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Abstract

We present a novel Relightable Neural Renderer (RNR)

for simultaneous view synthesis and relighting using multi-

view image inputs. Existing neural rendering (NR) does not

explicitly model the physical rendering process and hence

has limited capabilities on relighting. RNR instead mod-

els image formation in terms of environment lighting, ob-

ject intrinsic attributes, and light transport function (LTF),

each corresponding to a learnable component. In particu-

lar, the incorporation of a physically based rendering pro-

cess not only enables relighting but also improves the qual-

ity of view synthesis. Comprehensive experiments on syn-

thetic and real data show that RNR provides a practical and

effective solution for conducting free-viewpoint relighting.

1. Introduction

Neural rendering (NR) has shown great success in the

past few years on producing photorealistic images under

complex geometry, surface reflectance, and environment

lighting. Unlike traditional modeling and rendering tech-

niques that rely on elaborate setups to capture detailed ob-

ject geometry and accurate surface reflectance properties,

often also with excessive artistic manipulations, NR can

produce compelling results by using only images captured

under uncontrolled illumination. By far, most existing NR

methods have focused on either free-viewpoint rendering

under fixed illumination or image-based relighting under

fixed viewpoint. In this paper, we explore the problem of

simultaneous novel view synthesis and relighting using NR.

State-of-the-art deep view synthesis techniques follow

the pipeline that first extracts deep features from input im-

ages and 3D models, then projects the features to the im-

age space via traditional camera projection, and finally ap-

Figure 1. Results from our Relightable Neural Renderer (RNR).

Top row shows the relighting results for a synthetic sphere com-

posed of complex materials. Bottom row shows free-viewpoint

relighting results for real captured data.

plies a rendering network to render the projected features to

a RGB image. Such approaches exploit learnable compo-

nents to both encode 3D representations and model the ren-

dering process. Approaches such as neural point cloud [2],

neural volume [63] and neural texture [69] utilize deep rep-

resentations for 3D content. With rich training data, these

methods can tolerate inaccuracies in geometry and main-

tain reasonable rendering quality. For example, DeepVox-

els [63] uses a learnable volume as an alternative to stan-

dard 3D representation while combining physically based

forward/backward projection operators for view synthesis.

Using NR to produce visually plausible free-viewpoint

relighting is more difficult compared with changing view-

points under fixed illumination. This is because under fixed

illumination, existing NRs manage to model 2D/3D geom-

etry as learnable components to directly encode appearance

of different views. Relighting, in contrast, requires further

separating appearance into object intrinsic attributes and il-

lumination. From a NR perspective, the final rendering step
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in existing approaches cannot yet achieve such separation.

In this paper, we present a novel Relightable Neural Ren-

derer (RNR) for view synthesis and relighting from multi-

view inputs. A unique step in our approach is that we model

image formation in terms of environment lighting, object

intrinsic attributes, and light transport function (LTF). RNR

sets out to conduct regression on these three individual com-

ponents rather than directly translating deep features to ap-

pearance as in existing NR. In addition, the use of LTF in-

stead of a parametric BRDF model extends the capability

of modeling global illumination. While enabling relight-

ing, RNR can also produce view synthesis using the same

network architecture. Comprehensive experiments on syn-

thetic and real data show that RNR provides a practical and

effective solution for conducting free-viewpoint relighting.

2. Related Work

Image-based Rendering (IBR). Traditional IBR meth-

ods [17, 37, 24, 5, 7, 86, 23, 57] synthesize novel views by

blending pixels from input images. Compared with phys-

ically based rendering, which requires high-resolution ge-

ometry and accurate surface reflectance, they can use lower

quality geometry as proxies to produce relatively high qual-

ity rendering. The ultimate rendering quality, however, is

a trade-off between the density of sampled images and ge-

ometry: low quality geometry requires dense sampling to

reduce artifacts; otherwise the rendering exhibits various

artifacts including ghosting, aliasing, misalignment and ap-

pearance jumps. The same trade-off applies to image-based

relighting, although for low frequency lighting, sparse sam-

pling may suffice to produce realistic appearance. Hand-

crafted blending schemes [9, 35, 8, 23, 57] have been devel-

oped for specific rendering tasks but they generally require

extensive parameter tuning.

