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Abstract

Modeling data uncertainty is important for noisy im-

ages, but seldom explored for face recognition. The pioneer

work [35] considers uncertainty by modeling each face im-

age embedding as a Gaussian distribution. It is quite effec-

tive. However, it uses fixed feature (mean of the Gaussian)

from an existing model. It only estimates the variance and

relies on an ad-hoc and costly metric. Thus, it is not easy to

use. It is unclear how uncertainty affects feature learning.

This work applies data uncertainty learning to face

recognition, such that the feature (mean) and uncertainty

(variance) are learnt simultaneously, for the first time. Two

learning methods are proposed. They are easy to use and

outperform existing deterministic methods as well as [35]

on challenging unconstrained scenarios. We also provide

insightful analysis on how incorporating uncertainty esti-

mation helps reducing the adverse effects of noisy samples

and affects the feature learning.

1. Introduction

Data uncertainty1 captures the “noise” inherent in the

data. Modeling such uncertainty is important for computer

vision application [22], e.g., face recognition, because noise

widely exists in images.

Most face recognition methods represent each face

image as a deterministic point embedding in the latent

space [7, 27, 41, 42, 33]. Usually, high-quality images of

the same ID are clustered. However, it is difficult to esti-

mate an accurate point embedding for noisy face images,

which are usually out of the cluster and have larger uncer-

tainty in the embedding space. This is exemplified in Fig 1

(a). The positive example is far from its class and close to a

noisy negative example, causing a mismatch.

Probabilistic face embeddings (PFE) [35] is the first

work to consider data uncertainty in face recognition. For

each sample, it estimates a Gaussian distribution, instead of

1Uncertainty could be characterised into two main categories. Another

type is model uncertainty.
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Figure 1: (a) Deterministic model gives point embedding without consid-

ering the data uncertainty; (b) probabilistic model gives distributional es-

timation parameterised with estimated mean and estimated variance. PFE

leverages the pre-trained point embedding as the mean µ, only learn the

uncertainty σ for each sample; (c) our method simultaneously learn σ as

well as µ, leading to better intra-class compactness and inter-class separa-

bility for µ in the latent space. Different classes are marked as blue or red.

Best viewed in color.

a fixed point, in the latent space. Specifically, given a pre-

trained FR model, the mean of the Gaussian for each sam-

ple is fixed as the embedding produced by the FR model. An

extra branch is appended to the FR model and trained to es-

timate the variance. The training is driven by a new similar-

ity metric, mutual likelihood score or MLS, which measures

the “likelihood” between two Gaussian distributions. It is

shown that PFE estimates small variance for high-quality

samples but large variance for noisy ones. Together with

the MLS metric, PFE can reduce the mismatches on noisy

samples. This is illustrated in Fig 1, (b). While being effec-

tive, PFE is limited in that it does not learn the embedded

feature (mean) but only the uncertainty. As a result, it is

unclear how uncertainty affects feature learning. Also, the

conventional similarity metric such as cosine distance can-

not be used. The more complex MLS metric is in demand,

which takes more runtime and memory.

For the first time, this work applies data uncertainty

learning (DUL) to face recognition such that feature (mean)

and uncertainty (variance) are learnt simultaneously. As

illustrated in Fig 1 (c), this improves the features such that

the instances in the same class are more compact and the in-

stances in different classes are more separated. In this case,

the learned feature is directly usable for conventional simi-

larity metric. MLS metric is no longer necessary.

Specifically, we propose two learning methods. The first
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is classification based. It learns a model from scratch. The

second is regression based. It improves an existing model

, similar as PFE. We discuss how the learned uncertainty

affects the model training in two methods, from the per-

spective of image noise. We provide insightful analysis that

the learned uncertainty will improve the learning of identity

embeddings by adaptively reducing the adverse effects of

noisy training samples.

Comprehensive experiments demonstrate that our pro-

posed methods improve face recognition performance over

existing deterministic models and PFE on most public

benchmarks. The improvement is more remarkable on

benchmarks with low quality face images, indicating that

model with data uncertainty learning is more suitable to

unconstrained face recognition scenario, thus important for

practical tasks.

