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Abstract

Existing shadow detection methods suffer from an intrin-

sic limitation in relying on limited labeled datasets, and

they may produce poor results in some complicated situ-

ations. To boost the shadow detection performance, this

paper presents a multi-task mean teacher model for semi-

supervised shadow detection by leveraging unlabeled data

and exploring the learning of multiple information of shad-

ows simultaneously. To be specific, we first build a multi-

task baseline model to simultaneously detect shadow re-

gions, shadow edges, and shadow count by leveraging their

complementary information and assign this baseline model

to the student and teacher network. After that, we encour-

age the predictions of the three tasks from the student and

teacher networks to be consistent for computing a con-

sistency loss on unlabeled data, which is then added to

the supervised loss on the labeled data from the predic-

tions of the multi-task baseline model. Experimental results

on three widely-used benchmark datasets show that our

method consistently outperforms all the compared state-of-

the- art methods, which verifies that the proposed network

can effectively leverage additional unlabeled data to boost

the shadow detection performance.

1. Introduction

As a common phenomenon in our daily life, shadows

in natural images have hints for extracting the scene geom-

etry [29, 17], light direction [22], camera location and its

parameters [16], and benefit different high-level image un-

derstanding tasks, e.g., image segmentation [4], object de-

tection [2], and object tracking [27]. For these applications,

we need to detect shadows from images with high accuracy.

Existing methods detect shadows by developing physical

models of color and illumination [6, 5], by using data-driven
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Figure 1: Shadow detection on two inputs with a soft

shadow (the first row) and multiple shadow regions (the sec-

ond row). Results in 3rd to 5-th columns are produced by

our method, DSD [41], and BDRAR [43]. Apparently, our

method can more accurately identify the shadow regions,

while some dark regions, as well as shadow boundaries are

mistakenly recognized by DSD and BDRAR.

approaches based on hand-crafted features [13, 23, 42] or by

learning discriminative features from a convolutional neural

network (CNN) [19, 33, 28, 12, 24, 43, 10, 41]. While the

state-of-the-art methods have already achieved high accu-

racy on benchmark datasets [33, 42, 35, 10], they almost re-

quire sufficient amounts of annotated data for training, and

such training data are usually captured in limited scenes.

Creating large labeled datasets for diverse scenes, however,

is expensive and time-consuming. Le et al. [24] proposed

to augment training images by weakening the shadow area

of the original training image, but we notice that these aug-

mented images tend to be fake, and their non-shadow back-

grounds are similar to those on the original training image,

hindering the generalization capability. Compared with la-

beled datasets, we could easily collect abundant unlabeled

shadowed images in real applications. Hence, it is highly

desirable to leverage additional unlabeled data to improve

the shadow detection performance when training with lim-

ited labeled data.

On the other hand, when testing the existing methods

on various natural images, we found that they may ne-
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Figure 2: The schematic illustration of our multi-task mean teacher network (MTMT-Net). We first develop a multi-task

CNN (MT-CNN; see Fig. 3) to mutually learn three tasks including shadow edge detection, shadow region detection, and

shadow count detection. After that, we compute a multi-task supervised loss for labeled data and a multi-task consistency

loss for unlabeled data. Finally, we fuse the supervised loss and consistency loss to train our shadow detection network.

glect small shadow regions, misrecognize dark regions as

shadows, and miss non-obvious or soft shadows due to the

weak boundaries. These situations result in poor shadow

boundaries and may alter the number of shadow regions

(see Fig. 1). Inspired by the success of multi-task learn-

ing in many computer vision applications [14, 3, 18, 26],

we decide to investigate the complementary information of

shadow regions, shadow edges and shadow count in our

work, to enhance shadow region detection from both global

and detail views. Specifically, shadow count detection sets

a global constraint on the total number of shadow regions,

while shadow edge detection sets detail-level constraints on

the boundaries of shadow regions.

