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Abstract

Learning powerful discriminative features is a challeng-

ing task in Semi-Supervised Learning, as the estimation of

the feature space is more likely to be wrong with scarcer la-

beled data. Previous methods utilize a relation graph with

edges representing ’similarity’ or ’dissimilarity’ between

nodes. Similar nodes are forced to output consistent fea-

tures, while dissimilar nodes are forced to be inconsistent.

However, since unlabeled data may be wrongly labeled, the

judgment of edges may be unreliable. Besides, the nodes

connected by edges may already be well fitted, thus con-

tributing little to the model training. We propose Reliable

Edge Mining (REM), which forms a reliable graph by only

selecting reliable and useful edges. Guided by the graph,

the feature extractor is able to learn discriminative features

in a data-efficient way, and consequently boosts the accu-

racy of the learned classifier. Visual analyses show that the

features learned are more discriminative and better reveals

the underlying structure of the data. REM can be combined

with perturbation-based methods like Π-model, TempEns

and Mean Teacher to further improve accuracy. Experi-

ments prove that our method is data-efficient on simple tasks

like SVHN and CIFAR-10, and achieves state-of-the-art re-

sults on the challenging CIFAR-100.

1. Introduction

Deep neural network has shown promising advantages

in many applications of machine learning, such as compu-

tation vision, speech recognition, and nature language pro-

cess [15]. One of the key reasons why the technique of

deep neural networks achieved such rapid developments is

there are huge amounts of labeled datasets. However, it

usually takes a lot of time and human efforts to construct

fully-labeled datasets because of the complicated works of

determining the exact labels for different samples. By con-

trast, since it is much easier to collect unlabeled data, there

have been a lot of efforts made for utilizing the information

of unlabeled data, and Semi-Supervised Learning (SSL) is

an important branch among them.

SSL aims to benefit from the limited labeled data and

large amounts of unlabeled data. In order to generalize bet-

ter with the unlabeled data, the methods of SSL suppose that

the points which have the close proximity in a high-density

region should have close outputs [2, 36]. Based upon this

assumption, many perturbation-based methods have been

proposed [25, 26, 33, 24]. Π method [14] and Mean Teacher

[14] force consistent output between student network and

teacher network. VAT [21] generates a virtual adversarial

example for each input and expects the model to give close

output. Although these methods have achieved promising

results, they only consider of the unlabeled examples but

ignore the associated relationships between these examples.

Some methods, such as Luo et al. [19], utilize the underly-

ing structure of data by building a teacher graph in the em-

bedding space. The nodes represent the data and the edges

represent the consistency of labels between nodes1. Then

the feature extractor is expected to output similar features

for nodes from the same class (the edge is 1), while out-

put dissimilar features for nodes from different classes (the

edge is 0). However, on the one hand, they ignore the relia-

bility of the edges (the values of these edges may be wrong),

which may leads to the wrong guidance of model training.

On the other hand, they ignore the usefulness2 of the edges,

which may leads to the inefficient utilization of data.

We are concerned with the task of constructing a reliable

sub-graph given the original graph mentioned before. To

guide the model training with the whole dataset, we expect

the sub-graph to maintain the nodes in the original graph.

But for efficient data utilization and reliable guidance, only

useful and reliable edges are expected to be added to the

sub-graph. We call the constructed sub-graph as a ’reliable

graph’.

In this work, we propose Reliable Edge Mining (REM)

to construct such a reliable graph (see Fig. 1). Specifically,

we add two attributes to each edge in the original graph:

usefulness and certainty. According to the attribute of use-

fulness, we select useful edges to form some candidate sets,

from which the reliable edges are mined according to the

1Unlabeled data use the model prediction as their labels.
2Usefulness means that the edge contributes to model training.
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Figure 1: Illustration of REM on a synthetic example. We explain the whole process from the perspective of A from Class II.

