher

model is transferred to the student model. Though input

gradients are approximations of g and the upper bound is

not tight, we observe that such transfer is feasible in our ex-

periments. On top of this transferred robustness bound, all

of the student model’s weights are free to learn features rel-

evant to the target task in boosting its clean accuracy, hence

the improved performance over its teacher models.

7. Conclusions

We showed that input gradients are an effective medium

to transfer adversarial robustness across different tasks and

even across different model architectures. To train a stu-

dent model’s input gradients to semantically match those

of a robust teacher model, we proposed input gradient ad-

versarial matching (IGAM) to optimize for the input gradi-

ents’ source to be indistinguishable for a discriminator net-

work. Through extensive experiments on image classifica-

tion, IGAM models outperform standard trained models and

models finetuned on pre-trained robust feature extractors.

This demonstrates that input gradients are a more versatile

and effective medium of robustness transfer. We hope that

this will encourage new defenses that also target the seman-

tics of input gradients to achieve adversarial robustness.
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