Deep View Synthesis. Recently, there has been a large

corpus of works on learning-based novel view synthesis.

[68, 13] learn an implicit 3D representation by training on

synthetic datasets. Warping-based methods [88, 55, 67, 90,

28, 11] synthesize novel views by predicting the optical flow

field. Flow estimation can also be enhanced with geometry

priors [87, 45]. Kalantari et al. [30] separate the synthesis

process into disparity and color estimations for light field

data. Srinivasan et al. [66] further extend to RGB-D view

synthesis on small baseline light fields.

Eslami et al. [14] propose Generative Query Network

to embed appearances of different views in latent space.

Disentangled understanding of scenes can also be con-

ducted through interpretable transformations [82, 36, 77],

Lie groups-based latent variables [15] or attention modules

[6]. Instead of 2D latent features, [72, 52, 20] utilize vol-

umetric representations as a stronger multi-view constraint

whereas Sitzmann et al. [64] represent a scene as a contin-

uous mapping from 3D geometry to deep features.

To create more photo-realistic rendering for a wide view-

ing range, [22, 70, 10, 63, 47, 69, 2, 61, 49, 79] require many

more images as input. Hedman et al. [22] learn the blending

scheme in IBR. Thies et al. [70] model the view-dependent

component with self-supervised learning and then combine

it with the diffuse component. Chen et al. [10] apply fully

connected networks to model the surface light field by ex-

ploiting appearance redundancies. Volume-based methods

[63, 47] utilize learnable 3D volume to represent scene and

combine with projection or ray marching to enforce geo-

metric constraint. Thies et al. [69] present a novel learn-

able neural texture to model rendering as image translation.

They use coarse geometry for texture projection and offer

flexible content editing. Aliev et al. [2] directly use neural

point cloud to avoid surface meshing. Auxiliary informa-

tion such as poses can be used to synthesize more complex

objects such as human bodies [61].

To accommodate relighting, Meshry et al. [49] learn

an embedding for appearance style whereas Xu et al. [79]

use deep image-based relighting [81] on multi-view multi-

light photometric images captured using specialized gantry.

Geometry-differentiable neural rendering [58, 46, 44, 40,

32, 48, 84, 43, 27, 71, 51] can potentially handle relighting

but our technique focuses on view synthesis and relighting

without modifying 3D geometry.

Free-Viewpoint Relighting. Earlier free-viewpoint re-

lighting of real world objects requires delicate acquisi-

tions of reflectance [18, 75, 76] while more recent low-cost

approaches still require controlled active illumination or

known illumination/geometry [50, 25, 89, 78, 16, 83, 42, 31,

12, 41, 80]. Our work aims to use multi-view images cap-

tured under single unknown natural illumination. Previous

approaches solve this ill-posed problem via spherical har-

monics (SH) [85] or wavelets [19] or both [39] to represent

illumination and a parametric BRDF model to represent re-

flectance. Imber et al. [26] extract pixel-resolution intrin-

sic textures. Despite these advances, accurate geometry re-

mains as a key component for reliable relighting whereas

our RNR aims to simultaneously compensate for geometric

inaccuracy and disentangle intrinsic properties from light-

ing. Tailored illumination models can support outdoor re-

lighting [59, 21, 60] or indoor inverse rendering [3] whereas

our RNR uses a more generic lighting model for learning

the light transport process. Specifically, our work uses a set

of multi-view images of an object under fixed yet unknown

natural illumination as input. To carry out view projection

and texture mapping, we assume known camera parameters

of the input views and known coarse 3D geometry of the ob-

ject, where standard structure-from-motion and multi-view

stereo reconstruction can provide reliable estimations.
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Figure 2. The neural rendering pipeline of RNR.