Firstly, we utilize the label information to form a original graph. Then, the attributes of usefulness (U ) and certainty (C) are

calculated for each edge (written as (usefulness, certainty) in the figure). We preserve k+i neighbors and k−i non-neighbors

in the graph according to the attribute of usefulness (in this example, k+i and k−i are set to be 2). These preserved edges are

further filtered according to the attribute of certainty. Edges with higher value of certainty and usefulness are more likely to

be added to the reliable graph.

attribute of certainty. Given these reliable edges and all

nodes in the original graph, we are able to construct a re-

liable graph, with which the feature extractor is expected

to learn well using fewer epochs. REM is complementary

with currently advanced perturbation-based methods. Ex-

periments on simple tasks like SVHN and CIFAR-10 illus-

trate that REM achieves comparable results with other state-

of-the-art methods with fewer epochs. On more challenging

tasks like CIFAR-100, REM surpasses current start-of-the-

art results, reducing the best known error rate from 33.62%

to 31.95% and from 35.09% to 33.73% with and without

augmentation, respectively. Moreover, on Tiny ImageNet,

REM reduces the error rate of the baselines from 64.21%

to 61.72%. Visualization experiments demonstrate the ef-

ficiency of REM in proving useful and reliable edges for

model training. We also find that the reliable graph encour-

ages the model for confident outputs, which has been shown

beneficial in SSL [7, 16].

The contribution of this paper can be summarized as: (1)

We propose REM to construct a reliable graph in the embed-

ding space. The reliable graph is a sub-graph of the original

graph, containing only reliable and useful edges. (2) The

reliable graph is able to guide the model learning discrimi-

native features in a data-efficient way. (3) We demonstrate

that the model becomes confident in its output after training

with the reliable graph. (4) REM surpasses previous teacher

graph based methods by a obvious margin and achieves cur-

rently state-of-the-art results on several benchmarks.

2. Related Work

There has been a long history of developments in Semi

Supervised Learning (SSL) [36]. Recently, due to the devel-

opment of deep learning [15, 10, 13, 28], many SSL ideas

have been renovated and achieved impressive improvement

compared to full-supervised learning [3, 23, 30, 12, 17]. In

this section, we focus on the closely related work. For a

detailed review of SSL, we refer readers to [36].

SSL assumes the decision boundary should lie in low-

density regions. Based on this assumption, many methods

have been proposed [25, 26, 21, 24]. Entropy Regulariza-

tion [7] minimizes the entropy of softmax output of un-

labeled data to encourage low density separation between

classes. Pseudo-Labeling (PL) [16] pseudo-labels unla-

beled data if the maximum output probabilities are larger

than a predefined threshold. These methods encourage the

model to give confident outputs, and believe there is a pos-

itive correlation between probability and correctness. Our

work is also based on this assumption. Given a original

graph, we determine which edges are reliable according to

the probabilities and select these edges to form a reliable

sub-graph. Experiments show that such a graph implicitly

encourages the model to give confident output (see Fig. 6) .

Graph-based methods construct a graph with labeled and

unlabeled data. Each node represents an example and each

edge represents the similarity of examples. There have been

a lot of traditional works on building a graph [35, 9, 34].

However, these works fix the graph and only update the

weights of edges during training. Luo et al. [19] constructs

a ’joint-training’ sparse graph based on the predicted labels.

Then the graph serves as a guideline for metric learning.

However, since the predicted labels can be wrong, the edges

may be unreliable (see Fig. 2). In addition, as the graph

can be large if considering all data in the dataset, stochas-

tic sampling is used for generating a sub-graph from the

original graph. We argue that this kind of sub-graph is data-

inefficient, thus contributing little to the learning of the em-
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Figure 2: Reliability-Epoch curve under different methods.

The precision of reliable edges is defined as the ratio of re-

liable edges to all edges in the sub-graph. The method of

REM without Certainty represents generating the sub-graph

without the certainty attribute, only considering the useful-

ness attribute.

bedding space (see Fig. 3). Our work adds two attributes to

the edges: reliability and usefulness. Using these attributes,

we build a reliable and useful sub-graph, with which the

model is trained more efficient (see Fig. 7).

