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Abstract

Sequence-level learning objective has been widely used

in captioning tasks to achieve the state-of-the-art perfor-

mance for many models. In this objective, the model is

trained by the reward on the quality of its generated cap-

tions (sequence-level). In this work, we show the limitation

of the current sequence-level learning objective for caption-

ing tasks from both theory and empirical result. In theory,

we show that the current objective is equivalent to only opti-

mizing the precision side of the caption set generated by the

model and therefore overlooks the recall side. Empirical

result shows that the model trained by this objective tends

to get lower score on the recall side. We propose to add a

sequence-level exploration term to the current objective to

boost recall. It guides the model to explore more plausible

captions in the training. In this way, the proposed objective

takes both the precision and recall sides of generated cap-

tions into account. Experiments show the effectiveness of

the proposed method on both video and image captioning

datasets.

1. Introduction

Captioning is one of the core tasks in vision and lan-

guage fields. The input is an image or video and the out-

put is a descriptive sentence. In terms of the output struc-

ture, the descriptive sentence is actually a sequence, which

is more complex than the output of classification and de-

tection tasks and therefore poses a challenge for the learn-

ing objective in captioning tasks. Furthermore, there ex-

ists multiple correct captions for the same input and it is

impossible to enumerate all the correct captions when col-

lecting the groundtruth. The above two unique properties,

sequence structure and multiple correct grountruth captions,

make captioning tasks difficult and worth special treatment

for its own learning/training objective.

Most caption models [32, 24, 2] are based on the
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a man and a woman sitting on a desk

a man and a woman sitting on a table with a laptop computer

a man and a woman sitting on a desk with a laptop computer

a man and a woman sitting on a desk with a laptop computer

a man and a woman sitting on a desk with a laptop computer

Figure 1: Illustration on limitations of current sequence-

level learning: 5 captions randomly sampled from the

model [24] are almost identical, which indicates that the

model is not likely to have high recall.

encoder-decoder architecture and we will only talk about

training objectives associated with this architecture. The

original training objective is cross-entropy loss [32], which

does word-level supervision. To be specific, the decoder is

fed with the word from the groundtruth caption at each step

and predicts the word at next step. Thus, the decoder is

trained to focus on the correctness of predicting each word

separately. However, at each step in the test stage, the de-

coder is fed with the word predicted from the previous step

rather than the groundtruth word. This leads to the gap be-

tween training and test and limits the performance in the

test. Later, sequence-level learning objective is proposed

by researchers to address this gap [23, 24]. In this objec-

tive, only after the whole sentence is generated by the de-

coder, the quality of the caption is evaluated by a score and

that score is used to guide the model training. That is, the

decoder predicts the word at each step based on the word

predicted at last step in both training and test stages. The

sequence-level learning objective [23, 24] is shown to im-
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prove performance significantly on most evaluation metrics

such as CIDEr[31], METEOR[14] and SPICE[1] compared

to the cross-entropy loss.

In this paper, we show the limitations of the current

sequence-level learning objective from both theoretical and

empirical aspects despite its success in captioning tasks.

From theoretical aspect, we show that the current objec-

tive is equivalent to optimizing the precision side of the pre-

dicted caption set. The standard precision is defined based

on the set membership of an element. And the set mem-

bership function outputs 0-1 for a caption, which describes

whether the caption belongs to a set or not. We relax the

0-1 set membership function used in precision calculation

to real-value output within range [0, 1]. The relaxed set

membership function describes the confidence of a caption

belonging to a set. In this way, we show that the current

sequence-level learning objective is equivalent to maximiz-

ing the generalized precision with the relaxed set member-

ship function and it overlooks the recall side of the problem.

From empirical aspect, we show that the model trained by

the current sequence-level learning objective tends to cover

very few different captions in its predictions and gets low

score on recall related metrics. As illustrated in figure 1,

we randomly sample 5 sentences from the model and the

resulting 5 sentences are almost identical.

To overcome the limitations of the current sequence-

level learning objective, we propose to add a sequence-

level exploration term to boost recall. In this exploration

term, we maximize the difference between the generated

captions (sequence-level) of the same input. One example

of difference measurement could be edit distance. In the

context of captioning task, the proposed exploration term

corresponds to maximizing the diversity [26] of generated

captions. Furthermore, we show that diversity is a proxy

measurement of recall for captioning. In training, this term

encourages the model to explore more different captions.