In this regard, we develop a multi-task mean teacher

framework (MTMT-Net) for boosting the shadow detection

performance. We first design a multi-task CNN, denoted

as MT-CNN, for mutually learning three tasks (i.e., shadow

region detection, shadow edge detection, and shadow count

detection), and take this MT-CNN model as both the student

network and the teacher network. We then propose a super-

vised multi-task loss for labeled data to integrate the super-

vised losses on all three tasks. After that, we enforce the

three tasks’ results of the student network and the teacher

network to be consistent, respectively, on all the unlabeled

data. By adding the supervised loss from the developed MT-

CNN and the consistency loss from the three tasks to train

the model, our network can more accurately detect shadow

regions than the state-of-the-art methods. Our major contri-

butions are summarized as:

• First, we develop a multi-task CNN (MT-CNN) for

shadow detection by simultaneously detecting shadow

regions, shadow edges, and shadow count from the sin-

gle input image. The MT-CNN can produce a better

shadow detection result on labeled data than the one

with only shadow detection task.

• Second, we propose to design a multi-task mean

teacher framework to fuse consistency loss of un-

labeled data from three prediction tasks for shadow

detection. As a self-ensembling model, our frame-

work has the potential to be used for developing semi-

supervised frameworks on other vision tasks, including

saliency detection, boundary detection, and semantic

segmentation.

• Lastly, we show that the proposed network outper-

forms the state-of-the-art methods by a large margin

on three widely-used benchmark datasets.

2. Related Work
Traditional methods. Early attempts [6, 5, 32] explored

illumination models and color information to identify

shadow regions and most of them work well only on high-

quality and well-constrained images [28, 41]. Later data-

driven strategies design certain hand-crafted features [42,

23, 7, 13, 34] on annotated data and feed these features into

different classifiers [42, 23, 7, 13, 34] for shadow detection.

Although achieving accuracy improvements, these strate-

gies usually suffer from degraded performance in complex

cases where hand-crafted features are not sufficiently dis-

criminative for detecting shadow regions.

Deep learning based methods. Inspired by the remark-

able progress of deep learning in diverse vision tasks, con-

volutional neural network (CNN) based methods have been

developed for shadow detection to learn deep shadow in-

ference features from labeled datasets. Khan et al. [19]

formulated the first network to classify image pixels as

shadows/non-shadows by building a 7-layer CNN, which

extracts deep features from superpixels, and then feeding
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Figure 3: The schematic illustration of the proposed MT-CNN in Fig. 2. Taking a shadow image as the input, our MT-CNN

predicts a shadow region map, a shadow edge map, and a shadow count (i.e., the number of shadow regions) by fusing their

complementary information; see Section 3.1 for details.

the features to a conditional random field (CRF) model to

smooth the shadow detection results. Vicente et al. [33]

learned an image-level shadow prior and combined it with

local image patches to train a patch-based CNN for gener-

ating a shadow mask. Later, a generative adversarial net-

work based shadow detector, called scGAN [28], predicts

a shadow map by formulating a conditional generator on

the input image. A fast deep shadow detection network

in [8] obtains a shadow prior map from hand-crafted fea-

tures, applies a patch-level CNN to predict shadow masks of

patches, and combines the results from multi-scale patches

for predicting the whole shadow map.

Recently, Hu et al. [12] detected shadow pixels by

learning direction-aware spatial context features. Zhu et

al. [43] designed a recurrent attention residual (RAR) mod-

ule to combine the contexts of two adjacent CNN layers

and then formulated two series of RAR modules to itera-

tively integrate spatial contexts over the CNN layers. Le et

al. [24] combined a shadow detection network (D-Net) with

a shadow attenuation network (A-Net) that generated adver-

sarial training examples. Wang et al. [37] stacked multiple

parallel fusion branches to fuse global semantic cues and lo-

cal spatial details in a deeply supervised framework. Zheng

et al. [41] presented a distraction-aware shadow (DS) mod-

ule to predict false positive and false negative pixels, and

fused the obtained distraction features in each CNN layer

for shadow detection.