Deep metric learning is a field aiming for an embed-

ding space in which similar data are closer than dissimilar

data [22, 27, 29]. As generating all possible pairs would

lead to inefficient model training, hard example mining has

been widely used for generating valuable pairs. However,

hard example mining requires the label information of data,

which is lacking in SSL. If we directly use the predictions to

be pseudo-labels, a truly positive unlabeled example may be

mistaken for a hard negative when the classifier gives incor-

rect prediction. In our work, we filter out unreliable edges

according to the predefined certainty attribute, and then

sample useful edges according to the usefulness attribute,

which reduces the risk of choosing wrong data. Fig. 3 and

Fig. 4 show the efficiency of our method.

3. Preliminaries

Our method is described under the setting of the semi-

supervised image classification, in which a training set D
is consist of L labeled examples {xi, yi}Li=1 ∈ L and U

unlabeled examples {xi}Ui=1 ∈ U , where xi ∈ X and yi ∈
Y = {1 . . .K}. Here K is the number of different classes.

For each example xi ∈ D, let ỹi = argmaxj fθ (xi)j where

fθ (xi) is the output of network for the i-th example.

The goal of SSL is to train a classifier with L and U ,

which can be written as

Lθ =
L

∑
i=1

Ls (fθ (xi) , yi) + λLu(θ,L,U), (1)

where Ls is the supervised part and Lu is the unsupervised

Figure 3: Usefulness-Epoch curve under different methods.

The ratio of useful edges is defined as the ratio of use-

ful edges to all edges in the graph. REM without Useful-

ness means generating the sub-graph only considering the

certainty attribute. From the figure, REM without Useful-

ness brings in a graph with less useful edges compared to

SNTG. Taking the usefulness attribute into consideration,

REM maintains more useful edges.

part. A common choice of Ls is cross-entropy, and Lu is

different based on different assumptions.

To utilize the information in the data structure, we can

construct a graph in the embedding space, and use the graph

to guide the learning of discriminative features with the help

of metric learning. Suppose given a graph G with nodes

representing the data and edges representing the consis-

tency of labels between nodes, contrastive embedding can

be learned using the following loss,

Lu(θ,L,U) = ∑
{i,j}

eij=1

[Dij −m+]
2

+ +

∑
{i,j}

eij=0

[m− −Dij]
2

+ .
(2)

Here, [.]+ is the ReLU function. eij ∈ E where E is the

set of edges. The values of edges are 0 or 1, where 0 and

1 represent ’dissimilarity’ and ’similarity’ respectively. Dij

represents the distance between node xi and xj from the set

of nodes V . m+ and m− are hyper-parameters. In order

to learn discriminative features, eij is set to 1 if xi and xj

come from the same class. Otherwise, eij is set to 0. For

unlabeled data, the predictions from the model are used in

this process, thereby may introducing unreliable edges if the

predictions are incorrect.

To reduce negative effects of this unreliable graph, pre-

vious methods like Luo et al. [19] have tried to build a sub-

graph with randomly sampled edges from G, but they still

didn’t consider the reliability and usefulness of E, thus suf-

fering the risk of learning the incorrect contrastive embed-

ding or learning inefficiently.
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4. Our Method

Under the settings of SSL, the accuracy of predictions for

unlabeled nodes differs in different steps of training. Since

the values of edges are depended on the labels of labeled

nodes and predictions of unlabeled nodes, reliable edges

are also changing in the training. Therefore, our target is to

build different ’dynamic’ reliable graphs at different train-

ing steps. In this section, we describe the proposed Reli-

able Edge Mining (REM) for constructing such a ’dynamic’

graph in detail, which is formalized by answering the fol-

lowing questions: (1) how to measure the reliability of the

edges? (2) does all reliable edges attribute to the training?

and (3) how to train the model with the help of the graph?

The overall algorithm is illustrated in Alg. 1.

4.1. Measuring the Reliability of the Edges

We define a reliable edge as an edge with high certainty

about its value. Since the values of edges represent the ’dis-

similarity’ and ’similarity’ between nodes, the certainties of

edges depend on that of nodes.

