
Synthetic Learning: Learn From Distributed Asynchronized Discriminator GAN

Without Sharing Medical Image Data

Qi Chang1∗, Hui Qu1∗, Yikai Zhang1∗, Mert Sabuncu2,

Chao Chen3, Tong Zhang4 and Dimitris Metaxas2

1Rutgers University 2Cornell University
3Stony Brook University 4Hong Kong University of Science and Technology

{qc58,hq43,yz422,dnm}@cs.rutgers.edu , msabuncu@cornell.edu,

chao.chen.cchen@gmail.com, tongzhang@tongzhang-ml.org

Abstract

In this paper, we propose a data privacy-preserving and

communication efficient distributed GAN learning frame-

work named Distributed Asynchronized Discriminator GAN

(AsynDGAN). Our proposed framework aims to train a cen-

tral generator learns from distributed discriminator, and

use the generated synthetic image solely to train the seg-

mentation model. We validate the proposed framework on

the application of health entities learning problem which is

known to be privacy sensitive. Our experiments show that

our approach: 1) could learn the real image’s distribution

from multiple datasets without sharing the patient’s raw

data. 2) is more efficient and requires lower bandwidth than

other distributed deep learning methods. 3) achieves higher

performance compared to the model trained by one real

dataset, and almost the same performance compared to the

model trained by all real datasets. 4) has provable guaran-

tees that the generator could learn the distributed distribu-

tion in an all important fashion thus is unbiased.We release

our AsynDGAN source code at: https://github.com/tommy-

qichang/AsynDGAN

1. Introduction

1.1. The privacy policies and challenges in medical
intelligence

The privacy issue, while important in every domain, is

enforced vigorously for medical data. Multiple level of reg-

ulations such as HIPAA [2, 11, 36, 13] and the approval

process for the Institutional Review Board (IRB) [6] pro-

tect the patients’ sensitive data from malicious copy or even

tamper evidence of medical conditions [38]. Like a double-

edge sword, these regulations objectively cause insufficient

collaborations in health records. For instance, America, Eu-

∗equal contribution

ropean Union and many other countries do not allow patient

data leave their country [25, 47]. As a result, many hospitals

and research institutions are wary of cloud platforms and

prefer to use their own server. Even if in the same country

the medical data collaborate still face a big hurdle.

1.2. The restriction of the medical data accessibility

It’s widely known that sufficient data volume is nec-

essary for training a successful machine learning algo-

rithm [10] for medical image analysis. However, due to

the policies and challenges mentioned above, it is hard to

acquire enough medical scans for training a machine learn-

ing model. In 2016, there were approximately 38 million

MRI scans and 79 million CT scans performed in the United

States [41]. Even so, the available datasets for machine

learning research are still very limited: the largest set of

medical image data available to public is 32 thousand [51]

CT images, only 0.02% of the annual acquired images in the

United States. In contrast, the ImageNet [9] project, which

is the large visual dataset designed for use in visual object

recognition research, has more than 14 million images that

have been annotated in more than 20,000 categories.

1.3. Learning from synthetic images: a solution

In this work, we design a framework using centralized

generator and distributed discriminators to learn the genera-

tive distribution of target dataset. In the health entities learn-

ing context, our proposed framework can aggregate datasets

from multiple hospitals to obtain a faithful estimation of the

overall distribution. The specific task (e.g., segmentation

and classification) can be accomplished locally by acquir-

ing data from the generator. Learning from synthetic im-

ages has several advantages:

Privacy mechanism: The central generator has limited

information for the raw images in each hospital. When the

generator communicates with discriminators in hospitals,
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only information about the synthetic image is transmitted.

Such a mechanism prohibits the central generator’s direct

access to raw data thus secures privacy.

Synthetic data sharing: The natural of synthetic data

allows the generator to share the synthetic images without

restriction. Such aggregation and redistribution system can

build a public accessible and faithful medical database. The

inexhaustible database can benefit researchers, practitioners

and boost the development of medical intelligence.

Adaptivity to architecture updates: The machine

learning architecture evolves rapidly to achieve a better per-

formance by novel loss functions [48, 17], network mod-

ules [18, 45, 37, 42] or optimizers [46, 54, 32, 56, 57].