Although improving the shadow detection bar, existing

methods almost suffer from an intrinsic limitation that train-

ing their detection networks requires a large amount of

data with pixel-level annotations. Although ADNet [24]

augments training images from a single shadow image by

weakening the shadow area, we argue that these augmented

images tend to be fake, and the backgrounds are very similar

to the original training image, resulting in a limited general-

ization capability. In this paper, we leverage unlabelled data

for helping shadow detection. For this purpose, we embed

a multi-task learning into a self-ensembling framework to

enforce consistency loss of shadow-detection tasks. Results

show that our method outperforms state-of-the-art shadow

detectors as detailed in the later experiment section.

3. Methodology

Fig. 2 shows the workflow of the proposed MTMT-Net

that integrates labeled data and unlabeled data by using the

mean teacher semi-supervised learning. Specifically, we de-

velop a multi-task convolutional neural network (MT-CNN)

by considering three tasks, i.e., shadow region detection,

shadow edge detection, and shadow count detection. MT-

CNN is used for both the student network and the teacher

network. During the training, the labeled data is fed into the

student network, and a multi-task supervised loss is com-

puted by fusing the three task losses. Then, for unlabeled

data, we produce one auxiliary shadow map from the input

image and feed them into the student network and teacher

network, respectively. A multi-task consistency loss is com-

puted on the two groups of predicted shadow information.

In the testing stage, we only utilize the student network to

predict the shadow map for the input image.

3.1. Multi­task Convolutional Neural Network
(MT­CNN)

Although achieving remarkable results, existing shadow

detection methods suffer from performance degradation

when detecting soft shadows due to the weak boundaries.

They also tend to neglect small shadow regions or mis-
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identify dark non-shadow regions, thereby may signifi-

cantly alter the count of detected shadow regions. To ad-

dress these concerns, we argue that explicitly consider-

ing shadow edges and shadow count is helpful to augment

shadow region detection in both localization accuracy and

segmentation quality. In this paper, we proposed a multi-

task CNN (MT-CNN) to model and fuse the complemen-

tary of shadow edge, shadow count, and shadow region in-

formation within a single network in an end-to-end manner,

as illustrated in Fig. 3.

3.1.1 Shadow Region Detection

Given an input shadow image, we first use a convolutional

neural network (ResNeXt-101[38] in our experiment) to

produce a set of feature maps (denoted as EF 1, EF 2, EF 3,

EF 4, and EF 5) at different scales (see Fig. 3).

Note that there is complementary information among

different CNN layers for shadow detection. The shallow

CNN layers capture shadow details as well as many non-

shadow details, while the deep CNN layers neglect most

of the non-shadow pixels and also miss parts of shadow

regions. Here, we employ the short connections [9] to

merge feature maps at the last four CNN layers, resulting

in four new feature maps (denoted as DF 2, DF 3, DF 4,

and DF 5). Specifically, the merged feature map DFk at

k-th CNN layer (k = 2, ..., 5) is computed by:

DF k = Conv(Concat(EF k, ..., EF 5)). (1)

We then merge the shallowest features (EF 1) and the

deepest features (EF 5) to generate a new feature map, de-

noted as DF 1, which is used for predicting shadow edge

map (see Section 3.1.2). After that, to integrate the shadow

edge and shadow region information, we refine {DF k, k =
2, ..., 5} by first up-sampling them into the spatial resolution

of DF 1 and then element-wise adding DF 1. The refined

feature maps are denoted as {RF k, k = 2, ..., 5}, given by

RF k = up(DF k) +DF 1 . (2)

Finally, we predict four shadow region maps from DF 2,

DF 3, DF 4, and DF 5, four shadow region maps from

RF 2, RF 3, RF 4, and RF 5, and a shadow map (denoted

as Sf in Fig. 3) from the refined feature maps, which is pro-

duced by element-wisely adding, i.e.

Sf = Pred(

5
∑

k=2

RF k) . (3)

The prediction Pred(·) is realized by using three 3×3 con-

volutional layers, a 1×1 convolutional layer, and a sigmoid

activation layer [43] on features.