Such sequence-level exploration is different from the typ-

ical maximum-entropy exploration regularization [20] that

is put on the policy in reinforcement learning. In typical

maximum-entropy exploration regularization, it maximizes

the uncertainty of the policy at each step. That is, given

generated words up to step t, it maximizes the uncertainty

of the next word. We call this word-level exploration.

In summary, the contributions of this work are:

1) We show the limitations of the current sequence-level

learning objective for the captioning task from both theo-

retical and empirical aspects.

2) We propose a new learning objective for the captioning

task which adds a sequence-level exploration term to boost

recall.

3) The derived solution from the proposed objective

achieves better performance on various standard evaluation

metrics of the precision side. It also improves the perfor-

mance on recall related metrics.

2. Related Work

The dominant neural network architecture of the caption-

ing task is based on the encoder-decoder framework [3].

Early works [32, 19, 29] use convolution neural network

as encoder and recurrent neural network with LSTM cell

[12] as decoder. In the image captioning task, Xu et al. [34]

proposed the spatial attention, which selects relevant image

regions to generate image descriptions. In the video cap-

tioning task, Yao et al. [35] proposed the temporal attention,

which expands the attention mechanism in the temporal di-

rection. After that, different variants of attention mecha-

nism are proposed to further improve the performance, such

as attention on semantic concepts [37, 22, 16] and adaptive

attention on visual and linguistic contexts [27, 17, 36]. The

latest variation on attention mechanism is the up-down at-

tention [2] which enables attention to be calculated at the

level of objects and other salient image regions. In addi-

tion to attention mechanism, researchers also propose other

modification on the neural network architecture. Pan et al.

[21] utilized the hierarchical encoder to learn better visual

representations.

The original objective function [32, 19] used in the cap-

tioning task is cross-entropy loss, which applies word-level

supervision. To be specific, in training, the model is fed

with the groundtruth word at each step and supervision

monitors whether the model outputs the correct next word.

We call such supervision as word-level supervision. How-

ever, in the test stage, the model is fed with the word pre-

dicted by itself at last step rather than the groundtruth word.

This is known as the train-test gap in sequence prediction

tasks. Bengio et al. [4] proposed scheduled sampling, a

curriculum learning approach, to minimize such gap. Later,

sequence-level training is proposed by Ranzato et al. [23]

to systematically address this issue. Different from word-

level supervision, the sequence-level learning evaluates the

sentence only after the whole sentence has been generated.

The sentence is evaluated by a reward about its semantic

coherence with the groundtruth caption. And the reward is

usually set to be the evaluation metric that has high corre-

lation with human judgement. Rennie et al. [24] further

improves the sequence-level learning by introducing a spe-

cial baseline in reward, which is the score of the caption

greedily decoded from the current model. Sequence-level

training objective has been widely used in captioning tasks

to achieve state-of-the-art performance [2, 18, 28, 6].

3. Limitations of Current Sequence-level

Learning

In this section, we show the limitation of current

sequence-level learning for the captioning task from both
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theoretical and empirical aspects. Theoretically, we show

that the current objective function of sequence-level training

is equivalent to optimizing the generalized precision with

relaxed set membership function on the predicted captions.

Empirically, we show that the model trained by the current

sequence-level learning tends to generate very few different

captions for the same input and does not get high score on

recall related metrics.

3.1. Limitation from theory

We first relax the set membership function in the stan-

dard precision measurement for the captioning task. Then

we show that the objective of current sequence-level learn-

ing is actually optimizing the generalized precision with re-

laxed set membership function in the context of captioning

task.