There have been many methods on calculating the cer-

tainties of the nodes. Liu et al. [18] builds a reliable clas-

sifier which outputs the labels as well as the correspond-

ing certainties. However, the algorithm needs a generative

model as well as a discrimination model, thereby introduc-

ing more parameters and training time. Temperature scaling

is effective at calibrating predictions [8], but it is a post-

processing method, which doesn’t match our need for con-

structing a dynamic reliable graph during training.

In the proposed method, the certainties of nodes are ex-

pected to be related to the network predictions. Previous

methods, like Pseudo-Labeling [16], use a threshold to fil-

ter the data with high probabilities. While high network

probability does not guarantee correctness, there is a posi-

tive correlation between probability and correctness [5]. We

consider the entropy of the model outputs as a measure of

certainty. Given the softmax output si of node xi, the cal-

culation of its certainty qi can be formally defined as:

qi = 1 −
H(si)

log(K)
, (3)

where H(⋅) is the entropy function and K is the number

of classes. Given the certainties of nodes, we are able to

measure the reliabilities of edges. We define the certainty

of an edge eij as Cij , which depends on the certainty values

of xi and xj :

Cij =
qi + qj

2
. (4)

If only considering reliable edges, we are able to obtain a

pure reliable sub-graph from the original graph. However,

we argue that this kind of sub-graph contributes little to the

training. According to Eq. (2), a useful edge eij is an edge

whose Dij is larger than m+ if eij = 1 or smaller than m−

if eij = 0. Those who don’t meet the requirements are use-

less for the training. When we construct a sub-graph only

considering the attribute of reliability, the edges are likely

to be useless since the nodes are well-trained (see Fig. 3 for

detail).

4.2. Mining Edges from the Graph

To mine reliable and useful edges from the original

graph, we prefer the edges connecting the nodes which are

not well-trained. Specially, an attribute Uij representing the

usefulness of the edge eij is calculated as follows:

Uij = eI(ỹi=ỹj)⋅Dij , (5)

where I(⋅) is a indicator function that takes on a value of 1

if its augment is true, and -1 otherwise. In practice, we use

the Euclidean distance to compute Dij .

Now each edge is attached with the attributes of cer-

tainty and usefulness. For each node xi, according to the at-

tribute of usefulness, we firstly select the top k+i most useful

edges from the list {eij ∣eij = 1, j = 1,2, ..., L +U} to form

the neighbor candidate set Pi, and select the top k−i most

useful edges from the list {eij ∣eij = 0, j = 1,2, ..., L +U}
to form the non-neighbor candidate set Ni. Then we sam-

ple one edge from Pi and another edge from Ni according

to the attributes of certainty. These two edges and the corre-

sponding nodes are added to the sub-graph. With repeating

this process for each node on the original graph, the reliable

graph is constructed, which maintains the nodes of the orig-

inal graph and contains less edges. In practice, k+i and k−i
are set as:

k+i = ∑
j,eij=1

[Dij >m+] ,

k−i = ∑
j,eij=0

[Dij <m−] ,
(6)

where [⋅] is the Iverson bracket that takes on a value of 1 if

its augment is true, and 0 otherwise.

To avoid over-sampling the edges and nodes with high

certainties, we decay the certainty of the nodes every time

the corresponding edges are added to the reliable sub-graph.

Since the value of the certainty is between 0 and 1, we sim-

ply use the square function to decay the certainty.

4.3. Guiding the Model with the Graph

The reliable graph is ’joint-trained’ with the model. At

the start of each iteration, the reliable graph is constructed

according to Alg. 1. Then, for nodes connected by the

edges with value 1, we force the feature extractor to out-

put ’similar’ features. For nodes connected by the edges

with value 0, we force the extractor to output ’dissimilar’

features. This can be achieved by the loss function Eq. (2).

