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Abstract

Unpaired image-to-image translation (I2I) has achieved

great success in various applications. However, its gener-

alization capacity is still an open question. In this paper,

we show that existing I2I models do not generalize well for

samples outside the training domain. The cause is twofold.

First, an I2I model may not work well when testing samples

are beyond its valid input domain. Second, results could be

unreliable if the expected output is far from what the model

is trained. To deal with these issues, we propose the Do-

main Adaptive Image-To-Image translation (DAI2I) frame-

work that adapts an I2I model for out-of-domain samples.

Our framework introduces two sub-modules – one maps

testing samples to the valid input domain of the I2I model,

and the other transforms the output of I2I model to expected

results. Extensive experiments manifest that our framework

improves the capacity of existing I2I models, allowing them

to handle samples that are distinctively different from their

primary targets.

1. Introduction

In recent years, unpaired image-to-image translation

(I2I) [44, 8, 21, 23] has attracted quite a lot of inter-

est in computer vision, graphics, and machine learning.

Given images of certain domain A
−, it learns a mapping

F
A−

�→A+(·) to another domain A
+ without requiring any

paired information. It can serve a wide range of appli-

cations, including image attribute manipulation [8], style

transfer [44], data augmentation [11], domain adaptation

[14], to name a few.

Despite great success, these approaches could be less ef-

fective when the testing images are not in the same domain

as the training set. Specifically, when a model F
A−

�→A+(·)
is trained with domain A (A = A

− ∪A
+), it may not per-

form well when applied on another domain B. Fig. 1 shows

an example of applying a neutral �→ smile model trained on

human faces to a cat face. Intuitively, the process of get-

ting smile should include raising the corner of a mouth and

changing other smiling related muscles. Human can easily

(a) I2I (b) I2I (on cat) (c) DAI2I
Figure 1. Applying a neutral �→ smile I2I model on human and

cat faces. The I2I model is trained on human faces. The 1st and

2nd rows are input and output respectively. (a) Result on a human

face. (b) Directly applying the model on a cat face. (c) Our result.

imagine how this happens on a cat face, even if he/she has

never seen such a smiling cat before. However, as shown in

Fig. 1(b), an I2I model does not have such capacity. When

an image is out of the domain A
−, the model cannot mod-

ify its attribute from “−” to “+” correctly. Accordingly, it

generates artifacts and changes almost no target attribute.

In this paper, we propose the Domain Adaptive Image-

to-image translation (DAI2I) framework to enable I2I mod-

els to handle out-of-domain samples. The out-of-domain

here has two meanings. First, the input samples are from a

new domain B
− instead of A−. As F

A−

�→A+(·) is trained

with A
−, it may not parse information of B

− correctly.

Second, in practice the expected output domain B
+ may

not be available during training. Take Fig. 1 as an example.

Capturing many smiling cat photos is not easy. As a result,

we lack essential information to define the expected output

domain. Different from existing I2I tasks, modeling the out-

put domain with GAN is infeasible, because there exists no

real data (B+) to train the discriminator.

From the discussion above, it is clear that out-of-domain

image-to-image translation is still an open problem. In this

paper, we adopt two assumptions to make it tractable. The

first assumption is that A and B can be translated bidirec-

tionally. This implies A and B are semantically related;

otherwise the translation, such as a chair mapping to a cat,
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would be either meaningless or visually implausible. The

other assumption is that the relation between A
− and A

+

can be generalized to B
−. Thus, even if no B

+ is pre-

sented during training, there exists an imaginable counter-

part based on other samples.

Based on these assumptions, we introduce two map-

ping functions, FB �→A(·) and FA �→B(·), to our DAI2I

framework, which conduct translation between domains A

and B. FB �→A(·) serves as an adapter that maps target

images to the valid input domain of the base I2I model

F
A−

�→A+(·). FA �→B(·) works as a reconstructor that maps

the output of I2I model F
A−

�→A+(·) to the expected target

domain.