We could reasonably infer that the recently well-trained

model may be outdated or underperformed in the future as

new architectures invented. Since the private-sensitive data

may be not always accessible, even if we trained a model

based on these datasets, we couldn’t embrace new architec-

tures to achieve higher performance. Instead of training a

task-specific model, our proposed method trains a genera-

tor that learns from distributed discriminators. Specifically,

we learn the distribution of private datasets by a generator to

produce synthetic images for future use, without worrying

about the lost of the proprietary datasets.

To the best of our knowledge, we are the first to use GAN

to address the medical privacy problem. Briefly, our contri-

butions lie in three folds: (1) A distributed asynchronized

discriminator GAN (AsynDGAN) is proposed to learn the

real images’ distribution without sharing patients’ raw data

from different datasets. (2) AsynDGAN achieves higher

performance than models that learn from real images of

only one dataset. (3) AsynDGAN achieves almost the same

performance as the model that learns from real images of

all datasets.

2. Related Work

2.1. Generative Adversarial Networks (GANs)

The Generative Adversarial Nets [12] have achieved

great success in various applications, such as natural image

synthesis [43, 55, 8], image style translation [22, 58], image

super resolution [29] in computer vision, and medical image

segmentation [52, 50], cross-modality image synthesis [40],

image reconstruction [53] in medical image analysis. The

GAN estimates generative distribution via an adversarial su-

pervisor. Specifically, the generator G attempts to imitate

the data from target distribution to make the ‘fake’ data in-

distinguishable to the adversarial supervisor D. In Asyn-

DGAN framework, we mainly focus on the conditional

distribution estimation due to the nature of health entities

learning problems. However, the AsynDGAN framework

can be easily adopted into general GAN learning tasks.

Privacy Mechanism Data transmission Adaptivity

FL Randon Noise Parameters / Gradients No

SL Data Block Cut Layer Gradients No

AsynDGAN Data Block
Fake Data, Auxiliary Variable

& Discriminator Loss
Yes

Table 1. Comparison between different learning strategies.

2.2. Learning with data privacy

Federated Learning: The federated learning (FL) seeks

to collaborate local nodes in the network to learn a glob-

ally powerful model without storing data in the cloud. Re-

cently, FL attracts more attention as data privacy becomes

a concern for users [14, 27, 7, 19]. Instead of directly ex-

posing users’ data, FL only communicates model informa-

tion (parameters, gradients) with privacy mechanism so pro-

tects users’ personal information. In [1, 23, 34], the SGD

is shared in a privacy protection fashion. However, com-

municating gradients is dimension dependent. Considering

a ResNet101 [15] with d = 40 million parameters, it re-

quires at least 170 mb to pass gradients for each client per-

iteration. Even with compression technique similar to [1],

the communication cost is still non-affordable for large-size

networks.

Split Learning: The split learning (SL) [49] separates

shallow and deep layers in deep learning models. The cen-

tral processor only maintains layers that are several blocks

away from the local input, and only inter-layer information

is transmitted from local to central. In this way, the privacy

is guaranteed because the central processor has no direct ac-

cess to data. It reduces the communication cost from model-

dependent level to cut-layer-dependent layer while protect-

ing data privacy. However, such method does not apply to

neural networks with skip connections, e.g., ResNets [15].

In AsynDGAN framework, the communication cost in

each iteration is free of the dimension d. Only auxiliary

data (label and masks), ‘fake’ data and discriminator loss

are passed between the central processor and local nodes in

the network. For a 128 × 128 size gray-scale image, com-

munication cost per-iteration for each node is 8 mb with

batch size 128. Since the central processor has only access

to discriminator and auxiliary data, the privacy of client is

secured via separating block mechanism.

In addition, adaptivity is an exclusive advantage of Asyn-

DGAN framework. With rapid evolution of machine learn-

ing methods, practitioners need to keep updated with state-

of-the-art methods. However, there will be a high trans-

action cost to train a new model in a classical distributed

learning subroutine. With the AsynDGAN system, one can

maintain the generative distribution. Therefore, updating

machine learning models can be done locally with the free-

dom of generating training data. The comparison between

FL, SL and our AsynDGAN is shown in Table 1.
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3. Method

3.1. Overview

Our proposed AsynDGAN is comprised of one central

generator and multiple distributed discriminators located in

different medical entities. In the following, we present the

network architecture, object function and then analysis the

procedure of the distributed asynchronized optimization.

3.2. Network architecture

An overview of the proposed architecture is shown in

Figure 1. The central generator, denoted as G, takes task-

specific inputs (segmentation masks in our experiments)

and generates synthetic images to fool the discriminators.