Given the class-separable features, the classifier is expected
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Algorithm 1 Generation of a Graph with REM

Require: G = the original graph

Require: hi = the feature of node xi in X
Require: si = the softmax output of node xi in X
Require: K = the number of different classes

1: for each node xi do

2: Compute qi according to Eq. (3) given si and K

3: end for

Gs = (Vs,Es)
4: for each node xi do

5: Calculate the certainty of all edges connected to xi

in G according to Eq. (4)

6: Calculate the usefulness of all edges connected to xi

in G according to Eq. (5)

7: Form the neighbor candidate set Pi and non-neighbor

candidate set Ni according to the attribute of useful-

ness

8: Sample an edge eij from Pi and an edge eik from Ni

according to the attribute of certainty

9: Add eij and eik to Es

10: Add xi, xj and xk to Vs

11: Decay qi, qj and qk
12: end for

13: return Gs

to be trained easier, thus providing more reliable edges to

the graph. Guided by the graph with more reliable edges,

the feature extractor learns better, and provides the classi-

fier with more class-separable features.

Consider the synthetic example in Fig. 1. REM firstly

calculates the attributes of certainty and usefulness for each

edge. Then for each node xi in the original graph, k+i edges

and k−i edges are selected to form Pi and Ni according to

their usefulness attributes, from which eij and eik are sam-

pled. The edges and the corresponding nodes are added

to the sub-graph. As we construct the sub-graph per mini-

batch, the sub-graph is memory-saving.

5. Experiments

To verify the efficiency of REM, a set of experiments are

conducted in this section. Specifically, we firstly compare

REM with recently competitive algorithms, especially the

previous teacher graph based method named SNTG [19], on

the widely adopted semi-supervised learning benchmarks,

Then, we visualize trained pairs and discriminative features

to prove the reliability and usefulness of the graph. We

highlight the data-efficiency of our method by comparing

REM with SNTG on several benchmarks. Finally, we show

that the model guided by the reliable graph is confident in

its output.

5.1. Setup

REM is evaluated on the popularly used SVHN, CIFAR-

10 and CIFAR-100 datasets. In most of our experiments,

we use a standard network architecture (13-layer convolu-

tional neural network), which has been adopted as a bench-

mark architecture in previous methods [14, 31, 19]. We use

a softmax function with certainty as input to sample two

edges from the candidates for each node. m+ and m− in

Eq. (2) are set to be 0 and 1, respectively. The other hyper-

parameters are kept to be the same as previous methods.

5.2. Comparison to Other Methods

Previous advanced perturbation-based methods, includ-

ing Π-model [14], temporal ensembling (Tempens) model

[14] and Mean Teacher [31], are used as the baseline

methods for comparison. Π-model and Tempens gener-

ate teacher predictions based on perturbed models. Mean

Teacher averages model weights to get a teacher model,

from which the teacher predictions are obtained to guide

the student model. As these methods only enforce smooth-

ness on each single example, we naturally wonder if we can

combine them with REM. We also compare REM with a

previous method named SNTG [19], which can be seen as

a ’random’ version of REM. In detail, SNTG randomly se-

lects edges from the original graph, while REM selects use-

ful and reliable edges according to the attributes of edges.

We randomly sample 250, 500, 1000 labels for SVHN,

1000, 2000, 4000 labels for CIFAR-10 and 10000 labels for

CIFAR-100, respectively. Table 1 and 3 show the results

reported by averaging over 10 runs. The results of SNTG

using the same seeds as REM are also reported (marked

with *). Guided by the reliable graph, the test error rate

of perturbation-based methods are reduced by a large mar-

gin, like from 56.57% to 38.30% using Π model on CIFAR-

100. Besides, REM surpasses SNTG on most benchmarks.

For instance, the test error rates are reduced from 21.23%

to 18.64% and from 39.07% to 35.44% using Π model on

CIFAR-10 with 1000 labels and CIFAR-100 with 10000 la-

bels. CIFAR-100 is a more difficult task containing 100

classes, and our method can still make significant improve-

ments. It suggests that the reliable graph constructed by our

method really helps to improve the generalization perfor-

mance of the model. Note that when the data are all labeled

(CIFAR-100 all labels with/without augmentation), REM

still surpasses SNTG. We explain that the improvement is

because the useful-edge-mining mechanism in our method.