2. Related Work

Uncertainty in Deep Learning The nature of uncertain-

ties as well as the manner to deal with them have been

extensively studied to help solve the reliability assess-

ment and risk-based decision making problems for a long

time [9, 31, 8]. In recent years, uncertainty is getting more

attention in deep learning. Many techniques have been pro-

posed to investigate how uncertainty specifically behaves

in deep neural networks [3, 10, 11, 22]. Specific to deep

uncertainty learning, uncertainties can be be categorised

into model uncertainty capturing the noise of the parame-

ters in deep neural networks, and data uncertainty measur-

ing the noise inherent in given training data. Recently, many

computer vision tasks, i.e., semantic segmentation [19, 21],

object detection [6, 25] and person Re-ID [50], have in-

troduced deep uncertainty learning to CNNs for the im-

provement of model robustness and interpretability. In face

recognition task, several works have been proposed to lever-

age model uncertainty for analysis and learning of face rep-

resentations [13, 51, 23]. Thereinto PFE [35], is the first

work to consider data uncertainty in face recognition task.

Noisy Data Training Large-scale datasets, i.e., CASIA-

WebFace [47], Vggface2 [5] and MS-Celeb-1M [14], play

the important role in training deep CNNs for face recogni-

tion. It is inevitable these face datasets collected online have

lots of label noise — examples have erroneously been given

the labels of other classes within the dataset. Some works

explore the influence of label noise [39] and how to train

robust FR models in this case [17, 44, 29]. Yu et al. [50]

claims in person Re-ID that another image noise brought

by poor quality images also has detrimental effect on the

trained model. Our methods are not specifically proposed

for noisy data training, however, we provide insigtful anal-

ysis about how the learned data uncertainty affect the model

training from the perspective of image noise. Additionally,
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(a) noise in mapping X → Y . (b) “noise” in MS-Celeb-1M.

Figure 2: (a): Target y in observed data pair (red-dot) is corrupted by

x dependent noise. Data uncertainty regression will give us the “noise

level” (green-shaded) beyond the particular predicted value (green line);

(b): Samples labeled with the same ID are presented in each row. Samples

with red box are regarded as noisy data compared with other intra-class

samples. Best viewed in color.

we experimentally demonstrate the proposed methods per-

form more robustly on noisy dataset.

3. Methodology

In Section 3.1, we first reveals the data uncertainty in-

herently existed in continuous mapping space and our spe-

cific face datasets. In Section 3.2, we propose DULcls to

consider data uncertainty learning in a standard face clas-

sification model. We next propose another regression-based

method, DULrgs to improve existing deterministic models

in Section 3.3. Last in Section 3.4, we clarify some differ-

ences between proposed methods and existing works.

3.1. Preliminaries

Uncertainty in Continuous Mapping Space Supposing

a continuous mapping space X → Y where each yi ∈ Y is

corrupted by some input-dependent noise, n(xi),xi ∈ X ,

then we say this mapping space carries data uncertainty

in itself. Considering a simple case, the noise is additive

and drawn from Gaussian distribution with mean of zero

and x-dependent variance. Then each observation target

yi = f(xi) + ǫσ(xi), where ǫ ∼ N (0, I) and f(·) is the

embedding function we want to find. Conventional regres-

sion model only trained to approximate f(xi) given the in-

put xi. However, regression model with data uncertainty

learning also estimates σ(xi), representing the uncertainty

of the predicted value f(xi) (see Fig 2, (a)). This technique

has been used by many tasks [22, 4, 30, 12, 2].

Uncertainty in Face Datasets Similar to the above con-

tinues mapping space, face datasets composed with X → Y

also carries data uncerainty. Here X is the continues image

space while Y is the discrete identity labels. Typically, large

amount of face images collected online are visually ambigu-

ous (poorly aligned, severely blurred or occluded). It is dif-

ficult to filter out these poor quality samples from training

set (see Fig 2, (b)). During deep learning era, each sample

is represented as an embedding zi in the latent space. If we
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Figure 3: Overview of the proposed DULcls FR model.

hypothesize that each xi ∈ X has an ideal embedding f(xi)
mostly representing its identity and less unaffected by any

identity irrelevant information in xi, then the embedding

predicted by DNNs can reformulated as zi = f(xi)+n(xi)
where n(xi) is the uncertainty information of xi in the em-

bedding space.

3.2. Classification­based DUL for FR

We propose DULcls to firstly introduce data uncertainty

learning to the face classification model which can be

trained end-to-end.