The local discriminators, denote as D1 to Dn, learn to dif-

ferentiate between the local real images and the synthetic

images from G. Due to the sensitivity of patients’ images,

the real images in each medical center may not be accessed

from outside. Our architecture is naturally capable of avoid-

ing such limitation because only the specific discriminator

in the same medical entity needs to access the real images.

In this way, the real images in local medical entities will be

kept privately. Only synthetic images, masks, and gradients

are needed to be transferred between the central generator

and the medical entities.

The generator will learn the joint distribution from differ-

ent datasets that belong to different medical entities. Then

it can be used as an image provider to train a specific task,

because we expect the synthetic images to share the same or

similar distribution as the real images. In the experiments,

we apply the AsynDGAN framework to segmentation tasks

to illustrate its effectiveness. The U-Net [45] is used as the

segmentation model, and details about G and Ds designed

for segmentation tasks are described below.

3.2.1 Central generator

For segmentation tasks, the central generator is an encoder-

decoder network that consists of two stride-2 convolutions

(for downsampling), nine residual blocks [15], and two

transposed convolutions. All non-residual convolutional

layers are followed by batch normalization [20] and the

ReLU activation. All convolutional layers use 3 × 3 ker-

nels except the first and last layers that use 7× 7 kernels.

3.2.2 Distributed discriminators

In the AsynDGAN framework, the discriminators are dis-

tributed over N nodes (hospitals, mobile devices). Each

discriminator Dj only has access to data stored in the j-

th node thus discriminators are trained in an asynchronized

fashion. For segmentation, each discriminator has the same

structure as that in PatchGAN [21]. The discriminator indi-

vidually quantifies the fake or real value of different small

patches in the image. Such architecture assumes patch-wise

independence of pixels in a Markov random field fashion

[30, 22], and can capture the difference in geometrical struc-

tures such as background and tumors.

3.3. Objective of AsynDGAN

The AsynDGAN is based on the conditional GAN [39].

The objective of a classical conditional GAN is:

min
G

max
D

V (D,G) = Ex∼s(x)Ey∼pdata(y|x)[logD(y|x)]

+ Eŷ∼pŷ(ŷ|x)[log(1−D(ŷ|x))]
(1)

where D represents the discriminator and G is the gener-

ator. G aims to approximate the conditional distribution

pdata(y|x) so that D can not tell if the data is ‘fake’ or not.

The hidden variable x is an auxiliary variable to control the

mode of generated data [39]. In reality, x is usually a class

label or a mask that can provide information about the data

to be generated. Following previous works ([33, 21]), in-

stead of providing Gaussian noise z as an input to the gen-

erator, we provide the noise only in the form of dropout,

which applied to several layers of the generator of Asyn-

DGAN at both training and test time.

In the AsynDGAN framework, the generator is super-

vised by N different discriminators. Each discriminator is

associated with a subset of datasets. It is natural to quan-

tify such a setting using a mixture distribution on auxiliary

variable x. In another word, instead of given a naive s(x),
the distributions of x becomes s(x) =

∑

j∈[N ]

πjsj(x). For

each sub-distribution, there is a corresponding discrimina-

tor Dj which only receives data generated from prior sj(x).
Therefore, the loss function of our AsynDGAN becomes:

min
G

max
D1:DN

V (D1:N , G)

=
∑

j∈[N ]

πj{Ex∼sj(x)Ey∼pdata(y|x)[logDj(y|x)]

+ Eŷ∼pŷ(ŷ|x)[log(1−Dj(ŷ|x))]}

(2)

3.4. Optimization process

The optimization process of the AsynDGAN is shown

in Figure 2. In each iteration, a randomly sampled tuple

(x, y) is provided to the system. Here, x denotes the input

label which observed by the generator, and y is the real im-

age only accessible by medical entities. Then the network

blocks are updated iteratively in the following order:

1) D-update: Calculating the adversarial loss for j-th dis-

criminator Dj and update Dj , where j = 1, 2, · · · , N .

2) G-update: After updating all discriminators, G will be

updated using the adversarial loss
∑N

j=1 loss(Dj).
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Figure 1. The overall structure of AsynDGAN. It contains two parts, a central generator G and multiple distributed discriminators

D1, D2, · · · , Dn in each medical entity. G takes a task-specific input (segmentation masks in our experiments) and output synthetic

images. Each discriminator learns to differentiate between the real images of current medical entity and synthetic images from G. The

well-trained G is then used as an image provider to train a task-specific model (segmentation in our experiments).