3.1.2 Shadow Edge Detection

By observing shadow images, we notice that for soft shad-

ows, the boundaries may not be distinguishable from the

surrounding non-shadow regions. This motivates us to think

about utilizing edge knowledge to enhance the detection

performance. Recent saliency detectors [14, 15] have also

proved this point, in which edge knowledge is helpful to

improve the saliency detection quality.

In our MT-CNN, we fuse the low-level CNN features

EF1 with the high-level features EF5 at the deepest CNN

layer to produce the feature map DF1, which is then used

for predicting a shadow edge map. Although low-level

features EF1 capture sufficient shadow edge information,

detecting shadow edges only with EF1 is not sufficient,

since EF1 also encodes many non-shadow background de-

tails. On the other hand, the deep layer features EF5

has the largest receptive field to effectively suppress the

non-shadow pixels. Specifically, DF1 is computed via an

element-wise addition on EF1 and EF5.

3.1.3 Shadow Count Detection

By analyzing the results of existing shadow detection meth-

ods, we find three common failure cases: small shadow re-

gions are missed; non-shadow regions are mis-identified;

and nearby shadow regions are mistakenly detected to-

gether. These cases all result in an inaccurate shadow re-

gion number. Therefore, we explore the number of shadow

regions for enhancing the shadow detection performance.

Detecting the shadow region number requires a global

understanding of the whole image. As shown in Fig. 3,

we rely on EF 5 at the deepest CNN layer for the detec-

tion. Specifically, we apply a single fully-connected layer

on EF5 to obtain a score (A) indicating the shadow count.

Since the number of shadow regions can be very large, to

make the computation feasible, we set a maximum con-

straint Nmax, and empirically compute the scalar A as the

regression problem:

A =
min(Nactual, Nmax)

Nmax
, (4)

where Nactual denotes the actual number of the shadow re-

gions, and we empirically set Nmax=8 in our work.

3.2. Multi­task Supervised Loss on Labeled data

For labeled data, we can have a pair of input shadow

image and the corresponding annotated shadow mask. It

is natural that we take the annotated shadow mask as the

ground truth of the shadow region detection (Gr). Then, we

apply the Canny operator [1] on the annotated shadow mask

to generate an edge map as the ground-truth of the shadow

edge detection (Ge). We further observe each labeled image

and manually count the number of shadow regions to obtain

A (see Eq. (4)), which is regarded as the ground truth of the

shadow count detection (Gc).

After obtaining the ground truths, the multi-task super-

vised loss (denoted as Ls) for a labeled image (x) is com-

puted by adding the supervised losses of the shadow region
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detection (Ls
r), shadow edge detection (Ls

e), and shadow

count detection (Ls
c), i.e.

Ls(x) = Ls
r + αLs

e + βLs
c , (5)

where

Ls
r =

9
∑

j=1

ΦBCE (Pr(j), Gr) ,

Ls
e = ΦBCE (Pe, Ge) ,

Ls
c = ΦMSE (Pc, Gc) .

(6)

Here, Pr(j) represents one of the nine predicted shadow

maps, Pe is the predicted shadow edge map, and Pc is the

predicted shadow count value. ΦBCE and ΦMSE are the

binary cross-entropy loss and MAE loss functions, respec-

tively. We empirically set the weights α=10 and β=1 in the

network training.

3.3. Multi­task Consistency Loss on Unlabeled Data

For the unlabeled data, we pass it into the student and

teacher networks to obtain three tasks’ results, which are the

nine shadow region maps (denoted as Sr1 to Sr9 ), a shadow

edge map (denoted as Se), and a shadow count score (de-

noted as Sc). We then enforce the predictions of the three

tasks from the student network and teacher network to be

consistent, resulting in a multi-task consistency loss (Lc).

Mathematically, Lc for an unlabeled image (denoted as y)

is

Lc(y) = Lc
r + Lc

e + Lc
c (7)

where

Lc
r =

9
∑

j=1

ΦMSE

(

Srj , Trj

)

,

Lc
e = ΦMSE (Se, Te) ,

Lc
c = ΦMSE (Sc, Tc) ,

(8)

where Lc
r, Lc

e, and Lc
c denote the consistency loss of

the shadow region detection, shadow edge detection, and

shadow count detection, respectively.