Suppose that the space of all the possible sentences is

Y , the groundtruth sentence set of an input (image / video)

xi is Y and the predicted sentence set of that input by the

captioning model is Ỹ . Then the precision is defined by:

Precision(Y, Ỹ ) =
|Y ∩ Ỹ |

|Ỹ |

=

∑
y∈Y δ[y ∈ Y ]δ[y ∈ Ỹ ]
∑

y∈Y δ[y ∈ Ỹ ]

=
∑

y∈Y

δ[y ∈ Y ]
δ[y ∈ Ỹ ]

∑
y′∈Y δ[y′ ∈ Ỹ ]

︸ ︷︷ ︸
p(y∈Ỹ )

=
∑

y∈Y

δ[y ∈ Y ]p(y ∈ Ỹ ) (1)

Inside the summation of eq (1), it contains two terms:

δ[y ∈ Y ] and p(y ∈ Ỹ ) = δ[y∈Ỹ ]∑
y′∈Y

δ[y′∈Ỹ ]
. In the δ[y ∈ Y ]

term, the δ function checks whether or not caption y be-

longs to groundtruth sentence set Y . In the p(y ∈ Ỹ ) term,

the δ function checks whether or not caption y belongs to

the predicted sentence set Ỹ .

For the δ[y ∈ Y ] term, we relax the binary valued δ
function to a real-valued function ∆(y, Y ) with output in

the range of [0, 1]:

δ[y ∈ Y ] → ∆(y, Y ) (2)

∆(y, Y ) indicates the likelihood of each individual y within

the set Y and is a relaxed set membership function. One

natural choice for ∆(y, Y ) is to use the evaluation metric

normalized by its maximum value. As all the current evalu-

ation metrics in the captioning task are bounded, they can be

normalized properly. For simplicity, we assume that we are

dealing with the evaluation metric ∆(y, Y ) that has already

been normalized.

The term p(y ∈ Ỹ ) can be interpreted as the chance

of the sentence y within set Ỹ . Note that the value of

δ[y ∈ Ỹ ] is 0-1, which represents whether the captioning

model considers sentence y as correct or not. Correspond-

ingly, p(y ∈ Ỹ ) can only take values eithor 0 if y /∈ Ỹ or
1

|Ỹ |
if y ∈ Ỹ . It does not cover the whole range [0, 1] of

a probability. If we again relax the 0-1 membership func-

tion δ[y ∈ Ỹ ] to a real-valued confidence, p(y ∈ Ỹ ) can

cover the whole range [0, 1] of a probability. After the relax-

ation, p(y ∈ Ỹ ) is actually the probability of caption y from

the captioning model. Thus by using the relaxed set mem-

bership function, we replace p(y ∈ Ỹ ) = δ[y∈Ỹ ]∑
y′∈Y

δ[y′∈Ỹ ]

with pθ(y|xi), which is the probability from the captioning

model:

p(y ∈ Ỹ ) =
δ[y ∈ Ỹ ]

∑
y′∈Y δ[y′ ∈ Ỹ ]

→ pθ(y|xi) (3)

Substituting δ[y ∈ Y ] and p(y ∈ Ỹ ) in eq (1) by (2) and

(3) respectively, we get the generalized precision (GP) for

the captioning task:

GP (Y, θ|xi) =
∑

y∈Y

∆(y, Y )pθ(y|xi) (4)

We could use generalized precision GP to rewrite the orig-

inal sequence-level learning objective for the captioning

task. Setting ∆(y, Y ) as reward, the original objective is

to maximize the expected return:

J(θ) =
n∑

i=1

Epθ(y|xi)∆(y, Y ) (5)

By comparing eq (5) with the generalized precision mea-

surement defined in eq (4), we see that they are exactly the

same:

J(θ) =

n∑

i=1

∑

y∈Y

∆(y, Y )pθ(y|xi)

=

n∑

i=1

GP (Y, θ|xi)

(6)

This means that sequence-level learning objective only op-

timizes the precision side of the captions predicted by the

captioning model. However, as there exist multiple correct

answers for the same input xi, which means that the recall

side should also be taken into account when training the

captioning model. On the contrary, the original objective

totally overlooks the recall side of the problem.

3.2. Limitation from empirical results

Complementary to the theoretical analysis above, we

also measure the precision and recall side of the model
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Table 1: Comparison between word-level cross-entropy loss

(XE) and sequence-level learning (SLL) on precision and

recall sides

Method
Precision Recall

CIDEr (↑) Div1 (↑) Div2 (↑) mBleu4 (↓)

XE 74.2 0.57 0.78 0.06
SLL 114.6 0.25 0.32 0.81

trained by current sequence-level learning objective. The

precision side could be measured by the standard evalua-

tion metrics in captioning tasks such as METEOR[14] and

SPICE[1]. As it is not possible to collect all the correct an-

swers for an input xi, directly computing recall is not fea-

sible. Instead, we use set level diversity metrics [26] Div-1,

Div-2 and mBleu as a proxy measurement of the recall. The

set level diversity metrics are defined on a set of captions,

Ỹ , corresponding to the same input xi.