Figure 2. The optimization process of AsynDGAN. The solid ar-

rows show the forward pass, and the dotted arrows show gradient

flow during the backward pass of our iterative update procedure.

The solid block indicate that it is being updated while the dotted

blocks mean that they are frozen during that update step. Red and

blue rectangles are source mask and target real image, respectively.

This process is formulated as Algorithm 1. We apply

the cross entropy loss and in the algorithm and further an-

alyze the AsynDGAN framework in this setting. We stress

that the framework is general and can be collaborated with

variants of GAN loss including Wasserstein distance and

classical regression loss [3, 31].

3.5. Analysis: AsynDGAN learns the correct distri­
bution

In this section, we present a theoretical analysis of Asyn-

DGAN and discuss the implications of the results. We first

begin with a technical lemma describing the optimal strat-

egy of the discriminator.

Lemma 1. When generator G is fixed, the optimal discrim-

inator Dj(y|x) is :

Dj(y|x) =
p(y|x)

p(y|x) + q(y|x)
(3)

Suppose in each training step the discriminator achieves

its maxima criterion in Lemma 1, the loss function for the

generator becomes:

min
G

V (G) = EyEx∼pdata(y|x)[logD(y|x)]

+ Eŷ∼pŷ(ŷ|x)[log(1−D(ŷ|x))]

=
∑

j∈[N ]

πj

∫

y

sj(x)

∫

x

p(y|x) log
p(y|x)

p(y|x) + q(y|x)

+ q(y|x) log
q(y|x)

p(y|x) + q(y|x)
dxdy

Assuming in each step, the discriminator always performs

optimally, we show indeed the generative distribution G

seeks to minimize the loss by approximating the underly-

ing distribution of data.

Theorem 1. Suppose the discriminators D1∼N always be-

have optimally (denoted as D∗
1∼N ), the loss function of gen-

erator is global optimal iff q(y, x) = p(y, x) where the op-

timal value of V (G,D∗
1∼N ) is − log 4.

Remark 1. While analysis of AsynDGAN loss shares sim-

ilar spirit with [12], it has different implications. In the dis-

tributed learning setting, data from different nodes are often

dissimilar. Consider the case where Ω(sj(x))∩Ω(sk(y)) =
∅, for k 6= j, the information for p(y|x), y ∈ Ω(sj(x)) will

be missing if we lose the j-th node. The behavior of trained

generative model is unpredictable when receiving auxiliary

variables from unobserved distribution sj(x). The Asyn-

DGAN framework provides a solution for unifying different

datasets by collaborating multiple discriminators.

413859



Algorithm 1 Training algorithm of AsynDGAN.

for number of total training iterations do

for number of interations to train discriminator do

for each node j ∈ [N ] do

– Sample minibatch of of m auxiliary variables

{xj
1, ..., x

j
m} from sj(x) and send to generator G.

– Generate m fake data from generator G,

{ŷj1, ..., ŷ
j
m} ∼ q(ŷ|x) and send to node j.

– Update the discriminator by ascending its

stochastic gradient:

∇θDj

1

m

m
∑

i=1

[

logDj(y
j
i ) + log(1−Dj(G(ŷji )))

]

.

end for

end for

for each node j ∈ [N ] do

– Sample minibatch of m auxiliary variables

{xj
1, ..., x

j
m} from sj(x) and send to generator G.

– Generate corresponding m fake data from gener-

ator G, {ŷj1, ..., ŷ
j
m} ∼ q(ŷ|x) and send to node j.

– Discriminator Dj passes error to generator G.

end for

– Update G by descending its stochastic gradient:

∇θG

1

Nm

N
∑

j=1

m
∑

i=1

log(1−Dj(G(ŷji ))).

end for

The gradient-based updates can use any standard

gradient-based learning rule. We used momentum in our

experiments.

4. Experiments

In this section, we first perform experiments on a syn-

thetic dataset to illustrate how AsynDGAN learns a mixed

Gaussian distribution from different subsets, and then ap-

ply AsynDGAN to the brain tumor segmentation task on

BraTS2018 dataset [5] and nuclei segmentation task on

Multi-Organ dataset [28].