Distributional Representation Specifically, we define

the representation zi in latent space of each sample xi as

a Gaussian distribution,

p(zi|xi) = N (zi;µi,σ
2
i I) (1)

where both the parameters (mean as well as variance) of

the Gaussian distribution are input-dependent predicted by

CNNs: µi = fθ1
(xi), σi = fθ2

(xi), where θ1 and θ2 re-

fer to the model parameters respectively w.r.t output µi and

σi. Here we recall that the predicted Gaussian distribution

is diagonal multivariate normal. µi can be regarded as the

identity feature of the face and the σi refers to the uncer-

tainty of the predicted µi. Now, the representation of each

sample is not a deterministic point embedding any more,

but a stochastic embedding sampled from N (zi;µi,σ
2
i I),

in the latent space. However, sampling operation is not dif-

ferentiable preventing the backpropagation of the gradients

flow during the model training. We use re-parameterization

trick [24] to let the model still take gradients as usual.

Specifically, we first sample a random noise ǫ from a normal

distribution, which is independent of the model parameters,

and then generate si as the equivalent sampling representa-

tion (see Fig 3 for an overview pipeline),

si = µi + ǫσi, ǫ ∼ N (0, I). (2)

Classification Loss Since si is the final representation of

each image xi, we feed it to a classifier to minimize the

following softmax loss,

Lsoftmax =
1

N

N
∑

i

− log
ewyi

si

∑C

c ewcsi

, (3)

In practice, we use different variants of Lsoftmax such as

additive margin [40], feature ℓ2 normalization [32] and arc-

face [7], to train our face classification model.

KL-Divergence Regularization Eq. 2 indicates that all

identity embeddings µi are corrupted by σi during the

training period, this will prompt the model to predict small

σ for all samples in order to suppress the unstable ingre-

dients in si such that Eq. 3 can still converge at last. In

this case, the stochastic representation can be reformulated

as si = µi + c which is actually degraded to the orig-

inal deterministic representation2. Inspired by the varia-

tional information bottleneck [1], we introduce a regular-

ization term during the optimization by explicitly constrain-

ing N (µi,σi) to be close to a normal distribution, N (0, I),
measured by Kullback-Leibler divergence (KLD) between

these two distributions. This KLD term is,

Lkl = KL[N(zi|µi,σ
2
i )||N(ǫ|0, I)]

= −
1

2
(1 + logσ2 − µ2 − σ2)

(4)

Noted that Lkl is monotonely decreasing w.r.t σ under the

restriction that σ
(l)
i ∈ (0, 1) (l refers to the lth dimension

of the embedding). Lkl works as a good “balancer” with

Eq. 3. Specifically, DULcls is discouraged from predicting

large variance for all samples, which may lead to extremely

corruption on µi, thus making Lsoftmax hard to converge.

Simultaneously, DULcls is also discouraged from predicting

lower variance for all samples, which may lead to larger Lkl

to punish the model in turn.

Last, we use Lcls = Lsoftmax + λLkl as the total cost

function, and λ is a trade-off hyper-parameter, and it is fur-

ther analysed in Section 4.6.

3.3. Regression­based DUL for FR

DULcls is a general classification model with data uncer-

tainty learning. Next we propose another regression based

method, DULrgs, improving existing FR models by data un-

certainty learning.

Difficulty of Introducing Data Uncertainty Regression

to FR DULrgs is inspired from data uncertainty regres-

sion [26, 22] for continuous mapping space X → Y as

described in Section 3.1. However, mapping space in face

datasets is constructed by continuous image space X and

discrete identity label Y , which cannot be directly fitted via

data uncertainty regression. The key point lies in that the

identity labels yc ∈ Y cannot serve as continues target vec-

tor to be approximated. This difficulty is also mentioned in

PFE [35] but is not resolved.

2Here c refers to the estimated σ which nearly constant and small.
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Figure 4: Overview of the proposed DULrgs model. All parameters in the

convolution layers are pre-trained by a deterministic FR model and are

fixed during the training of DULrgs.

Constructing New Mapping Space for FR We construct

a new target space, which is continuous, for face data. Most

importantly, it is nearly equivalent to the original discrete

target space Y , which encourages the correct mapping re-

lationship. Specifically, we pre-train a classification-based

deterministic FR model, and then utilize the weights in its

classifier layers, W ∈ R
D×C as the expected target vector3.

Since each wi ∈ W can be treated as the typical center

of the embeddings with the same class, {X ,W} thus can

be regarded as the new equivalent mapping sapce. Simi-

lar to the uncertainty in continuous mapping space as de-

scribed in Section 3.1, {X ,W} has inherent noise. We

can formulate the mapping from xi ∈ X to wi ∈ W as

wi = f(xi) + n(xi), where f(xi) is the “ideal” identity

feature and each observed wi is corrupted by input depen-

dent noise.

Distributional Representation Next we can estimate

above f(xi) and n(xi) by data uncertainty regression.