• Div-1 ratio of the number of unique unigrams in Ỹ to

the number of words in Ỹ . Higher is more diverse.

• Div-2 ratio of the number of unique bigrams in Ỹ to

the number of words in Ỹ . Higher is more diverse.

• mBleu Bleu score is computed between each caption

in Ỹ against the rest. Mean of these Bleu scores is the

mBleu score. Lower is more diverse.

To report set level diversity metrics, we sample 5 captions

from the model for each input. Correspondingly, when cal-

culating the precision metric CIDEr, we average the CIDEr

scores of the 5 sampled captions.

Here is the reasoning of why the above diversity metrics

is related to recall. Standard recall is defined by:

Recall(Y, Y ) =
|Y ∩ Ỹ |

Y

∝ |Y ∩ Ỹ |

∝ |Ỹ |Precision(Y, Ỹ )

(7)

When the precision is fixed, we see that the recall is pro-

portional to the size of the predicted set Ỹ . To compare the

recall at the same precision level, we could instead compare

the size of the predicted caption set from the model. In this

way, any measurement on the size of set Ỹ could be consid-

ered as a proxy measurement of recall. Directly measuring

the size of Ỹ by the number of captions is not meaningful

if we are allowed to sample infinite times from the model.

A more meaningful way to measure the size of Ỹ is: given

fixed number of sampling times, calculating the difference

between sampled captions. And this is exactly the quantity

defined in set level diversity metrics.

As shown in table 1 compared to word-level cross-

entropy (XE) loss, sequence-level learning (SLL) leads to a

XE:

a couple of men standing in the ocean holding surfboards

a surfer walking through the ocean with his surfboard

a couple of people walking through the water

two men in a beach holding surfboards in the water

a surfer carrying his surfboard while another surfer walks 

into the water

SLL:

a couple of people standing in the ocean with surfboards

a couple of people standing in the ocean with surfboards

a couple of people standing in the ocean with surfboards

a couple of people standing in the ocean with surfboards

a couple of people standing in the ocean holding 

surfboards

Figure 2: Illustration of 5 captions sampled from mod-

els given the same input: XE is the model trained by

cross-entropy objective and SLL is the model trained by

sequence-level learning objective.

caption 𝑦

𝑝(𝑦|𝑥𝑖)

semantically coherent space

𝑦: correct but not 

likely to be sampled

too narrow

𝜎
Figure 3: Illustration of the peak width of caption distribu-

tion p(y|x) based on empirical results of the sequence-level

learning objective

large performance drop on the recall side though it improves

the metrics on the precision side significantly. This could be

further illustrated by the examples shown in figure 2. In this

example, 5 randomly sampled captions are almost identical

for the model trained by sequence-level learning (SLL) ob-

jective while this is not an issue for the model trained by

the word-level cross-entropy (XE) objective. We explain

this observation by the peak width of the distribution. As
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illustrated in figure 3, suppose we project the captions to

a one-dimensional space and the width of the line segment

containing semantic coherent captions for an input xi is σ.

Based on the empirical result observed in this section, the

peak width of the model trained by SLL objective should

be much smaller than σ so that most sampled sentences for

input xi are almost identical. However, the peak width of an

ideal model should be similar to σ. In this case, the samples

from the model is likely to cover the semantically coherent

space and get high score on recall as a result.

4. Solution

We first propose a new objective function to address

the limitations of current sequence-level learning objective

shown in the last section. Then we derive the optimiza-

tion procedure for this new objective function. Finally, we

describe the network architecture and training details in im-

plementation.

4.1. Objective Function

As we have shown that diversity is a proxy measurement

of recall, we introduce an additional diversity term to the

original sequence-level learning objective function to cover

the recall side of the problem:

maxθ :α
∑

y∈Y

∆(y, yi)pθ(y|xi)

︸ ︷︷ ︸
precision

+

(1− α)
∑

y∈Y

∑

y′∈Y

d(y, y′)pθ(y|xi)pθ(y
′|xi)

︸ ︷︷ ︸
diversity

(8)

In this objective function, xi is the input image or video, yi
is the groundtruth caption, y and y′ are any two captions in

the caption space Y that can be sampled from the caption

model. pθ(y|xi) is the conditional probability given by the

caption model.