4.1. Datasets and evaluation metrics

4.1.1 Datasets

Synthetic dataset The synthetic dataset is generated by

mixing 3 one-dimensional Gaussian. In another word, we

generate x ∈ {1, 2, 3} with equal probabilities. Given x,

the random variable y is generated from y = y11x=1 +
y21x=2 + y31x=3 where 1event is the indicator function

and y1 ∼ N (−3, 2), y2 ∼ N (1, 1), y3 ∼ N (3, 0.5). Sup-

pose the generator learns the conditional distribution of y:

p(y|x) perfectly, the histogram should behave similarly to

the shape of the histogram of mixture gaussian.

BraTS2018 This dataset comes from the Multimodal

Brain Tumor Segmentation Challenge 2018 [4, 5, 35]

and contains multi-parametric magnetic resonance imaging

(mpMRI) scans of low-grade glioma (LGG) and high-grade

glioma (HGG) patients. There are 210 HGG and 75 LGG

cases in the training data, and each case has four types of

MRI scans and three types of tumor subregion labels. In

our experiments, we perform 2D segmentation on T2 im-

ages of the HGG cases to extract the whole tumor regions.

The 2D slices with tumor areas smaller than 10 pixels are

excluded for both GAN training and segmentation phases.

In the GAN synthesis phase, all three labels are utilized to

generate fake images. For segmentation, we focus on the

whole tumor (regions with any of the three labels).

Multi-Organ This dataset is proposed by Kumar et

al. [28] for nuclei segmentation. There are 30 histopathol-

ogy images of size 1000 × 1000 from 7 different organs.

The train set contains 16 images of breast, liver, kidney and

prostate (4 images per organ). The same organ test set con-

tains 8 images of the above four organs (2 images per organ)

while the different organ test set has 6 images from bladder,

colon and stomach. In our experiments, we focus on the

four organs that exist both in the train and test sets, and per-

form color normalization [44] for all images. Two training

images of each organ is treated as a subset that belongs to a

medical entity.

4.1.2 Evaluation metrics

We adopt the same metrics in the BraTS2018 Challenge [5]

to evaluate the segmentation performance of brain tumor:

Dice score (Dice), sensitivity (Sens), specificity (Spec), and

95% quantile of Hausdorff distance (HD95). The Dice

score, sensitivity (true positive rate) and specificity (true

negative rate) measure the overlap between ground-truth

mask G and segmented result S. They are defined as

Dice(G,S) =
2|G ∩ S|

|G|+ |S|
(4)

Sens(G,S) =
|G ∩ S|

|G|
(5)

Spec(G,S) =
|(1−G) ∩ (1− S)|

|1−G|
(6)

The Hausdorff distance evaluates the distance between

boundaries of ground-truth and segmented masks:

HD(G,S) = max{ sup
x∈∂G

inf
y∈∂S

d(x, y), sup
y∈∂S

inf
x∈∂G

d(x, y)}

(7)
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where ∂ means the boundary operation, and d is Euclidean

distance. Because the Hausdorff distance is sensitive to

small outlying subregions, we use the 95% quantile of the

distances instead of the maximum as in [5]. To simplify the

problem while fairly compare each experiment, we choose

2D rather than 3D segmentation task for the BraTS2018

Challenge and compute these metrics on each 2D slices and

take an average on all 2D slices in the test set.

For nuclei segmentation, we utilize the Dice score and

the Aggregated Jaccard Index (AJI) [28]:

AJI =

∑nG

i=1 |Gi ∩ S(Gi)|
∑nG

i=1 |Gi ∪ S(Gi)|+
∑

k∈K |Sk|
(8)

where S(Gi) is the segmented object that has maximum

overlap with Gi with regard to Jaccard index, K is the set

containing segmentation objects that have not been assigned

to any ground-truth object.

4.2. Implementation details

In the synthetic learning phase, we use 9-blocks

ResNet [16] architecture for the generator, and multiple dis-

criminators which have the same structure as that in Patch-

GAN [21] with patch size 70 × 70. We resize the input

image as 286 × 286 and then randomly crop the image to

256× 256. In addition to the GAN loss and the L1 loss, we

also used perceptual loss as described in [24]. We use mini-

batch SGD and apply the Adam solver [26], with a learn-

ing rate of 0.0002, and momentum parameters β1 = 0.5,

β2 = 0.999. The batch size we used in AsynDGAN de-

pends on the number of discriminators. We use batch size

3 and 1 for BraTS2018 dataset and Multi-Organ dataset, re-

spectively.