3. Image Formation Model

Under the rendering equation [29], the radiance I emit-

ting from point x at viewing direction ωo is computed as:

I(x,ωo) =

∫
S2

fr(x,ωi,ωo)v(x,ωi)L(x,ωi)n · ωidωi,

(1)

where L(x,ωi) is the radiance that arrives at point x from

direction ωi. v(x,ωi) denotes the visibility of x from di-

rection ωi and fr(x,ωi,ωo) is the bidirectional reflectance

distribution function (BRDF) that describes the ratio of out-

going radiance over the incident irradiance. S2 is the upper

hemisphere surrounding the surface point. For distant illu-

mination, L(x,ωi) can be replaced with L(ωi).
Instead of separately conducting regression to recover

each individual term in Eq. 1, we learn light transport func-

tion (LTF) T(x,ωi,ωo) = fr(x,ωi,ωo)v(x,ωi)n·ωi. By

further seperating view-independent albedo ρ(x) from LTF

(we still refer to this counterpart with albedo factored out as

LTF in this paper for brevity), we have

I(x,ωo) =

∫
S2

ρ(x)T(x,ωi,ωo)L(ωi)dωi. (2)

The key observation here is that, for static objects, the

LTF can be decoupled from illumination. This allows us to

decompose photometric attributes into albedo, light trans-

port and illumination for conducting relighting. Specifi-

cally, our RNR uses a network to represent the LTF T(·).
Learning the LTF instead of the BRDF has several advan-

tages. First, it can compensate for outlier effects such as in-

correct visibility caused by inaccurate 3D proxy common in

IBR. Second, under distant illumination, since LTF can be

regarded as the total contribution (with all light paths taken

into account) from incoming radiance along a direction to

the outgoing radiance, it can potentially encode non-local

effects such as inter-reflection. Finally, it reduces the com-

putation when evaluating the radiance of a pixel. It is worth

noting that inferring the LTF can be viewed as the inverse

problem of precomputed radiance transfer (PRT) [65] which

is widely used in physically based rendering.

Same with previous relighting techniques, we assume

illumination can be modelled using Spherical Harmonics

(SH) up to order 10. The implicit assumption here is that

the object cannot be too specular or mirror like. Following

common practices, we further decompose into diffuse and

specular components, which gives:

I(x,ωo) =

∫
S2

ρd(x)Td(x,ωi,ωo)
∑
k

ckYk(ωi)dωi+

∫
S2

ρs(x)Ts(x,ωi,ωo)
∑
k

ckYk(ωi)dωi,

(3)

where ρd and Td are the albedo and LTF of diffuse compo-

nent, ρs and Ts are the albedo and LTF of specular compo-

nent, Yk is the kth SH basis and ck its coefficient.

Illumination Initialization. Our SH representation con-

tains 121 coefficients for each color channel. We first ex-

ploit the background regions of multi-view images to ini-

tialize illumination. We assume that background pixels lie

faraway, so we establish the image-to-panorama mapping

and fill in the environment map with image pixels. We take

the median of the image pixels that map to the same posi-

tion in environment map to reduce ghosting artifacts. We

then project the environment map onto SH basis to obtain

the initial value of SH coefficients.

Neural Texture. Neural texture [69] provides an efficient

encoding of latent properties of 3D scenes. It can be seen as

an extension of traditional texture-space data such as color

texture, normal map, displacement map, etc. While these

data record certain hand-crafted properties of 3D content,
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neural texture is learnable and can be trained to encode the

critical information for a given task (e.g., novel view synthe-

sis). We use the first 3 channels of neural texture as diffuse

albedo and second 3 channels as specular albedo. For the

rest of the channels, we leave them unconstrained so as to

encode latent properties. To project neural texture to image

space, we first rasterize 3D proxy using camera parameters

to obtain uv map (texel-to-pixel mapping) and use bilinear

interpolation to sample features from neural texture. Fol-

lowing [69], we use a 4-level mipmap Laplacian pyramid

for neural texture and set the resolution of the top level as

512 × 512. We also evaluate the first 9 SH coefficients at

per-pixel view direction and multiply with channel 7-15 of

projected neural texture (neural image).

4. Relightable Neural Renderer (RNR)

Next, we set out to simultaneously estimate the albedos

ρd(·), ρs(·), the LTFs Td(·), Ts(·) and the SH coefficients

ck. We use the neural texture [69] to encode the albedo and

additional latent properties of the object. We then propose

sampling schemes for the light directions used in evaluat-

ing Eq. 3. Next, we propose a Light-Transport-Net (LTN)

to predict light transport at the sampled light directions for

each pixel. Note that the entire process is differentiable and

only requires 2D supervision from input multi-view images.