• ∆(y, yi) in precision term measures semantic coherence

between caption y and the groundtruth caption yi. It is

equivalent to ∆(y, Y ) when there is only one groundtruth

caption yi of input xi. It encourages the model to put

more probability mass pθ(y|xi) on captions that is semanti-

cally coherent with the groundtruth. Example choices for

∆(y, yi) could be METEOR, CIDEr, SPICE, which are

shown to have good correlation with human judgements.

• d(y, y′) in diversity term measures the syntactic difference

between two captions. It encourages the model to explore

more different ways to express the same semantic mean-

ing. Example choices for d(y, y′) could be edit distance or

BLEU3/4, which measures the difference in sentence struc-

ture.

The diversity term is different from the standard

maximum-entropy regularization used in reinforce-

ment learning [20], which is put on the policy by

H(pθ(wj |w<j , xi)) and maximizes the uncertainty of the

next step word wj given the past words w<j . The diversity

term introduced here is directly put on captions, which are

trajectories in the reinforcement learning. Furthermore,

we use distance d rather than entropy of captions to avoid

the intractable estimation of denominator Z that involves

summing over the probability of all captions. Using

distance d also offers us more flexibility to plug-in any

measurement of difference in sentence structure. Thus,

compared to standard maximum-entropy regularization,

the diversity term has more direct effect on encouraging

the model to explore more different captions and is more

flexible for more syntactic difference measurements.

Putting both precision term and diversity term together,

the meaning of the proposed objective function is to encour-

age the model to explore more captions different in syntax

but are semantically coherent with the groundtruth caption

yi of input xi. Hyper-parameter α is introduced to balance

between precision and diversity terms.

4.2. Optimization

We first show that the precision term in the objective

function could be directly solved using REINFORCE al-

gorithm [30]. Then we show that the diversity term could

be solved with some variation on the technique used in the

REINFORCE algorithm. Finally, we derive the surrogate

loss and a complete algorithm for our objective function.

In optimization convention, we always minimize the ob-

jective function. Thus, we take negation of the objective

function in eq (8) and decompose it into two parts:

L(θ) = αL1(θ) + (1− α)L2(θ)

L1(θ) = −
∑

y∈Y

∆(y, yi)pθ(y|xi)

L2(θ) = −
∑

y∈Y

∑

y′∈Y

d(y, y′)pθ(y|xi)pθ(y
′|xi)

(9)

1. Solution to L1(θ): We could rewrite L1 as expectation:

L1(θ) = −
∑

y∈Y

∆(y, yi)pθ(y|xi)

= −Epθ(y|xi)[∆(y, yi)]

(10)

We could use REINFORCE [30] to calculate its gradient:

∇L1(θ) = −Epθ(y|xi)[∆(y, yi)∇ log pθ(y|xi)]

≈ −∆(ỹ, yi)∇ log pθ(ỹ|xi)
(11)

The second line is Monte Carlo sampling with just one sam-

ple caption ỹ from the model.

2. Solution to L2(θ): we could also rewrite L2 as expecta-
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tion:

L2(θ) = −
∑

y∈Y

∑

y′∈Y

d(y, y′)pθ(y|xi)pθ(y
′|xi)

=− Epθ(y|xi)Epθ(y′|xi)d(y, y
′)

(12)

We see that there are two expectations involved. We could

still apply REINFORCE to the outer expectation and inner

expectation respectively and get:

∇L2(θ) = −Epθ(y′|xi)

[
Epθ(y|xi)[d(y, y

′)]∇ log pθ(y|xi)
]

− Epθ(y|xi)

[
Epθ(y′|xi)

[
d(y, y′)∇ log pθ(y

′|xi)
]]

(13)

Approximating it by Monte Carlo sampling leads to the fol-

lowing solution: we sample s captions ỹ1, . . . , ỹs and calcu-

late pairwise distances. For each sample ỹj , its correspond-

ing gradient is:

∇L2(θ) = −
2

s2

s∑

j=1

( s∑

k=1

d(ỹj , ỹk)∇ log pθ(ỹj |xi)
)

(14)

3. Complete solution: In standard policy gradient of re-

inforcement learning, the multiplier before ∇ log pθ(ỹj |xi)
represents the reward. In the gradient of L2, the multiplier

is
∑s

k=1 d(ỹj , ỹk) for each sample ỹj . It is the sum of sam-

ple ỹj’s distance to other samples of input xi. This aligns

exactly with our formulation of L2, which is the diversity

term. This multiplier could be further considered as “re-

ward” that involves multiple samples of the input xi jointly

in calculation while calculating standard reward only uses

each sample separately.

Finally, we wrap up all the gradients of L(θ) in the fol-

lowing surrogate loss of the entire stochastic computation

graph [25]:

L(θ) =
1

s

s∑

j=1

Lj(θ) (15)

Lj(θ) =− α∆(ỹj , yi) log pθ(ỹj |xi) (16)

− (1− α)
2

s

s∑

k=1

d(ỹj , ỹk) log pθ(ỹj |xi)

Following the standard procedure in sequence-level learn-

ing of the captioning task, we first train the model by the

word-level cross-entropy loss and then switch to this surro-

gate loss for training. Algorithm 1 summarizes the entire

training process.

4.3. Network Architecture and Training Details

Our proposed objective and solution is compatible with

any captioning model that follows the encoder-decoder ar-

chitecture [32]. The encoder depends on the input (image or

Algorithm 1 Training algorithm of sequence-level explo-

ration

1: for epoch in [0, M) do

2: train by cross-entropy loss

3: end for

4: for epoch in [M, N) do

5: for each instance xi do

6: sample s captions ỹ1, . . . , ỹs
7: for each sample ỹj do

8: calculate Lj(θ) as in eq (16)

9: end for

10: calculate surrogate loss L(θ) as in eq (15)

11: update parameter θ by stochastic gradient de-

scent

12: end for

13: end for

video) and will be specified in the experiment section. The

decoder is an RNN model of LSTM cell with hidden dimen-

sion set to 512. We add one full connection layer after the

encoder to reduce the dimension to 512. In step 0, the hid-

den state is initialized by the output of this full connection

layer.

We use CIDEr metric to calculate ∆(y, yi) and we use

BLEU3 + BLEU4 to calculate d(y, y′) in eq (15). We set

the number of samples s to 5. To reduce the variance in-

troduced in the Monte Carlo sampling step when estimating

the gradient in optimization, we follow the standard prac-

tice of using baseline. For the gradient of precision term,

we set its baseline to the CIDEr score of greedily decoded

caption from the model following work [10]. For the gradi-

ent of diversity term, we set it to 1
s2

∑s
k=1

∑s
j=1 d(ỹj , ỹk),

the average of all the pairwise distances between sampled

captions. We use ADAM optimizer in optimization.

5. Experiment

In this section, we first introduce the experiment setup.

Then we report the performance of the model trained by our

proposed objective on standard evaluation metrics of preci-

sion side in the image captioning task and video captioning

task respectively. Finally, we discuss the model behavior on

both precision and recall sides.

5.1. Experiment Setup

For the image captioning task, we use the MSCOCO

dataset [8], which is one of the largest image caption

datasets that contains more than 120K images crawled from

Flickr. Each image is annotated with 5 reference captions.

We use the public split [13] for experiments. For the video

captioning task, we use the TGIF dataset [15], which is one

of the largest video caption datasets that contains 100K an-

imated GIFs collected from Tumblr and 120K caption sen-

tences. We use the official split [15] for experiments.
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For image, we use Resnet152 [11] pretrained on Ima-

geNet [9] and apply spatial mean pooling to get a 2048-dim

feature vector. For video, we also use Resnet152 [11] for

fair comparison to other works rather than use a stronger

CNN such as I3D [5]. We apply spatial-temporal mean

pooling to get a 2048-dim feature vector. For simplicity, we

don’t finetune the feature on the caption datasets. We tune

the hyper-parameter α in eq (8) among .25, .5 and .75 on

the validation set and set it to .75. We find that .75 is a quite

stable value to reach the best performance across different

datasets.