3.4. Our Network

We apply the multi-task learning with the semi-

supervised self-ensembling model for shadow detection.

The total loss of our network is

Ltotal =

N
∑

i=1

Ls(xi) + λ

M
∑

j=1

Lc(yj) , (9)

where N and M are the numbers of labeled images and

unlabeled images in our training set. Ls(xi) denotes the

multi-task supervised loss (Eq. (5)) for the i-th labeled im-

age while Lc(yj) is the multi-task consistency loss (Eq. (7))

for the j-th unlabeled image. The weight λ is to balance the

multi-task supervised loss on labeled data and the multi-task

consistency loss on unlabeled data. Following [21, 31], we

use a time dependent Gaussian warming up function to up-

date λ: λ(t) = λmaxe
(−5(1−t/tmax)

2), where t denotes the

current training iteration and tmax is the maximum training

iteration. In our experiments, we empirically set λmax=10.

We minimize Ltotal to train the student network, and the

parameters of the teacher network in each training step, are

updated via the exponential moving average (EMA) strat-

egy in [31]. The parameters of the teacher network at the t

training iteration are:

θ′t = ηθ′t−1 + (1− η)θt, (10)

where θt denotes the student network parameter at the t

training iteration. The EMA decay η is empirically set as

0.99, as suggested in [21, 31].

Our unlabeled data. The unlabeled data in our work has

3, 424 images with shadows. It consists of two parts: one is

the USR dataset from a recent shadow removal work [11],

while the other is our collection of 979 images from the

internet. The USR dataset [11] has 2, 445 shadow images

without shadow detection annotations.

3.5. Training and Testing Strategies

Training parameters. To accelerate the training proce-

dure and reduce the overfitting risk, we initialize the pa-

rameters of MT-CNN (student network) by ResNeXt [38],

which has been well-trained for the image classification task

on the ImageNet. Other parameters in the MT-CNN are

initialized as random values. Stochastic gradient descent

(SGD) equipped with a momentum of 0.9 and a weight de-

cay of 0.0005 is used to optimize the whole network with

10, 000 iterations. The learning rate is adjusted by a poly

strategy [25] with the initial learning rate of 0.005 and the

power of 0.9. We resize all the labeled and unlabeled im-

ages to 416× 416 for training our network on a single GTX

2080Ti GPU, and augment the training set by random hor-

izontal flipping. We use the mini-batch size of 6, which

consists of 4 labeled images and 2 unlabeled data images.

Inference. During testing, we resize the input images to

416× 416, feed the resized image into the student network,

and take the rightmost shadow region detection map (Sf in

Fig. 3) as the final output of our MTMT-Net. Following

recent shadow detection networks [43, 41], we apply a fully

connected conditional random field (CRF) [20] to further

post-process the predicted result of our network.

4. Experimental Results

In this section, we first present the shadow detection

benchmark datasets and evaluation metric, then compare

the proposed MTMT-Net with the state-of-the-art shadow

detectors and those relevant works including shadow re-

moval, saliency detection and semantic segmentation, and
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Table 1: Comparing our network (MTMT-Net) against the state-of-the-art shadow detectors.

SBU [33] UCF [42] ISTD [35]

Method Year BER ↓ Shadow ↓ Non Shad.↓ BER ↓ Shadow ↓ Non Shad.↓ BER ↓ Shadow ↓ Non Shad.↓