Fig. 2 shows our pipeline.

4.1. Light Direction Sampling

Instead of densely sampling light directions for each ver-

tex (high angular resolution but low spatial resolution), we

resort to sparsely sampling light directions for each pixel

(low angular resolution but high spatial resolution). In

this case, high rendering quality can be achieved even with

coarse 3D proxy. We argue that under SH lighting, using

sparse light direction sampling only leads to minor inaccu-

racy on the radiance evaluated in Eq. 3, which can be effec-

tively compensated by LTN.

Since diffuse and specular light transport behaves differ-

ently based on light direction and view direction, we utilize

different sampling schemes, as shown in Fig. 3. For the dif-

fuse component, we first construct kd cones centered around

the surface normal, with half angles of {θd1 , θ
d
2 , ..., θ

d
kd
}.

Then we uniformly sample directions on each cone. This

is motivated by the fact that diffuse light transport (ignor-

ing visibility and other effects) follows a cosine attenuation

based on the angle between light direction and surface nor-

mal. Therefore, light directions nearer to the surface normal

are more likely to contribute more to the radiance at the sur-

face point. For the specular component, we similarly con-

struct ks cones around the surface normal, and uniformly

sample on these cones to obtain halfway directions. Then

we reflect view direction around these halfway directions to

obtain sampled light directions. This is motivated by the

Normal

View

ReflectNormal

View

Samples for Diffuse Component Samples for Specular Component

Figure 3. Light direction sampling schemes for diffuse and specu-

lar components.

microfacets theory which models surfaces as collections of

perfect mirror microfacets. The normals of these micro-

facets follow a normal distribution function, which we as-

sume to cluster around the macro surface normal.

We carry out the above light direction sampling in tan-

gent space and then transform to world space by

ωi(x) = RTBN (x) · ω
′

i(x), (4)

where ω

′

i(x) is the sampled directions in tangent space

and RTBN (x) is the rotation matrix from tangent space

to world space. By stacking the sampled light directions

{ωi}d, {ωi}s of the two components along the channel di-

mension, we form a light direction map, which is then input

to LTN.

4.2. Light Transport Estimation

Our LTN consists of a graph convolutional network

(GCN) to extract global geometric features and a modified

U-Net to predict per-pixel light transports at the sampled

light directions for diffuse and specular components.

We first concatenate neural image with view direction

map, normal map and light direction map as input to the

U-Net. As 2D convolutional network does not fully exploit

information in a non-Euclidean structure data, we further

augment U-Net with a GCN [34, 4] to extract global fea-

tures of the 3D geometry. Inspired by [62, 74], we use

dynamic edge connections during the training of GCN to

learn a better graph representations. But different from [74],

which changes the edge connection by finding the nearest

neighbour of each vertex, we follow the step of [73, 38] and

apply a dilated K-NN method on feature space to search

the neighborhood of each vertex. Moreover, rather than us-

ing naive GCN, we utilize ResGCN - a much deeper GCN

with residual blocks [38] to gather higher-level features of

each vertex. At the end of the ResGCN, a fully connected

layer is applied to fuse all the features into global geomet-

ric features. We repeat and concatenate this feature vector

with the U-Net feature map after the first downsample layer.

This allows light transport estimation to incorporate global

geometric information rather than being limited to features

within a single view.

The output of the U-Net is a light transport map, which

contains per-pixel light transport at each sampled light di-
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rection. To render an image, we retrieve the illumination

radiance on each sampled light direction, and then integrate

with albedo and light transport following Eq. 3. Notice that

we carry out the integration seperately for the diffuse and

specular components and then sum these two components

to obtain the final image.

4.3. Loss Functions

We use ℓ1 loss for the difference between rendered im-

ages and ground-truth images:

Lim =
1

n

∑
x

||I(x)− Irender(x)||1, (5)

where n is the number of image pixels. However, with ℓ1
loss alone, we cannot guarantee correct relighting. This is

due to the ambiguity between albedo, light transport and

illumination in Eq. 3: the network can overfit training im-

ages with an incorrect combination of the three components.