Specifically, a Gaussian distribution is assumed for the like-

lihood: p(zi|xi) = N (zi;µi,σ
2
i I) where µi as well as σi

are also parameterised by the weights in neural networks4

(see Fig. 4). If we take each wc as the target, we should

maximize the following likelihood for each xi,

p(wc|xi∈c,θ) =
1

√

2πσ2
i

exp(−
(wc − µi)

2

2σ2
i

). (5)

Actually, we take the log likelihood as follows,

ln p(wc|xi∈c,θ) = −
(wc − µi)

2

2σ2
i

−
1

2
lnσ2

i −
1

2
ln 2π.

(6)

Assumed that xi, i ∈ 1, 2, ... are independently and identi-

cally distributed (iid.), the likelihood over all data-points is
∏

c

∏

i ln p(wc|xi∈c,θ). Practically, we train the network

to predict the log variance, ri := lnσ2
i , to stabilize the nu-

merical during the stochastic optimization. Last, the likeli-

hood maximization is reformulated as the minimization of

3Here D refers to the dimensions of the embedding and C refers to the

numbers of classes in training set.
4Noted here µ

i
≈ f(xi) and σi ≈ n(xi).

cost function,

Lrgs =
1

2N

C
∑

c

∑

i∈c

[
1

D

D
∑

l

(exp(−r
(l)
i )(w(l)

c −µ
(l)
i )2+r

(l)
i ],

(7)

where D, N and l refers to the size of embedding dimen-

sion, the size of data-points and the lth dimension of each

feature vector, respectively. We omit the constant term,
D
2 ln 2π during the optimization.

Loss Attenuation Mechanism By qualitatively analyz-

ing Eq. 6, our learned variance σi could actually be re-

garded as the uncertainty score measuring the confidence of

the learned identity embedding, µi, belonging to cth class.

Specifically, for those ambiguous µi located far away from

its class center wc, DULrgs will estimate large variance to

temper the error term,
(wc−µ)2

2σ2 , instead of overfitting on

these noisy samples. DULrgs is discouraged from predict-

ing large variance for all samples, which may lead to un-

derfitting of (wc − µ)2 and larger logσ term will punish

the model in turn. Simultaneously, DULrgs is also discour-

aged from predicting very small variance for all samples,

which may lead to exponentially increases of error term.

Thus, Eq. 6 allows DULrgs to adapt the weighting of error

term. This makes the model learn to attenuate the effect

from those ambiguous µi caused by poor quality samples.

3.4. Discussion of Related Works

We first discuss the connection between DULcls and vari-

ational information bottleneck (VIB) [1]. VIB [1] is a varia-

tional approximation to information bottleneck (IB) princi-

ple [38] under the framework of deep learning. VIB seeks a

stochastic mapping from input data X to latent representa-

tion Z, in terms of the fundamental trade-off between mak-

ing Z as concise as possible but still have enough ability to

predict label Y [38]. It is noted that Lcls is similar to the

objective function in VIB. However, we analyze this clas-

sification method from data uncertainty perspective while

VIB derived this objective function from the view of infor-

mation bottleneck.

We next clarify some differences between DULrgs and

PFE [35]. Although both PFE and DULrgs formally en-

code the input uncertainty as variance representation. How-

ever, PFE essentially measures the likelihood of each pos-

itive pair of {xi,xj} sharing the same latent embedding:

p(zi = zj). While DULrgs interprets a conventional Least-

Square Regression technique as a Maximum likelihood Es-

timation with a data uncertainty regression model.

Last, both DULcls and DULrgs learn identity representa-

tion µ as well as uncertainty representation σ, which ensure

our predicted µ can be directly evaluated by common-used

matching metric. However, PFE has to use mutual likeli-

hood score (MLS) as the matching metric to improve the
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performance of deterministic model because identity repre-

sentation is not learnt in PFE.

4. Experiments

In this section, we first evaluate the proposed methods

on standard face recognition benchmarks. Then we provide

qualitative and quantitative analysis to explore what is the

meaning of the learned data uncertainty and how data uncer-

tainty learning affects the learning of FR models. Last, we

conduct experiments on the noisy MS-Celeb-1M dataset to

demonstrate that our methods perform more robustly than

deterministic methods.

4.1. Datasets and Implementation Details

We describe the public datasets that are used, and our

implementation details.