5.2. Image Captioning

We first study the contribution of our proposed objec-

tive by comparing it to training our model with the origi-

nal sequence-level learning loss (SLL) and sequence-level

learning with maximum entropy regularization (SLL-ME)

[20]. The weight of the maximum-entropy regularization

in SLL-ME is tuned among 10−1, 10−2, 10−3 and set to

10−2 for the best performance. Both the network architec-

ture and input feature are the same across SLL, SLL-ME

and SLL-SLE (ours). We use beam search in test stage with

width of 5. As shown in the middle block from table 2,

we can see that our model SLL-SLE improves over SLL

and SLL-ME significantly on all metrics. The improve-

ment of SLL-SLE over SLL-ME on all metrics (Meteor:

0.2, CIDEr: 1.8, SPICE: 0.2) is much larger than the im-

provement of SLL-ME over SLL on all metrics (Meteor:

0.0, CIDEr: 0.6, SPICE: 0.1). This shows that the typi-

cal maximum-entropy regularization doesn’t help to solve

the issue of original sequence-level objective in the cap-

tioning task. Our proposed sequence-level exploration is

effective in guiding the model to explore more plausible

captions in training and consequently SLL-SLE generates

more accurate captions in test. In the last block of table 2,

we also include results of SLL, SLL-ME, SLL-SLE objec-

tives when combined with attention architecture. Again the

similar trend is observed: SLL-SLE improves over SLL and

SLL-ME significantly.

We also compare our proposed model to various state-of-

the-art (SOTA) models with different network architectures

trained by either word-level cross-entropy loss or sequence-

level learning objective. For word-level XE loss, we com-

pare to NIC model [32], Adaptive [17], Top-down atten-

tion [2]. For sequence-level learning objective (SLL), we

compare to self-critical learning (SCST:FC & SCST:Att2in)

[24] and Top-Down attention [2]. As shown in table 2, we

see that the proposed objective leads to better performance

on all metrics over all SOTA models.

5.3. Video Captioning

Similarly, we first compare our proposed objective with

original sequence-level learning loss (SLL) and sequence-

Table 2: Performance improvement on the image caption-

ing: * means bottom-up region features are used with atten-

tion architecture

Method Meteor CIDEr Spice

NIC [32] 23.7 85.5 NA

Adaptive [17] 26.6 108.5 NA

SCST:FC [24] 25.5 106.3 NA

SCST:Att2in [24] 26.3 111.4 NA

Top-Down-XE [2] 26.1 105.4 19.2
Top-Down-SLL [2] 26.5 111.1 20.2

SLL 26.8 115.0 20.0
SLL-ME 26.8 115.6 20.1

SLL-SLE (ours) 27.0 117.2 20.3

SLL* 26.6 117.2 19.4
SLL-ME* 26.7 117.9 19.5

SLL-SLE* (ours) 27.0 119.6 19.9

Table 3: Performance improvement on the video captioning

Method METEOR CIDEr SPICE

Official[15] 16.7 31.6 NA

Show-adapt[7] 16.2 29.8 NA

SLL 17.8 45.9 15.9
SLL-ME 18.2 48.1 16.0

SLL-SLE (ours) 18.8 50.8 16.6

level learning with maximum entropy regularization (SLL-

ME). As we fix the hyper-parameter across datasets for

our method (SLL-SLE), we also fix the hyper-parameter

(weight before maximum-entropy regularization) in SLL-

ME and set it to 10−2, same as that on MSCOCO dataset.

We use beam search with width of 5 in test stage. As

shown in the last three rows from table 3, we can see that

our model, SLL-SLE, again improves over SLL and SLL-

ME significantly on all metrics. Actually, SLL-ME per-

forms worse than SLL on all metrics, which indicates that

the maximum-entropy regularization is not stable across

datasets and may even deteriorate the performance in some

captioning task. Our model, SLL-SLE improves over SLL

by 0.6 on Meteor, 2.7 on CIDEr and 0.6 on SPICE with the

same hyper-parameter setting as that on MSCOCO. This

shows that the proposed sequence-level exploration term

is stable and robust across datasets and are helpful to the

model performance in general.