Therefore, we need to apply additional losses to ensure the

network learns a physically plausible interpretation.

Chromaticity of Light Transport To constrain the

learned LTFs, we propose a novel loss on the chromatic-

ity of light transports. For a pixel, while its light transports

at different light directions differ in intensity, they usually

share similar chromaticity. An exception is that for pix-

els with low intensities, their light transports may contain a

visibility of 0 and hence do not have valid chromaticities.

Therefore, we formulate a weighted chromaticity loss on

light transport as:

Lchr =
1

nm

∑
x

∑
ωi

w(x)(1−T
′

(x,ωi,ωo)·T
′

mean(x,ωo)),

(6)

where m is the number of sampled light directions, w(x) =
min(20 · ||I(x)||2, 1) is a weight depending on image inten-

sity. T
′

(x,ωi,ωo) =
T(x,ωi,ωo)

||T(x,ωi,ωo)||2
is the chromaticity of

a light transport and T
′

mean(x,ωo) is the mean chromatic-

ity for the light transports at pixel x. We compute the loss

seperately for the diffuse and specular components and then

sum together.

Illumination Although the initial environment map

stitched from input multi-view images contains artifacts

such as ghosting, the corresponding SH-based environment

map is smooth and relatively accurate. Therefore, we would

like to constrain our final estimated illumination to be close

to the initial one within the regions that are initially cov-

ered. We first uniformly sample 4096 directions in the unit

sphere and then compute loss based on the SH radiance on

these directions:

Lillum =
1

p

∑
p

∑
k

||ckYk(p)− c
′

kYk(p)||1, (7)

where p is the number of directions within initial covered

regions, ck is estimated SH coefficients and c
′

k is initial SH

coefficients.

Albedo From Eq. 3, we can see that there is a scale ambi-

guity between albedo and light transport. Hence, we include

a regularization on albedo so that its mean is close to 0.5:

Lalb =
1

q

∑
x

||ρ(x)− 0.5||1, (8)

where q is the number of texels. This loss is applied to both

diffuse and specular albedo.

Our total loss is a weighted composition of the above

losses:

L = Lim + λchrLchr + λillumLillum + λalbLalb. (9)

5. Experimental Results

We implement our method in PyTorch [56]. Before train-

ing, we precompute uv map along with view direction map,

normal map and per-pixel tangent space transformation ma-

trix for each training view. We remove the parts in the

initial 3D proxy that correspond to background and use a

downsampled mesh with 7,500 vertices per model as input

to ResGCN. For neural texture, we use 24 channels. For

light direction sampling, we set the half angles of cones to

{20◦, 40◦} for the diffuse component and {5◦, 10◦} for the

specular component. We train our end-to-end network us-

ing Adam [33] as optimizer, with a learning rate of 0.001,

β1 = 0.9, β2 = 0.999. We set λchr = λillum = λalb = 1
and train our models for 20k to 50k iterations based on ob-

ject complexity.

5.1. Evaluations on Synthetic Data

We first evaluate RNR on synthetic data for both novel

view synthesis and relighting. We choose 4 objects with

different geometry complexity, for each we render 200 ran-

domly sampled views under 2 different illuminations. We

purposely set the illuminations to have different brightness

and color tones. We use a physically based renderer - Tung-

sten [1] and render at a resolution of 1024 × 1024. We

further use different material configurations for each ob-

ject, ranging from nearly diffuse to moderately specular,

and from single material to multiple materials. Example

images are shown in the first 4 rows of Fig. 4. As aforemen-

tioned, our technique cannot handle highly specular objects.

Novel View Synthesis. We compare our approach with

two state-of-the-art view synthesis methods: DeepVoxels

[63] and Deferred Neural Rendering (DeferredNR) [69].

The two methods and ours all require per-scene training.

For each object, we randomly select 180 images under the

first illumination as training views and use the rest 20 for

testing. We downsample the images to 512 × 512 before
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Ground Truth DeepVoxels DeferredNR Ours Close-up Views

Figure 4. Comparisons on view synthesis. The top 4 rows are rendered synthetic data and the bottom 3 are captured real data. For each set

of close-up views, the first row shows zoomed-in rgb patches while the second row shows corresponding error maps.

feeding into the three methods and set an equal batch size of

1. At each iteration, DeepVoxels takes one source view and

two additional target views as input whereas DeferredNR

and ours only require one view as input. For DeepVoxels,

we use their implementation and default hyperparameters.