Datasets We use MS-Celeb-1M datasets with 3,648,176

images of 79,891 subjects as training set. 2 benchmarks

including LFW [18] and MegaFace [20]5, and 3 uncon-

strained benchmarks: CFP [34]6, YTF [43] and IJB-C [28],

are used to evaluate the performance of DULcls/rgs following

the standard evaluation protocols.

Architecture We train baseline models on ResNet [15]

backbone with SE-blocks [16]. The head of the base-

line model is: BackBone-Flatten-FC-BN with em-

bedding dimensions of 512 and dropout probability of 0.4
to output the embedding feature. Compared with base-

line model, DULcls has an additional head branch shar-

ing the same architecture to output the variance. DULrgs

also has an additional head branch whilst its architecture

is: BackBone-Flatten-FC-BN-ReLU-FC-BN-exp,

to output the variance.

Training All baseline models and DULcls models are

trained for 210,000 steps using a SGD optimizer with a

momentum of 0.9, weight decay of 0.0001, batch size of

512. We use triangular learning rate policy [36] with the

max lr of 0.1 and base lr of 0. For most DULcls mod-

els, we set trade-off hyper-parameter λ as 0.01. For the

proposed DULrgs, we first train baseline model for 210,000

steps and then fix parameters in all convolution layers (step

1). Then we train the mean branch as well as the variance

branch in head from scratch for additional 140,000 steps

with batch size of 256 (step 2). During step 2, we set learn-

ing rate starting at 0.01, and then decreased to 0.001 and

0.0001 at 56,000 and 84,000 steps.

5Noted that we use rank1 protocol of MegaFace
6Noted that we only use “frontal-profile” protocol of CFP

Figure 5: Top: TPR&FPR vs. threshold on IJB-C; Bottom: false accep-

tance cases mostly happened in the baseline model (left); false acceptance

cases mostly happened in DULcls (right). Both baseline model and DULcls

are trained by ResNet18 with AM-Softmax on MS-Celeb-1M dataset. Best

viewed in color.

4.2. Comparing DUL with Deterministic Baselines

In this part, all baseline models are trained with

ResNet18 backbone [15], equipped with different variants

of softmax loss, i.e., AM-Softmax [40], ArcFace [7] and

L2-Softmax [32]. Both the embedding features and the

weights in classifier are ℓ2-normalized during the training.

Our proposed DULcls models are trained with the same

backbone and loss functions. Our proposed DULrgs mod-

els are trained based on the different pre-trained baseline

models, as described in Section 4.1.

Table 1 reports the testing results obtained by the base-

line models (“Original”) and the proposed DUL models.

Cosine similarity is used for evaluation. Our proposed

methods outperform the baseline deterministic models on

most benchmarks7. This demonstrates that the proposed

methods are effective on different state-of-the-art loss func-

tions. These results indicate that the identity embeddings

(µ in our methods) trained with data uncertainty (σ in our

method) present better intra-class compactness and inter-

class separability than the point embeddings estimated by

baseline models, especially on those unconstrained bench-

marks: CFP with frontal/profile photos and YTF/IJB-C with

most blur photos collected from YouTube videos, compared

with benchmarks with most clear and frontal photos (LFW

and MegaFace).

The proposed DUL achieves most remarkable improve-

ment on verification protocols of IJB-C benchmark, which

is also the most challenging one. We thus plot how true

acceptance rate (TPR) and false acceptance rate (TPR) per-

form along with the change of thresholds. As illustrated

in Fig 5, DULcls achieves higher TPR and lower FPR than

7Noted that DULrgs combined with L2-Softmax deteriorates on IJB-C,

which should be further explored in the future.
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Base Model Representation LFW CFP-FP MegaFace(R1) YTF
IJB-C (TPR@FPR)

0.001% 0.01% 0.1% AUC

Original 99.63 96.85 97.11 96.09 75.43 88.65 94.73 87.51
PFE [35] 99.68 94.57 97.18 96.12 86.24 92.11 95.71 91.71

AM-Softmax [40]
DULcls 99.71 97.28 97.30 96.46 88.25 92.78 95.57 92.40

DULrgs 99.66 97.61 96.85 96.28 87.02 91.84 95.02 91.44
Original 99.64 96.77 97.08 96.06 73.80 88.78 94.30 86.94
PFE [35] 99.68 95.34 96.55 96.32 86.69 92.28 95.66 91.89

ArcFace [7]
DULcls 99.76 97.01 97.22 96.20 87.22 92.43 95.38 92.10

DULrgs 99.66 97.11 96.83 96.38 86.21 91.03 94.53 90.79
Original 99.60 95.87 90.34 95.89 77.60 86.19 92.55 85.83
PFE [35] 99.66 86.45 90.64 95.98 79.33 87.28 93.41 87.01