Besides, we introduce a perceptual analogy loss that en-

ables our model to leverage the relation between A
− and

A
+ to define the expected output domain B

+. This allows

training without any sample of B
+. Finally, we propose

a style feature extraction and adaptation scheme for the re-

constructor to handle input images of highly diverse styles.

Our total contribution is the following.

• We make the first attempt to address out-of-domain

image-to-image translation.

• We propose the Domain Adaptive Image-To-Image

translation (DAI2I) framework. Our model generalizes

a base image-to-image translation model to handle im-

ages of significant different styles.

• We conduct extensive experiments to demonstrate the

effectiveness of our model.

2. Related Work

Image-to-image Translation Unpaired Image-to-image

translation (I2I) [44, 8, 21, 23] aims to translate images from

domain A
− to A

+. CycleGAN [44], DualGAN [42] and

DiscoGAN [19] are pioneering methods. Following meth-

ods improved quality and flexibility, including addressing

the domain scalability issue [8, 43], multi-modality issue

[21, 17], discreteness issue [6, 31], etc. It is still difficult

to explore generalization capacity. Almost all methods as-

sume testing and training samples are in the same domain.

Our framework is complementary to these methods by han-

dling out-of-domain samples.

Recently, OST [2] and FUNIT [24] were proposed to

address the generality issue in image-to-image translation.

Specifically, OST [2] allows learning F
A−

�→A+(·) when

A
− contains very few samples. This is different from our

approach since our objective is to learn F
B−

�→B+(·) that

conducts translation in a new domain. FUNIT [24] learns a

model that maps a source image to an unknown target class

by presenting few target samples during testing. It learns

F
A �→B+(·) such that F

A �→B+(A;B+
1 , B+

2 · · · , B+
n ) ∈

B
+, where B+

1 , B+
2 · · · , B+

n are samples of B+ given dur-

ing testing. This method is also inherently different from

ours, since we do not assume that B+ is available during

either training or testing.

Domain Adaptation Domain adaptation (DA) aims to

transfer knowledge from a label-rich source domain to a

label-scarce target of interest. A large amount of meth-

ods have been proposed, including instance re-weighting

[15, 9], covariance alignment [35, 36], Maximum Mean

Discrepancy [30, 26], pixel-level adaptation [14, 29], etc.

Our method can be categorized in it since it adapts the

model trained from a source domain A to a target domain

B. Yet it is different from existing approaches because it fo-

cuses on the generation task, while others took understand-

ing tasks for image classification, segmentation, etc.

Image Analogy Given a pair of images A− and A+ along

with a target B−, image analogy [12, 22, 7, 32, 1, 40] aims

to synthesize a new image B+ such that B+ relates to B− in

the same way as A+ relates to A−. This basic idea has mo-

tivated the perceptual analogy loss of our model. However,

our work is fundamentally different from image analogy for

two reasons. First, paired data is required for most exist-

ing approaches [12, 7, 32, 1, 40], while it is not needed in

our model. Second, our work can handle high-level change,

while most existing ones focus on low-level modification

[12, 22, 7, 1, 40] in style transfer, image filtering, texture

synthesis, etc.

3. Proposed Method

Given a trained image-to-image translation model

F
A−

�→A+(·), which modifies certain attribute (e.g., smil-

ing) for domain A (e.g., human faces), our objective is

to transform F
A−

�→A+(·) to F
B−

�→B+(·) so as to handle

samples of another domain B (e.g., cat faces). F
B−

�→B+(·)
is expected to translate B− (e.g., common cat faces) to B

+

(e.g., smiling cat faces) without introducing other irrelevant

changes. We assume that images of A−, A+ and B
− are

available during training. B+ is not used for training, since

in practice it could be hard to obtain.

In this paper, all mapping functions, including

F
A−

�→A+(·), FA �→B(·) and FB �→A(·) are implemented by

convolutional neural networks. We use bold font, such as

A
− and A

+, to denote image collection of certain domains.