For DeferredNR, we implement our own version since it

is not yet open source. We increase the number of neu-

ral texture channels as well as the feature channels in the

rendering network to match the number of parameters with

ours. We notice slight improvements with this modification.

Since our goal is to synthesize views of the object instead

of the entire scene, we only compute the loss for the pix-

els on the object for all three methods. For each object,

we train our network for an equal or smaller number of it-

erations than the other two methods. The left 4 columns in

Table 1 compare the PSNR and SSIM on the test views. Our

proposed method outperforms the two state-of-the-art by

a noticeable margin in all cases. Qualitative comparisons,

close-up views, and error maps are shown in the first 4 rows

of Fig. 4. Compared to ours, DeepVoxels produces over-

smoothed results whereas DeferredNR introduces higher er-

rors near specular highlights, as shown in the 1st and 3rd

rows. This illustrates the benefits of encoding the image

formation model in rendering process.
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Table 1. Quantitative comparisons (PSNR/SSIM) of our RNR vs. DeepVoxels [63] and DeferredNR [69] on view synthesis.

Method Bunny Horse Material Earth Beauty Apple Dyke

DeepVoxels 26.67/0.86 27.98/0.89 28.92/0.93 21.00/0.75 22.05/0.81 19.39/0.75 29.75/0.94

DeferredNR 31.53/0.93 36.44/0.97 30.93/0.93 30.13/0.96 28.12/0.87 26.05/0.89 36.36/0.98

RNR (Ours) 39.08/0.98 38.48/0.98 36.18/0.98 31.39/0.97 32.82/0.97 28.29/0.93 37.62/0.99

Figure 5. Relighting results of RNR on synthetic data. The top

row shows ground truth, the second row relighting results, and the

bottom row error maps.

Table 2. Quantitative evaluation (PSNR/SSIM) of RNR (w/ GCN)

and RNR (no GCN) on relighting synthetic scenes.

Method Earth Bunny Material Horse

w/ GCN 26.29/0.94 25.13/0.92 28.04/0.89 29.56/0.94

no GCN 25.87/0.93 24.96/0.91 27.67/0.81 28.76/0.93

Free-Viewpoint Relighting. For each object, we use the

model trained under the first illumination to carry out free-

viewpoint relighting, verified by using the second illumina-

tion rendered at a novel viewpoint. We compare the synthe-

sized results with the rendered ground truth in Fig. 5. We

also conduct an ablation study on the effectiveness of using

GCN to augment U-Net. Table. 2 shows the evaluation met-

rics for w/ and w/o GCN, from which we can see that using

GCN leads to moderate performance improvement. We fur-

ther anaylze the importance of each loss in Fig. 6. Without

light transport chromaticity loss or illumination loss, we ob-

serve the learnable components will overfit the training data

and lead to incorrect relighting results. This illustrates the

importance of our regularization terms.

Number of Training Views. To illustrate the effective-

ness of RNR in encoding geometric and photometric repre-

sentations, we further carry out an experiment using sparse

input views (20 views in our case). Table. 3 shows the

PSNR and SSIM measure for view synthesis and relight-

ing. We observe that both DeepVoxels and DeferredNR de-

grades drastically with sparse training views. In contrast,

RNR is less affected in both tasks. This reveals the effec-

27.20

0.948

21.89

0.944

20.27

0.942

15.44

0.871

Ground Truth w/ All Losses w/o  w/o  w/o         ,  

Figure 6. Ablation study on losses. On top left shows PSNR and

SSIM of each case.

Table 3. Quantitative comparisons (PSNR/SSIM) of DeepVoxels

[63], DeferredNR [69] and our RNR when using sparse inputs.

Method Bunny Earth

DeepVoxels 17.97/0.76 16.44/0.54

DeferredNR 24.38/0.81 22.10/0.86

RNR 30.87/0.94 25.32/0.91

RNR (Relight) 22.47/0.85 25.41/0.90

tiveness of encoding the image formation model. Specifi-

cally, compared with a black box solution, RNR can inter-

pret object appearance following the actual physically based

rendering model, thus boosting its generalization to unseen

views and lighting.