L2-Softmax [32]
DULcls 99.63 97.24 93.19 96.56 79.90 87.80 93.44 87.38

DULrgs 99.66 96.35 89.66 96.08 74.46 83.23 91.09 83.10

Table 1: Results of models (ResNet18) trained on MS-Celeb-1M. “Original” refers to the deterministic embeddings. The better performance among each

base model are shown in bold numbers. We use σ both for fusion and matching (with mutual likelihood scores) in PFE. AUC is calculated when FPR spans

on the interval [0.001%, 0.1%] and we rescale it.

baseline model at different settings of matching threshold.

Additionally, the lower FPR is set, the better DULcls per-

forms on TPR. Fig 5 also shows the vast majority cases of

false acceptance respectively happened in baseline model

and DULcls. We can see that DULcls resolves more FP cases

with extreme noises, which are typically occurring in the

baseline model. This indicates that model with data uncer-

tainty learning is more applicable to the unconstrained face

recognition scenario than deterministic model.

We have the similar conclusion for DULrgs.

4.3. Comparing DUL with PFE

For comparison, we re-implemented PFE on all base-

line models according to the recommended settings of

implementation details in [35]8. We note that our re-

implementation has achieved similar or slightly better re-

sults than those in [35]. Our DULcls/rgs use averaged pooling

aggregation for features in template and are evaluated by co-

sine similarity. Compared with PFE, our proposed DULcls

achieves better performances in all cases, and the proposed

DULrgs also shows competitive performances. Results are

reported in Table 1.

PFE interprets the point embedding learned by determin-

istic FR models as the mean of its output distributional es-

timation and only learn the uncertainty (variance) for each

sample. Thus, PFE has to use MLS metric, which takes the

predicted variance into account. Although PFE achieves

better results with the help of the matching measurement

with more precision, it still suffers more computational

complexity for matching. Specifically, for verification of

6000 face pairs (LFW), standard cosine metric takes less

than 1 second via matrix multiplication, while MLS takes

1min28s, on two GTX-1080.

8which means we use mutual likelihood score (MLS) for matching

and its proposed fusion strategy for feature aggregation in template/video

benchmarks, i.e., YTF and IJB-C.

Method Training Data LFW YTF MegaFace CFP-FP

FaceNet [33] 200M 99.63 95.1 - -

DeepID2+ [37] 300K 99.47 93.2 - -

CenterFace [42] 0.7M 99.28 94.9 65.23 76.52
SphereFace [27] 0.5M 99.42 95.0 75.77 89.14
ArcFace [7] 5.8M 99.83 98.02 81.03 96.98
CosFace [41] 5M 99.73 97.6 77.11 89.88
L2-Face [32] 3.7M 99.78 96.08 - -

Yin et al. [49] 1M 98.27 - - 94.39
PFE [35] 4.4M 99.82 97.36 78.95 93.34
Baseline 3.6M 99.83 96.50 98.30 98.75
PFErep 3.6M 99.82 96.50 98.48 97.28
DULcls 3.6M 99.78 96.78 98.60 98.67
DULrgs 3.6M 99.83 96.84 98.12 98.78

Table 2: Comparison with the state-of-the-art methods on LFW, YTF,

MegaFace (MF) and CFP-FP. “-” indicates that the author did report the

performance on the corresponding protocol. “PFErep” means we repro-

duce PFE by ourself. Backbone: ResNet64.

4.4. Comparison with State­Of­The­Art

To compare with state-of-the-art, we use a deeper and

stronger backbone, ResNet64, trained with AM-Softmax

loss on MS-Celeb-1M dataset, as our baseline model. Then

we train the proposed DUL models following the setting

described in section 4.1.

The results are illustrated in Table 2. Noted that perfor-

mances of baseline model have been saturated on LFW and

CFP-FP, where the merit of data uncertainty learning is not

obvious. However, DULcls/rgs still slightly improve the ac-

curacy on YTF and MegaFace9. Table 3 reports the results

of different methods on IJB-C. Both PFE and DUL achieve

much better performances over baseline models.

4.5. Understand Uncertainty Learning

In this part, we qualitatively and quantitatively analyze

the proposed DUL to gain more insights about data uncer-

tain learning.