MTMT-Net(ours) - 3.15 3.73 2.57 7.47 10.31 4.63 1.72 1.36 2.08

Ours-w/o-CRF - 3.15 3.72 2.58 8.06 12.23 3.90 1.77 1.16 2.39

DSDNet [41] 2019 3.45 3.33 3.58 7.59 9.74 5.44 2.17 1.36 2.98

DC-DSPF [37] 2019 4.90 4.70 5.10 7.90 6.50 9.30 - - -

BDRAR [43] 2018 3.64 3.40 3.89 7.81 9.69 5.94 2.69 0.50 4.87

ADNet [24] 2018 5.37 4.45 6.30 9.25 8.37 10.14 - - -

DSC [12] 2018 5.59 9.76 1.42 10.54 18.08 3.00 3.42 3.85 3.00

ST-CGAN [35] 2018 8.14 3.75 12.53 11.23 4.94 17.52 3.85 2.14 5.55

patched-CNN [8] 2018 11.56 15.60 7.52 - - - - - -

scGAN [28] 2017 9.10 8.39 9.69 11.50 7.74 15.30 4.70 3.22 6.18

stacked-CNN [33] 2016 11.00 8.84 12.76 13.00 9.00 17.10 8.60 7.69 9.23

Unary-Pairwise [7] 2011 25.03 36.26 13.80 - - - - - -

DeshadowNet [30] 2017 6.96 - - 8.92 - - - - -

EGNet [14] 2019 4.49 5.23 3.75 9.20 11.28 7.12 1.85 1.75 1.95

SRM [36] 2017 6.51 10.52 2.50 12.51 21.41 3.60 7.92 13.97 1.86

Amulet [39] 2017 15.13 - - 15.17 - - - - -

PSPNet [40] 2017 8.57 - - 11.75 - - 4.26 4.51 4.02

finally report ablation study results. Our code, model pa-

rameters, and shadow detection results on three benchmark

datasets have been released at https://github.com/

eraserNut/MTMT.

4.1. Datasets and Evaluation Metrics

Benchmark datasets. We evaluate our method on

three widely-used shadow detection benchmark datasets:

SBU [33], UCF [42], and ISTD [35]: (i) The SBU dataset

is the largest annotated shadow dataset with 4,089 training

images and 638 testing images; (ii) The UCF dataset con-

sists of 145 training images and 76 testing images, cover-

ing outdoor scenes; and (iii) ISTD is a recently developed

dataset for both shadow detection and removal. It has 1,870

triples of shadow images, shadow maps, and shadow-free

images, and 540 of them are used for testing. Similar to

recent works [12, 24, 43, 41], for SBU and UCF, we ob-

tained the evaluation results by training our network on the

SBU training set and our unlabeled dataset. Since ISTD

only contains cast shadow images that are different from

SBU images, following [41], we re-train our method and

most competitors on the ISTD training dataset with our un-

labeled data. Our training time for SBU is 1 hour, and that

for ISTD is 0.5 hours. The model size of our network is 169

M. In the testing, our MTMT-Net takes around 0.05 seconds

to process an image with a 416× 416 image resolution.

Evaluation metric. We employ a commonly-used metric,

i.e., balance error rate (BER), to quantitatively evaluate the

shadow detection performance. The BER [43, 12] equally

considers the quality of shadow and non-shadow regions,

which is given by:

BER =

(

1−
1

2

(

Ntp

Np
+

Ntn

Nn

))

× 100 , (11)

where Ntp, Ntn, Np, and Nn are the number of true posi-

tives, true negatives, shadow and non-shadow pixels of the

shadow image, respectively. A small BER value indicates a

better shadow detection performance.

4.2. Comparison with the State­of­the­art Shadow
Detectors

We make comparison with 10 recent shadow detectors

including DSDNet [41], DC-DSPF [37], BDRAR [43], AD-

Net [24], DSC [12], ST-CGAN [35], patched-CNN [8],

scGAN [28], stacked-CNN [33], and Unary-Pairwise [7].

Among them, the last method is based on hand-crafted fea-

tures while all the others are deep-learning-based methods.

To make the comparisons fair, we adopt the available results

of compared methods by either directly from the authors or

using their report in published paper.