5.3. Stronger Baselines

FastSWA [1] is a stronger baseline. Different from Mean

Teacher in Sec. 5.2, FastSWA averages weights along the

trajectory of SGD with a cyclical learning rate schedule.

The authors reveal that this kind of ensembling can obtain a

solution centered in a more flat region of the loss, resulting
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Table 1: Test error rates (%) on CIFAR-100 with/without standard augmentation and CIFAR-10 with standard augmentation.

DataSet CIFAR-100 CIFAR-10

Model
with augmentation without augmentation with augmentation

10000 labels all labels 10000 labels all labels 1000 labels 2000 labels 4000 labels

Π model [14] 39.19±0.36 26.32±0.04 56.57±0.54 29.06±0.21 31.65 ± 1.20 17.57 ± 0.44 12.36 ± 0.31

Π+SNTG* 39.07±0.38 25.49±0.17 43.48±0.39 28.24±0.22 21.23 ± 1.27 14.65 ± 0.31 11.00 ± 0.13

Π+REM (ours) 35.44±0.23 24.68±0.18 38.30±0.38 26.89±0.24 18.64 ± 1.23 13.65 ± 0.33 11.09 ± 0.16

TempEns [14] 38.65±0.51 26.30±0.15 – – 23.31 ± 1.01 15.64 ± 0.39 12.16 ± 0.24

TempEns+SNTG* 38.68±0.33 25.48±0.23 43.61±0.34 28.23±0.13 18.86 ± 1.07 13.88 ± 0.30 11.01 ± 0.20

TempEns+REM (ours) 35.62±0.33 24.59±0.13 38.77±0.30 26.96±0.19 17.66 ± 1.13 13.33 ± 0.35 10.61 ± 0.16

MT [31] 35.96±0.77 – 36.90±0.62 – 19.58 ± 1.03 14.76 ± 0.66 11.57 ± 0.31

MT+SNTG* 35.81±0.27 – 36.71±0.41 – 18.69 ± 1.38 13.79 ± 0.60 10.74 ± 0.56

MT+REM (ours) 33.22±0.28 – 35.09±0.33 – 18.23 ± 1.26 13.37 ± 0.53 10.56 ± 0.20

Table 2: Test error rates (%) on CIFAR-100 and Tiny ImageNet. CIFAR10k-aug and CIFAR10k-woaug represent training

on CIFAR-100 using 10000 labels with and without augmentation. TIN10k-aug represents training on Tiny ImageNet using

10000 labels with augmentation.

Model CIFAR10k-aug CIFAR10k-woaug TIN10k-aug

Supervised-only [14] 44.56±0.30 51.21±0.33 68.91±NA

LP [11] 35.92±0.47 – –

CCN [32] 35.28±0.23 – –

Π+FastSWA [1] 34.25±0.16 36.19±0.19 63.57±0.44

Π+FastSWA+REM (ours) 32.81±0.69 34.25±0.28 61.88±0.15

MT+FastSWA [1]* 33.62±0.54 35.09±0.47 64.21±NA

MT+FastSWA+SNTG [19]* 33.60±0.36 34.70±0.54 64.26±0.53

MT+FastSWA+REM (ours) 31.95±0.27 33.73±0.56 61.72±0.37

Table 3: Test error rates (%) on SVHN with standard aug-

mentation, averaged over 10 runs.