9Noted that our used MegaFace datasets is refined, while previous re-

ported SOTA results in Table 2 usually use non-refined MegaFace.
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Method Training Data
IJB-C (TPR@FPR)

0.001% 0.01% 0.1% AUC

Yin et al. [48] 0.5M - - 69.3 -

Cao et al. [5] 3.3M 74.7 84.0 91.0 -

Multicolumn [46] 3.3M 77.1 86.2 92.7 -

DCN [45] 3.3M - 88.5 94.7 -

PFE [35] 4.4M 89.64 93.25 95.49 -

Baseline 3.6M 83.06 92.16 95.83 91.97
PFErep 3.6M 89.77 94.14 96.37 93.74
DULcls 3.6M 88.18 94.61 96.70 93.97

DULrgs 3.6M 90.23 94.21 96.32 93.88

Table 3: Comparison with the state-of-the-art methods on IJB-C. Back-

bone: ResNet64.

Figure 6: Uncertainty distribution on different dataset for DULrgs. Similar

uncertainty distribution has also been observed in DULcls. Best viewed in

color.

What is the meaning of the learned uncertainty? The

estimated uncertainty is closely related to the quality of face

images, for both DULcls and DULrgs. This is also observed

in PFE [35]. For visualization, we show the learned uncer-

tainty10 of different dataset in Figure 6. It illustrates that the

learned uncertainty increases along with the image quality

degradation. This learned uncertainty could be regarded as

the quality of the corresponding identity embedding esti-

mated by the model, measuring the proximity of the pre-

dicted face representation to its genuine (or true) point lo-

cation in the latent space.

Therefore, two advantages are obtained for face recogni-

tion with data uncertainty learning. First, the learned vari-

ance can be utilized as a “risk indicator” to alert FR systems

that the output decision is unreliable when the estimated

variance is very high. Second, the learned variance also

can be used as the measurement of image quality assess-

ment. In this case, we note that it is unnecessary to train a

separate quality assessment model which requires explicit

quality labels as before.

How the learned uncertainty affect the FR model? In

this part, we attempt to shed some light on the mechanism of

how the learned data uncertainty affects the model training

10Specifically, we use harmonic mean of the predicted variance σ ∈
R
512 as the approximated measurement of the estimated uncertainty. The

same below.

easy semi-hard hard

Figure 7: Bad case analysis between baseline model and DULcls. Best

viewed in color.

and helps to obtain better feature embeddings.

We classify the training samples in MS-Celeb-1M

dataset into three categories according to the degree of esti-

mated uncertainty by DULcls: easy samples with low vari-

ance, semi-hard samples with medium variance and hard

samples with large variance. We calculated the proportion

of mis-classified samples in each of the three categories to

all mis-classified samples respectively produced by base-

line model and our DULcls. Fig 7 illustrates that our DULcls

causes relatively less bad cases on easy samples as well

as semi-hard samples, compared with the basline model.

However, for those hard samples with extreme noises, base-

line model produces less bad cases, when compared with

DULcls. This demonstrates that FR networks with data

uncertainty learning focus more on those training samples

which should be correctly classified and simultaneously

“give up” those detrimental samples, instead of over-fitting

them. This supports our previous discussion in Section 3.2.

We also conduct similar experiment for DULrgs. We cal-

culate the averaged euclidean distances11 between the class

center wc and its intra-class estimated identity embedding,

µi∈c, respectively for baseline model and DULrgs. As illus-

trated in Fig 8, DULrgs pulls the easy and semi-hard samples

closer to their class center whilst pushes those hard sam-

ples further away. This also supports our discussion in Sec-

tion 3.3 that Eq. 6 effectively prevents model over-fitting on

extremely noisy samples by the adaptive weighting mecha-

nism w.r.t σ.

Last, we manually construct imposter/genuine test pair

with different blurriness to compare the cosine similarity

respectively obtained by baseline model and our methods.

As illustrated in Fig 9, along with the increase of blurriness,

both baseline model and DUL deteriorate rapidly. However,

our proposed DUL achieves higher similarity score for gen-

uine pair and lower similarity score for imposter pair than

baseline model, indicating that it is more robust.

11Noted this averaging distances are further averaged over all classes in

MS-Celeb-1M.
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Figure 8: Averaged intra-class distances ||µ
i∈c

− wc||2 between base

model and DULrgs.

genuine

imposter

(a)

0 10 20 30 40 50 60 70
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

co
sin

e 
sim

ila
rit

y

baseline: genuine
DULcls: genuine
DULrgs: genuine

baseline: imposter
DULcls: imposter
DULrgs: imposter

(b)

Figure 9: (a) Blur genuine and imposter pair; (b) Cosine similarity score

obtained by baseline and proposed DUL for each pair.