5.2. Evaluations on Real Data

We have also compared RNR with DeepVoxels and De-

ferredNR on 3 real scenes: Beauty, Apple, Dyck. We cap-

tured the first two scenes using a handheld DSLR, with the

objects positioned on a tripod. Dyck is directly adopted

from DeepVoxels, captured as a video sequence. Beauty

and Apple contain 151 and 144 views. For Dyck, we first

remove images that contain excessive motion blurs and use

the remaining 224 views. We use structure-from-motion

software Agisoft Photoscan to estimate camera parameters

as well as 3D proxy. Similar to synthetic data, we use 90%

of the images for training and 10% for testing. The right 3

columns in Table 1 show the performance of each method,

where our method performs the best for all cases. The last

3 rows of Fig. 4 show visual comparisons. DeferredNR

produces similar results as RNR although RNR manages

to better preserve sharp details in Beauty. Fig. 7 shows the

view extrapolation results of DeferredNR and RNR. We ob-

serve that DeferredNR exhibits visual artifacts such as in-

correct highlights and color blocks whereas RNR produces

more coherent estimations. Please refer to the supplemen-

tary video and material for additional results.

We further apply relighting to Beauty, Apple and Dyck in

Fig. 8. It is worth noting that Dyck only contains views from
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DeferredNR OursExample Training Views

Figure 7. Comparisons of our RNR vs. DeferredNR [69] on view

extrapolation. On the left are two example training views.

View Synthesis Relight 1 Relight 2Reference

Light 1

Light 2

Figure 8. Relighting results of RNR on real data.

the front, i.e., the initial illumination stitched by our method

only covers a small portion of the entire environment map.

Yet RNR manages to produce reasonable relighting results.

To evaluate relighting accuracy, we use an additional Pig

scene from Multi-view Objects Under the Natural Illumina-

tion Database [53]. The data contains HDR images captured

under 3 different illuminations, each with about 16 cali-

brated views. We use the images captured in “outdoor” il-

lumination for training. Since the source images are tightly

cropped at the object, we are not able to stitch the initial

illumination. Hence we use the ground truth illumination

in this experiment. The reconstructed geometry in [53] is

not publicly available, so we use the laser-scanned mesh

followed by smoothing and simplification as our 3D proxy.

For testing, we synthesize with the camera parameters and

illumination corresponding to a novel view under “indoor”

Reference DeferredNR Ours

Novel View Synthesis

G
T

O
x

h
o

lm
e

t a
l.

O
u

rs

R
e

lig
h

tin
g

Figure 9. Comparisons on view synthesis and relighting using data

from [53].

illumination. The rightmost column of Fig. 9 shows our

synthesized results vs. [54] and the ground truth. We ob-

serve the results of RNR appear more realistic than [54], al-

though RNR incurs inaccuracy in highlight and color. This

is partially attributed to the low number of training views

as well as inaccurate camera parameters provided by the

dataset. The left 3 columns in Fig. 9 show that our view

synthesis is also more reliable than DeferredNR.

6. Conclusions and Future Work

We have presented a new neural rendering scheme called

Relightable Neural Renderer (RNR) for simultaneous view

synthesis and relighting. RNR has exploited the physi-

cally based rendering process and seperates appearance into

environment lighting, object intrinsic attributes, and light

transport function (LTF). All three components are learn-

able through deep networks. In particular, we have shown

that by incorporating rendering constraints, our method not

only enables relighting but also produces better generaliza-

tion for novel view synthesis.

Our current approach cannot yet refine geometry or

adaptively sample light directions. When 3D proxy contains

severe artifacts, they also negatively impact rendering qual-

ity. We refer readers to supplementary material for failure

cases. We also do not explicitly handle the lack of dynamic

range during data capture, which may influence relighting

quality. A possible way is to learn the conversion from LDR

inputs to the HDR ones. In addition, RNR cannot handle

highly specular objects. In the future, all-frequency light-

ing representations can be used in conjunction with LTF for

free-viewpoint relighting of highly specular objects.
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