In the segmentation phase, we randomly crop images

of 224×224 with a batch size of 16 as input. The model

is trained with Adam optimizer using a learning rate of

0.001 for 50 epochs in brain tumor segmentation and 100

epochs in nuclei segmentation. To improve performance,

we use data augmentation in all experiments, including ran-

dom horizontal flip and rotation in tumor segmentation and

additional random scale and affine transformation in nuclei

segmentation.

4.3. Experiment on synthetic dataset

In this subsection, we show that the proposed synthetic

learning framework can learn a mixture of Gaussian dis-

tribution from different subsets. We compare the quality

of learning distribution in 3 settings: (1) Syn-All. Train-

ing a regular GAN using all samples in the dataset. (2)

Syn-Subset-n. Training a regular GAN using only samples

in local subset n, where n ∈ {1, 2, 3}. (3) AsynDGAN.

Training our AsynDGAN using samples in all subsets in a

distributed fashion.

(a) Syn-All (b) Syn-Subset-n (c) AsynDGAN
Figure 3. Generated distributions of different methods.

The learned distributions are shown in Figure 3. In par-

ticular, any local learning (indicated in Figure 3(b)) can only

fit one mode Gaussian due to the restriction of local infor-

mation while AsynDGAN is able to capture global infor-

mation thus has a comparable performance with the regular

GAN using the union of separated datasets (Syn-All).

4.4. Brain tumor segmentation

In this subsection, we show that our AsynDGAN can

work well when there are patients’ data of the same disease

in different medical entities.

4.4.1 Settings

There are 210 HGG cases in the training data. Because we

have no access to the test data of the BraTS2018 Challenge,

we split the 210 cases into train (170 cases) and test (40

cases) sets. The train set is then sorted according to the

tumor size and divided into 10 subsets equally, which are

treated as data in 10 distributed medical entities. There are

11,057 images in the train set and 2,616 images in the test

set. We conduct the following segmentation experiments:

(1) Real-All. Training using real images from the whole

train set (170 cases). (2) Real-Subset-n. Training using

real images from the n-th subset (medical entity), where

n = 1, 2, · · · , 10. There are 10 different experiments in

this category. (3) Syn-All. Training using synthetic images

generated from a regular GAN. The GAN is trained directly

using all real images from the 170 cases. (4) AsynDGAN.

Training using synthetic images from our proposed Asyn-

DGAN. The AsynDGAN is trained using images from the

10 subsets (medical entities) in a distributed fashion.

In all experiments, the test set remains the same for fair

comparison. It should be noted that in the Syn-All and

AsynDGAN experiments, the number of synthetic images

are the same as that of real images in Real-All. The regular

GAN has the same generator and discriminator structures as

AsynDGAN, as well as the hyper-parameters. The only dif-

ference is that AsynDGAN has 10 different discriminators,

and each of them is located in a medical entity and only has

access to the real images in one subset.

4.4.2 Results

The quantitative brain tumor segmentation results are

shown in Table 2. The model trained using all real images
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(a) Image (b) Label (c) Real-All (d) Syn-All (e) Real-Subset-6 (f) AsynDGAN

Figure 4. Typical brain tumor segmentation results. (a) Test images. (b) Ground-truth labels of tumor region. (c)-(f) are results of models

trained on all real images, synthetic images of regular GAN, real images from subset-6, synthetic images of AsynDGAN, respectively.

(a) Input (b) AsynDGAN (c) Real

Figure 5. The examples of synthetic brain tumor images from the

AsynDGAN. (a) The input of the AsynDGAN network. (b) Syn-

thetic images of AsynDGAN based on the input. (c) Real images.

Method Dice ↑ Sens ↑ Spec ↑ HD95 ↓

Real-All 0.7485 0.7983 0.9955 12.85

Real-Subset-1 0.5647 0.5766 0.9945 26.90

Real-Subset-2 0.6158 0.6333 0.9941 21.87

Real-Subset-3 0.6660 0.7008 0.9950 21.90

Real-Subset-4 0.6539 0.6600 0.9962 21.07

Real-Subset-5 0.6352 0.6437 0.9956 19.27

Real-Subset-6 0.6844 0.7249 0.9935 21.10

Real-Subset-7 0.6463 0.6252 0.9972 15.60

Real-Subset-8 0.6661 0.6876 0.9957 18.16

Real-Subset-9 0.6844 0.7088 0.9953 18.56

Real-Subset-10 0.6507 0.6596 0.9957 17.33

Syn-All 0.7114 0.7099 0.9969 16.22

AsynDGAN 0.7043 0.7295 0.9957 14.94

Table 2. Brain tumor segmentation results.