Quantitative comparison. Table 1 summarizes the quan-

titative results of different methods on the three benchmark

datasets. The BER score is the average of shadow and non-

shadow BER scores. Apparently, the deep learning based

methods [33, 12, 8] have much smaller BER values than the

hand-crafted detector [7], since they can learn more power-

ful features for shadow detection from the annotated train-

ing images. Among the deep learning based shadow detec-

tors, DSDNet [41] is the second best-performing method,

which explicitly learns and integrates the semantics of vi-

sual distraction regions to infer shadows. Compared to the

best-performing existing method, our method has 8.70%,

1.58%, and 20.7% lower BER scores on SBU, UCF, and

ISTD, respectively. In addition, our method has a better

BER score on non-shadow pixels for SBU and UCF and a

better BER score on shadow pixels for ISTD. This shows

that our network predicts more shadow pixels for SBU and

UCF and reduces the false positive predictions on non-

shadow regions for ISTD. Like the three comparative meth-

ods [43, 12, 41], we also use CRF [20] as post-processing.

The second row in Table 1 shows the performance of our

5616



input

images

ground

truths

our

method

DSD

[41]

BDRAR

[43]

DSC

[12]

scGAN

[28]

paCNN

[8]

stCNN

[33]

Figure 4: Visual comparison of shadow maps produced by our method and other methods (4th-10th columns) against ground

truths shown in 2nd column. Note that “stCNN” and “paCNN” stand for “stacked-CNN” and “patched-CNN”, respectively.

method without using CRF. The results indicate usig CRF

obtains a certain degree of improvement, mainly on the

UCF dataset, while without CRF still achieves better per-

formance than most state-of-the-art methods.

Visual comparison. We further visually compare the

shadow detection maps produced by our method and the

state-of-the-arts, as shown in Figs. 4. From the results, we

can see that our MTMT-Net (3rd column of Figs. 4) has

the best performance among all the shadow detectors. It

can effectively locate different shadows under various back-

grounds, and successfully discriminates true shadows from

those non-shadow regions with shadow appearance. For

example, in the 3rd, 5th and 7th row, MTMT-Net can ac-

curately detect the shadow regions, while the others mis-

takenly recognize the road, the sky and the dark ground as

shadows, respectively. What’s more, for high-contrast ob-

jects in a large shadow region, MTMT-Net can still recog-

nize them as shadows, as demonstrated in the last two rows.

4.3. Comparison with Shadow Removal, Saliency
Detection and Semantic Segmentation Meth­
ods

It is noted that deep networks designed for shadow re-

moval, saliency detection and semantic segmentation can

be re-trained for shadow detection by using annotated

shadow datasets. To further evaluate the effectiveness of our

method, we apply a shadow removal model, i.e., Deshad-

owNet [30], three saliency detection models, i.e., SRM [36],

Amulet [39] and EGNet [14], and a semantic segmentation

model, i.e., PSPNet [40] on shadow detection datasets.

We adopt the available results of compared methods by

either re-training the released code or using those reported.

For a fair comparison, we try our best to fine tune their

training parameters and select the best shadow detection re-

sults. The last five rows in Table 1 report their BER values.

We see that these models can achieve superior BER per-

formance over some existing shadow detectors, yet are still

worse than our network.

4.4. Ablation Analysis

Baseline network design. We perform ablation study ex-

periments to evaluate the proposed multi-task supervised

loss (see Eq. (5)) and multi-task consistency loss (see

Eq. (7)) of our MTMT-Net. Here, we consider seven base-

line networks.

The first four baseline networks are constructed by re-

moving the teacher model. It means that only supervised

loss on labeled data is used to train MT-CNN. Specifically,

the first baseline network (denoted as “basic”) only con-

siders the shadow region detection supervised loss (Ls
r in

Eq. (5)). The second (denoted as “basic+SE”) is to add the

shadow edge detection supervised loss (Ls
e of Eq. (5)),while

the third (denoted as “basic+SC”) is to add shadow count

detection supervised loss (Ls
c of Eq. (5)). The fourth is to

fuse the supervised loss of three tasks together.

Another three baseline networks are built to verify the

multi-task consistency loss on unlabeled data. The first one
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Figure 5: Visual comparison of shadow maps produced by our method and other baseline networks (see Table 2 for details).