We also compare our proposed model to various state-

of-the-art (SOTA) models on the video captioning task. The

TGIF dataset comes with an official baseline (Official) [15]

trained by word-level cross-entropy loss. Show-adapt [7]

leverages both TGIF and other datasets in training. By com-

paring our implementation of baseline model SLL to these
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Table 4: Comparison of models trained by XE, SLL, SLL-

ME, our SLL-SLE on both precision and diversity sides

(MSCOCO dataset): (rs) denotes random sampling decod-

ing and (bs) denotes beam search decoding

Method
precision recall

CIDEr Div1 (↑) Div2 (↑) mBleu4 (↓)

XE (rs) 74.2 0.57 0.78 0.06
SLL (rs) 114.6 0.25 0.32 0.81

SLL-ME (rs) 115.1 0.25 0.33 0.80
SLL-SLE (rs) 115.9 0.29 0.40 0.68

XE (bs) 102.5 0.27 0.35 0.80
SLL (bs) 115.0 0.26 0.35 0.78

SLL-ME (bs) 115.6 0.26 0.34 0.79
SLL-SLE (bs) 117.2 0.27 0.36 0.76

VAE[33] (bs) 100.0 NA NA NA

GAN[26] (rs) NA 0.41 0.55 0.51
GAN[26] (bs) NA 0.34 0.44 0.70

models, we see that it performs better than them, which in-

dicates that SLL is already a very strong baseline. This fur-

ther suggests that the improvement over SLL is not trivial.

5.4. Discussion of Model Behavior on Precision and
Recall

We study the model behavior on precision and re-

call sides for these objectives: cross-entropy (XE),

sequence-level learning (SLL), sequence-level learning

with maximum-entropy (SLL-ME), our SLL-SLE. On the

precision side, we use CIDEr metric as it is shown to have

good correlation with human judgement. On the recall side,

we use diversity metrics Div1, Div2, mBleu[26] as proxy

measurements. To calculate the diversity metrics, we adopt

two decoding straties as [26]. The first decoding strategy

is to sample 5 captions from the model for each image (rs).

The second decoding strategy is to beam search top 5 cap-

tions from the model for each image (bs). The reported

CIDEr is the average of CIDEr scores of the 5 sampled cap-

tions. As shown in table 4, compared to SLL and SLL-

ME, the proposed objective, SLL-SLE, performs not only

better on the precision side and but also better on the re-

call side under both random sampling and beam search de-

coding strategies. Compared to XE, SLL-SLE improves on

both precision and recall aspects under beam search decod-

ing strategies. We also list VAE and GAN’s performance on

precision and recall aspects for reference.

Figure 4 shows that the proposed objective can generate

diverse and high quality captions with sampling strategy.

The quality of captions generated by the XE model is not

good. The SLL model with sampling strategy has limited

diversity and keeps generating almost the same caption with

sampling strategy.

XE:

a person standing in a bathroom holding a book

a man is standing next to an open toilet

a man is standing in front of a toilet

a man is standing in front of a toilet

a man sitting on a chair with his feet up

SLL:

a man standing in a bathroom with a toilet

a man standing in a bathroom with a toilet

a man standing in a bathroom with a toilet

a man standing in a bathroom with a toilet

a man standing in a bathroom with a toilet

SLL-SLE:

a man that is holding a swim in a toilet

a man sitting next to a toilet reading a book

a man standing on top of a toilet reading a book

a man sitting in a toilet reading a book

a man reading a newspaper next to a toilet paper

Figure 4: Case study of model behavior on precision and

recall by sampling strategy in decoding

6. Conclusion

In this work, we show the limitation of current sequence-

level learning objective in captioning tasks from both theo-

retical and empirical aspects. From the theoretical aspect,

this objective is equivalent to maximizing the generalized

precision of the predicted caption set, which ignores the re-

call side. From the empirical aspect, models trained by this

objective receive low score on proxy measurements of re-

call. To overcome the above limitations, we propose adding

a sequence-level exploration term to maximize the diver-

sity, a proxy measurement of recall, on generated captions.

It encourages the model to explore more captions that are

different in syntax but are semantically coherent with the

groundtruth in training. Extensive experiments on both im-

age and video captioning tasks show that the proposed ob-

jective leads to a win-win solution that consistently per-

forms better on both precision and recall.
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