(Real-All) is the ideal case that we can access all data. It is

our baseline and achieves the best performance. Compared

with the ideal baseline, the performance of models trained

using data in each medical entity (Real-Subset-1∼10) de-

grades a lot, because the information in each subset is lim-

ited and the number of training images is much smaller.

Our AsynDGAN can learn from the information of all

data during training, although the generator doesn’t “see”

the real images. And we can generate as many synthetic

images as we want to train the segmentation model. There-

fore, the model (AsynDGAN) outperforms all models using

single subset. For reference, we also report the results us-

ing synthetic images from regular GAN (Syn-All), which is

trained directly using all real images. The AsynDGAN has

the same performance as the regular GAN, but has no pri-

vacy issue because it doesn’t collect real image data from

medical entities. The examples of synthetic images from

AysnDGAN are shown in Figure 5. Several qualitative seg-

mentation results of each method are shown in Figure 4.

4.5. Nuclei segmentation

In this subsection, we apply the AsynDGAN to multi-

ple organ nuclei segmentation and show that our method is

effective to learn the nuclear features of different organs.

4.5.1 Settings

We assume that the training images belong to four dif-

ferent medical entities and each entity has four images of

one organ. Similar to Section 4.4, we conduct the follow-

ing experiments: (1) Real-All. Training using the 16 real

images of the train set. (2) Real-Subset-n. Training us-

ing 4 real images from each subset (medical entity), where

n ∈ {breast, liver, kidney, prostate}. (3) Syn-All. Training

using synthetic images from regular GAN, which is trained

using all 16 real images. (4) AsynDGAN. Training using

synthetic images from the AsynDGAN, which is trained us-

ing images from the 4 subsets distributively. In all above

experiments, we use the same organ test set for evaluation.
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(a) Image (b) Label (c) Real-All (d) Syn-All (e) subset-prostate (f) AsynDGAN

Figure 6. Typical nuclei segmentation results. (a) Test images. (b) Ground-truth labels of nuclei. (c)-(f) are results of models trained on

all real images, synthetic images of regular GAN, real images from prostate, synthetic images of AsynDGAN, respectively. Distinct colors

indicate different nuclei.

Method Dice ↑ AJI ↑

Real-All 0.7833 0.5608

Real-Subset-breast 0.7340 0.4942

Real-Subset-liver 0.7639 0.5191

Real-Subset-kidney 0.7416 0.4848

Real-Subset-prostate 0.7704 0.5370

Syn-All 0.7856 0.5561

AsynDGAN 0.7930 0.5608

Table 3. Nuclei segmentation results.

(a) Input (b) AsynDGAN (c) Real

Figure 7. The examples of synthetic nuclei images from the Asyn-

DGAN. (a) The input of the AsynDGAN network. (b) Synthetic

images of AsynDGAN based on the input. (c) Real images.

4.5.2 Results

The quantitative nuclei segmentation results are presented

in Table 3. Compared with models using single organ data,

our method achieves the best performance. The reason is

that local models cannot learn the nuclear features of other

organs. Compared with the model using all real images, the

AsynDGAN has the same performance, which proves the

effectiveness of our method in this type of tasks. The result

using regular GAN (Syn-All) is slightly worse than ours,

probably because one discriminator is not good enough to

capture different distributions of nuclear features in multi-

ple organs. In AsynDGAN, each discriminator is responsi-

ble for one type of nuclei, which may be better for the gen-

erator to learn the overall distribution. We present several

examples of synthetic images from AsynDGAN in Figure 7,

and typical qualitative segmentation results in Figure 6.

5. Conclusion

In this work, we proposed a distributed GAN learning

framework as a solution to the privacy restriction problem

in multiple health entities. Our proposed framework ap-

plies GAN to aggregate and learns the overall distribution

of datasets in different health entities without direct access

to patients’ data. The well-trained generator can be used as

an image provider for training task-specific models, with-

out accessing or storing private patients’ data. Our evalua-

tion on different datasets shows that our training framework

could learn the real image’s distribution from distributed

datasets without sharing the patient’s raw data. In addition,

the task-specific model trained solely by synthetic data has a

competitive performance with the model trained by all real

data, and outperforms models trained by local data in each

medical entity.
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