Model 250 labels 500 labels 1000 labels

Supervised-only [31] 42.65 ± 2.68 22.08 ± 0.73 14.46 ± 0.71

TempEns [14] 12.62 ± 2.91 5.12 ± 0.13 4.42 ± 0.16

TempEns+SNTG [19] 5.36 ± 0.57 4.46 ± 0.26 3.98 ± 0.21

TempEns+REM (ours) 5.07 ± 0.38 4.40 ± 0.29 3.87 ± 0.15

in better generalization performance. However, FastSWA

still doesn’t utilize the information in the embedding space,

motivating us to think about whether this strong baseline

can be further improved with REM. To verify this, we com-

bine FastSWA with REM and test on CIFAR-100 and Tiny

ImageNet. Tiny ImageNet is a subset of ImageNet [4]. It

contains 200 classes with 500 training images, 50 valida-

tion images, and 50 test images for each class, which is

more challenging. On CIFAR-100, we use the same stan-

dard architecture and hyper-parameters as before. But on

Tiny ImageNet, a 12-block (26-layer) Residual Network

[10] with Shake-Shake regularization [6] is used following

[1]. The results are reported by averaging over 3 runs on

CIFAR-100 and 2 runs on Tiny ImageNet. As the compar-

ison presented in Table 2, REM reduces the error rate from

33.62% to 31.95% and from 35.09% to 33.73% with and

without augmentation on CIFAR-100, surpassing previous

advanced methods like LP [11] and CCN [32]. Moreover,

in spite of large number of classes in Tiny ImageNet, REM

still makes significant improvements compared with SNTG

(from 64.26% to 61.27%). It suggests again that the graph

constructed by REM helps improve the generalization abil-

ity of the model.

5.4. Visualization

To check whether REM constructs reliable graphs, we

randomly select edges from the sub-graph generated by

REM and SNTG, respectively, and visualize the data con-

nected by the edges. The experiment is done on CIFAR-

100 with 10000 labeled data. As shown in Fig. 4, on one
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(a) REM (b) SNTG

Figure 4: We visualize the data connected by edges in the sub-graph of REM and SNTG on CIFAR-100. The first column

represents each xi. The second and the third column are the neighbor (xj) and non-neighbor (xk) of this sample. Our method

is able to select more challenging and reliable pairs, while SNTG may select incorrect data for training.See Sec. 5.4 for detail.

(a) SNTG

(b) REM

Figure 5: Comparison of the 2D features generated by

SNTG and REM on the CIFAR-10 test data. At epoch 100,

our method is able to generate some compact clusters, while

SNTG only generates divergent clusters.

hand, REM finds more challenging and reliable edges (take

the first row as example, a dinosaur can find another di-

nosaur as its neighbor and a lion as its non-neighbor). On

the other hand, SNTG may find wrong neighbors or easy

non-neighbors (take the first row as example, a flatfish finds

a girl as its neighbor and a sunflower as its non-neighbor).

This observation supports our analysis in Sec. 3 and Sec. 4.

Furthermore, to explore whether REM guides the feature

extractor to learn discriminative feature efficiently, we fur-

ther visualize the last hidden layer on test data of CIFAR-

10 with PCA [20]. The models of REM and SNTG are

trained on CIFAR-10 with 500 labels using the same hyper-

parameters and training strategy. Fig. 5 demonstrates that

REM encourages concentrated clusters while keeping dis-

tances between clusters after fewer epochs of training. On

the contrary, the clusters are more divergent and closer to

each other even after 300 epochs of training with SNTG.

Therefore, REM is more efficient in learning more discrim-

inative features.

5.5. Encouraging Confident Output of the Model

To clarify the relationships between the certainty and the

correctness, we evenly split the certainty interval into four

bins and add data to the corresponding bin according to their

certainties. As shown in Fig. 6, for bins with high certainty,

the predictions are more likely to be correct, which sup-

ports our assumption that there is a positive correlation be-

tween certainty and correctness. Moreover, when we com-

pare SNTG and REM in Fig. 6, it can be seen that REM

encourages more confident outputs than SNTG, meaning

that the reliable graph encourages confident output of the

model. With these two observations, we can describe REM

in a joint learning way: the model first predicts some labels,

based on which REM constructs a reliable sub-graph with

reliable edges. In turn, the reliable graph encourages the

model to give more confident outputs. As there are more

reliable edges than in the original graph, REM constructs

graphs with more reliable edges, which guides the model to

learn better.