Table 2: Ablation analysis. Here, “SR” denotes the shadow

region detection; “SE” denotes the shadow edge detection;

“SC” denotes the shadow count detection; and “MT” de-

notes the mean teacher.

SBU [33] UCF [42] ISTD [35]

Network SR SE SC MT BER ↓ BER ↓ BER ↓
basic X × × × 5.28 9.57 2.23

basic+SE X X × × 4.07 8.09 1.8

basic+SC X × X × 4.72 9.34 2.04

basic+three-tasks X X X × 3.61 7.64 2.03

basic-MT X × × X 4.49 8.29 2.12

basic-MT+SE-MT X X × X 3.83 7.81 1.75

basic-MT+SC-MT X × X X 4.41 8.61 2.03

our method X X X X 3.15 7.34 1.72

(denoted as “basic-MT”) only considers the mean teacher

model on the shadow region task by fusing the supervised

loss (Ls
r of Eq. (5)) and the consistency loss (Lc

r of Eq. (7)).

The second one (denoted as “basic-MT+SE-MT”) is to ap-

ply the mean teacher model on the shadow region detection

and shadow edge detection, which means that Ls
r and Ls

e in

Eq. (5) as well as Lc
r and Lc

e in Eq. (7) are used to train the

network. The last one (denoted as “basic-MT+SC-MT”) is

to use the mean teacher model on the shadow region detec-

tion and shadow count detection. In other words, the super-

vised loss (Ls
r and Ls

c in Eq. (5)) and the consistency loss

(Lc
r and Lc

c in Eq. (7)) are used for the network training.

We train all the seven baseline networks using the SBU

training set and our unlabeled data to obtain results of SBU

and UCF. For ISTD, we use the ISTD training set and our

unlabeled data to train all four networks and test them using

the ISTD testing set.

Quantitative comparisons. Table 2 summaries the BER

values of our network and seven baseline networks on the

three benchmark datasets. From the results, we have the fol-

lowing observations: (i) “basic+SE” and “basic+SC” have

superior BER values over “basic”, which means that de-

tecting shadow boundaries and shadow count can provide

helpful information for shadow detection. (ii) “basic+three-

tasks” has better BER performance than “basic+SE” and

“basic+SC”, demonstrating that fusing the three tasks for

a supervised shadow detection together incurs a better

shadow detection performance. (iii) “basic-MT” can more

accurately detect shadow pixels than “basic” due to its

smaller BER values. It indicates that the additional con-

sistency loss from the unlabeled data incurs a superior

shadow detection performance. (iv) “basic-MT+SE-MT”

and “basic-MT+SC-MT” produce smaller BER results than

“basic-MT”, showing that the shadow edge detection and

shadow region detection benefit the mean teacher model for

shadow detection. (v) We can find that the shadow edge de-

tection has a more contribution than the shadow count de-

tection to the success of our method since “basic-MT+SE-

MT” has a better BER result than “basic-MT+SC-MT”. (vi)

By designing a three-task mean teacher model, our MTMT-

Net has the best BER performance on three benchmarks.

Visual comparisons. Moreover, Fig. (5) visually com-

pares shadow maps produced by our MTMT-Net and seven

baseline networks. Apparently, our method can identify

shadows better than all seven baselines in both shadow seg-

mentation quality and localization accuracy. This proves the

effectiveness of considering shadow edge, shadow count in-

formation and unlabeled data within one framework.

5. Conclusion

This paper presents a novel network for single-image

shadow detection by developing a multi-task mean teacher

framework. Our key idea is to first develop a multi-task

network for simultaneously predicting shadow region de-

tection, shadow edge detection, as well as shadow count

estimation by leveraging their complementary information.

Then we employ the mean teacher semi-supervised learning

to leverage additional unlabeled data for further improving

the detection performance. Experimental results on three

benchmark datasets show that our network consistently out-

performs the state-of-the-art methods by a large margin.

Like other works [43, 41, 12], our method might not work

well for images with multiple and complex shadows. Re-

solving this challenging problem is considered as a future

direction of our work.
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