A− and A+ in normal font, contrarily, denote samples of the

corresponding collections. The subscripts “-” and “+” refer

to the attribute labels. For simplicity, we assumes the base

I2I model F
A−

�→A+(·) only changes one attribute in this

section. As shown in the experiments, our model can handle

multiple attributes simultaneously with multi-domain trans-

lation models like StarGAN [8].

3.1. Analysis

We take the task of turning a neutral cat face into

a smiling one for illustration. The absence of B
+
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(a) B− (b) A− (c) A+ (d) B+

Figure 2. Illustration of the difficulties of training our DAI2I

model. (a) shows the input images. (b) and (c) are the output

of FB �→A(·) and F
A−

�→A+(·). (d) are the final output. The 1st

row illustrates the case that F
A−

�→A+(·) fails to translate the label

from A
− to A

+. The 2nd row illustrates the case that FB �→A(·)
fails to translate A

+ to B
+. The 3nd row illustrates the results

of our proposed method. It shows that the cat gets smiling after

processed by FB �→A(·), F
A−

�→A+(·) and FA �→B(·). Noted that

we only care about the quality of the final results (d) rather than

intermediate (b) and (c) since (b) and (c) are invisible to users.

(i.e., smiling cats) prevents us from directly learning

F
B−

�→B+(·). Nevertheless, we learn a pair of mapping

functions FB �→A(·) and FA �→B(·) that conduct transla-

tion between A (human faces) and B (cat faces). In

this setting, we finally obtain F
B−

�→B+(·) by sequen-

tially stacking FB �→A(·), F
A−

�→A+(·) and FA �→B(·), i.e.,

F
B−

�→B+(·) = FA �→B(F
A−

�→A+FB �→A(·)).

This first turns a neutral cat face to a human one, then

change its expression with the base model F
A−

�→A+ , and

finally transform it back to a cat face. Here, FB �→A(·)
can be viewed as pixel-level adaptation like that of [14],

which coverts invalid input samples to valid ones such that

they can be processed by F
A−

�→A+(·). On the other hand,

FA �→B(·) transforms the non-target output produced by

F
A−

�→A+(·) to the target ones.

Training of FB �→A(·) and FA �→B(·) is not trivial. Our

first attempt is to use CycleGAN [44] to train FB �→A(·) and

FA �→B(·). However, the result is unsatisfactory with sev-

eral reasons. First, FB �→A(·) may not always translate sam-

ples of B− (neutral cat faces) to perfectly match A
− (neu-

tral human faces). In this case, F
A−

�→A+(·) does not work

well given that FB �→A(B) is out of its valid input domain.

This is illustrated in Fig. 2 in the 1st row – the expression

of human face is not changed.

Second, even when F
A−

�→A+(FB �→A(·)) works cor-

rectly, we found that FA �→B(·) always produces samples

of B− instead of B+. As shown in the Fig. 2 in the 2nd

row, even if the expression of human face is modified, the

expression of cat face is untouched.

Replacing CycleGAN with other I2I methods does not

solve this problem. It is because the adversarial loss of Cy-

cleGAN [44] imposes FA �→B(·) to generate samples that

is indistinguishable from samples of B. Note that B
+

(smiling cat faces) are unreachable in our setting. This

loss would encourage FA �→B(·) to produce samples in B
−

(neutral cat faces), which impedes the model from modify-

ing the target attribute.

Removing the adversarial loss on B also does not ad-

dress the issue. Generating novel images without seeing any

examples of its kind is very difficult. In the following, we

present our solution, which leads to intriguing and inspiring

results as shown in Fig. 2 (3nd row).

3.2. Domain-Adaptive Image Translation Model

To address the aforementioned problems, we introduce

several loss functions to train the adapter network FB �→A(·)
and the reconstructor network FA �→B(·). Note that we as-

sume F
A−

�→A+(·) is already trained, and its weight is kept

fixed throughout the optimization process.