4.6. Other Experiments

Impact of hyper-parameter of DULcls In this part, we

qualitatively analyze what the trade-off hyper-parameter λ

controls in DULcls. As mentioned in VIB [1], KLD term

works as a regularization to trade off the conciseness and

the richness of the information preserved in bottleneck em-

beddings. We experimentally find the KL divergence in our

method affects the representational capacity of σ. As illus-

trated in Table 4, DULcls without the optimization of KLD

term (λ = 0) performs close to baseline model. In this case,

DULcls estimates relatively small σi for all samples, which

makes the sampled representation µi+ǫσi nearly determin-

istic. With the enhancement of the optimization strength of

KLD term (λ ↑), DULcls is prone to “assign” larger vari-

ance for noisy samples and small variance for high quality

ones (as illustrated in Fig 7). However, overly minimizing

KLD (λ = 1) term will prompt the model to predict large

variance for all samples, which makes Lcls in Eq. 3 hard

to converge, thus the performances deteriorate rapidly (see

Table 4).

DUL performs more robustly on noisy training data.

Based on the analysis of Section 3.4 about how the learned

variance affect the model training. We further conduct ex-

periments on noisy MS-Celeb-1M to prove it. We randomly

select different proportions of samples from MS-Celeb-1M

to pollute them with Gaussian blur noise. Table 5 demon-

strates that our proposed DULcls/rgs perform more robustly

on noisy training data.

λ σ YTF MegaFace
IJB-C (TPR@FPR)

0.001% 0.01% 0.1%

baseline - 96.09 97.11 75.32 88.65 94.73

0.0 0.2562 96.14 97.13 64.92 88.55 94.64

0.00010.3074 96.36 97.25 65.44 85.22 94.44

0.001 0.3567 96.26 97.38 62.88 86.65 94.46

0.01 0.5171 96.46 97.30 88.25 92.78 95.57

0.1 0.8505 96.42 95.07 87.19 91.78 95.13

0.5 0.9012 87.40 85.73 40.23 52.70 58.52

1.0 0.9520 75.14 63.90 1.770 4.530 13.02

Table 4: Results of DULcls trained with different trade-off λ. σ represents

we average the harmonic mean of the estimated variance over all training

samples in MS-Celeb-1M. The backbone is ResNet18 with AM-Softmax

loss.

percent Model MegaFace LFW YTF
IJB-C (TPR@FPR)

0.001% 0.01% 0.1%
0% baseline 97.11 99.63 96.09 75.32 88.65 94.73

10%

baseline 96.64 99.63 96.16 64.96 86.00 94.82

PFE [35] 97.02 99.63 96.1 83.39 91.33 95.54

DULcls 96.88 99.75 96.44 88.04 93.21 95.96

DULrgs 96.05 99.71 96.46 84.74 91.56 95.30

20%

baseline 96.20 99.61 96.00 43.52 80.48 94.22

PFE [35] 96.90 99.61 95.86 82.03 90.89 95.38

DULcls 96.37 99.71 96.68 89.01 93.24 95.97

DULrgs 95.51 99.66 96.64 81.10 90.91 95.27

30%

baseline 95.72 99.60 95.45 31.51 76.09 93.11

PFE [35] 96.82 99.61 96.12 80.92 90.31 95.29

DULcls 95.86 99.73 96.38 86.05 91.80 95.02

DULrgs 94.96 99.66 96.66 81.54 91.20 95.32

40%

baseline 95.14 99.56 95.51 39.69 77.12 93.73

PFE [35] 96.59 99.59 95.94 77.72 89.46 94.82

DULcls 95.33 99.66 96.54 84.15 92.60 95.85

DULrgs 94.28 99.58 96.68 78.13 87.64 94.67

Table 5: Comparison of baseline model and proposed DULcls/rgs trained

on noisy MS-Celeb-1M. Backbone model is ResNet18 with AM-Softmax

loss.

5. Conclusion

In this work, we propose two general learning methods

to further develop and perfect the data uncertainty learn-

ing (DUL) for face recognition: DULcls and DULrgs. Both

methods give a Gaussian distributional estimation for each

face image in the latent space and simultaneously learn

identity feature (mean) and uncertainty (variance) of the

estimated mean. Comprehensive experiments demonstrate

that our proposed methods perform better than deterministic

models on most benchmarks. Additionally, we discuss how

the learned uncertainty affects the training of model from

the perspective of image noise by both qualitative analysis

and quantitative results.
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