5.6. Effectiveness of the Attributes

To investigate whether the attributes of certainty and

usefulness really contribute to the construction of a reli-

able graph, we compare the following methods: (1) SNTG:

generating a sub-graph randomly, which can be seen as

our baseline; (2) REM: generating a sub-graph consider-

ing the certainty and usefulness; (3) REM without Cer-

tainty/Usefulness: generating a sub-graph without consid-

ering the certainty or the usefulness. As shown in Fig. 2,

the precision of reliable edges of REM without Certainty

is much lower than SNTG, and that of REM is higher than

SNTG. Similarly, Fig. 3 demonstrates that adopting the at-
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(a) Epoch 100 (b) Epoch 200 (c) Epoch 300

Figure 6: Splitting the certainty interval into four bins and

adding data to the corresponding bin according to their cer-

tainties. The bars with ∎ or ∎ represent the number of data

in the interval. The bars with ∎ or ∎ represents the correctly

predicted number of data in the interval.

tribute of Usefulness can help REM surpasses SNTG in the

ratio of useful edges mined. Therefore, we can draw a con-

clusion that both these two attributes of edges really con-

tribute to the construction of a reliable graph.

5.7. Comparison on Data Utilization

As the reliable graph efficiently utilizes data and cor-

rectly guides the model, we are curious if it can help model

train with seeing data less time. We study the efficiency

of REM and SNTG on SVHN, CIFAR-10 and CIFAR-100

(CIFAR-10 with 500, 1000 and 4000 labels, SVHN with

500 labels, CIFAR-100 with 10000 labels, both with data

augmentation). Fig. 7 shows that REM achieves the best re-

sults of SNTG with much less training iterations (about 1/3

epochs on CIFAR-100 with 10000 labels) and less time con-

sumption, which means only changing the randomly con-

structed sub-graph to a reliable one can help model train

more efficient.

5.8. Ablation Study

To clarify the effectiveness of the insights in REM, we

compare the performances of respectively removing these

components from REM. Specially, we measure the effect

of (1) REM without Certainty: Randomly selecting edges

from the hard neighbor candidate set and non-neighbor can-

didate set, which can be seen as ignoring certainty; (2) REM

without Usefulness: Sampling edges considering only the

attribute of certainty, which can be seen as ignoring use-

fulness; and (3) REM without Decaying: the certainty of

the edge will not be decayed when added to the sub-graph.

SNTG is used as the baseline, as it generates a sub-graph

without Certainty/Usefulness/Decaying. We carry out the

experiments on CIFAR-100 using 10000 labels with stan-

dard augmentation. Each result is reported by averaging

over 10 runs. As shown in Table 4, each component is im-

portant for our final performance. Specially, the Certainty

component and the Usefulness component can reduce the

test error of SNTG by at least 2% points on CIFAR-100

(a) (b)

Figure 7: (a) Comparing the number of iterations required

for SNTG and REM to achieve the same accuracy on test

set. The best test accuracy of SNTG is used in the experi-

ment. (b) Comparing the error rate obtained by SNTG and

REM at the same time consumption.

Table 4: Test error rates (%) on CIFAR-100 using 10000

labels with standard augmentation, averaged over 10 runs.

Model CIFAR-100 with 10000 labels

SNTG [19] 38.68 ± 0.33

REM without Certainty 36.69 ± 0.44

REM without Usefulness 35.98 ± 0.36

REM without Decaying 35.69 ± 0.30

REM 35.62 ± 0.33

with 10000 labels. And the combination of them finally re-

duces the result by 3% points.

6. Conclusion

This work explores how to build a reliable graph in the

embedding space, for better guidance of the training of

the model. We find that the random graphs generated by

previous Teacher Graph based methods, can lead to data-

inefficient training due to the wrongly tagged or useless

edges. To solve the problem, we propose Reliable Edge

Mining to build a reliable graph, which only contains care-

fully selected edges according to two attributes: reliability

and usefulness. Guided by the graph, the feature extractor is

able to learn discriminative feature with less iterations overs

data. Our experiments demonstrate that REM utilizes data

more efficiently on simple tasks like SVHN and CIFAR-10,

and achieves state-of-the-art results on more difficult tasks

like CIFAR-100. We also show that the model guided by

the reliable graph is confident in the outputs, meaning that

the method implicitly encourages the decision boundary to

lie in low-density regions.
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