Adversarial Loss We use an adversarial loss to enforce

FB �→A(·) to translate images of domain B to domain A.

Here LSGAN [27] is adopted, which is formulated as

min
D

LGAND
= E(||D(Â)||2) + E(||D(A)− 1||2), (1)

min
FB �→A

LGAN = E(||D(Â)− 1||2), (2)

where A ∈ A
−, B ∈ B, Â = FB �→A(B), E(·) denotes

computing the mean over a batch, D(·) is the discriminator

parameterized by a neural network. Spectral normalization

[28] is adopted in D(·). This turns Â towards a valid input

of F
A−

�→A+(·).

One may concern that another adversarial loss to train

FA �→B(·) is needed so that its output domain is constrained

to B. Although this is a common practice in bidirectional

I2I models [44, 21, 23], we do not incorporate this loss be-

cause of the absence of B+. We found that this loss hinders

our model from modifying the target attributes.

Adaptation Loss In practice, optimizing the adversarial

loss (1) is not easy due to the minmax formulation. When

FB �→A(·) is not perfectly optimized, it may not produce

valid input to F
A−

�→A+(·). To remedy this, we propose

explicitly enforcing FB �→A(·) to generate samples that can

be effectively processed by F
A−

�→A+(·), formulated as

min
FB �→A

LADA = E[− log(C(Â+))], (3)
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where Â+ = F
A−

�→A+(Â) = F
A−

�→A+(FB �→A(B)), and

C(·) is a classification network that maps A− to 0 and A
+

to 1. Similar to F
A−

�→A+(·), C(·) is pretrained with A and

keeps fixed during optimization. The idea here is to enforce

FB �→A(·) to produce samples whose target attribute can be

successfully translated by F
A−

�→A+(·).
Note that LGAN and LADA work cooperatively to en-

courage FB �→A(·) to map to the valid input domain of

F
A−

�→A+(·). LGAN guides training in the sample level,

encouraging FB �→A(B) to be indistinguishable from sam-

ples of A
−; while LADA supervises FB �→A(B) in the

model level, making it adaptively fit the pretrained network

F
A−

�→A+(·). Thus, F
A−

�→A+(·) can translate the attribute

of FB �→A(B) from “−” to “+” as expected.

Reconstruction Loss Since FA �→B(·) is expected to be

the inverse function of FB �→A(·), we incorporate the recon-

struction loss as

min
FB �→A,FA �→B

Lrec = E[||FA �→B(Â)−B||1], (4)

where Â = FB �→A(B). This loss enforces FB �→A(B) to be

invertible with FA �→B(·), as required in our model. It also

provides regularization of FB �→A(·), making FB �→A(B)
semantically relevant to B.

Perceptual Analogy Loss Note that Lrec alone is not suf-

ficient to model the relation of FB �→A(·) and FA �→B(·).
It only encourages FA �→B(Â) = B, which does not im-

ply FA �→B(Â+) = B+, where B+ denotes the expected

translated version of B. Therefore, it is necessary to explic-

itly model the relation between Â+ and B+ to ensure that

FA �→B(Â+) leads to the correct result. This is challenging

because B
+ is not available during training.

Inspired by image analogies [12], we propose a percep-

tual analogy loss

min
FB �→A,FA �→B

LPA = E[||VB − αVA||1], (5)

where VB = Φ(B̂+) − Φ(B̂), VA = Φ(Â+) − Φ(Â), and

B̂+ = FB �→A(Â+). Φ(·) is a latent space that encodes

semantic information of images, and α is a scalar to amplify

or reduce the scale of (Φ(Â+)− Φ(Â)).
The rationale is the following. As Â is semantically re-

lated to B, the relation between B̂+ and B is supposedly

analogous with that between Â+ and Â. Note that the re-

lation here is represented as linear difference in the latent

space Φ(·). The underlying assumption is that Φ(·) unfolds

images to a flat manifold, where the change of target at-

tribute becomes linear.

Choice of Φ(·) The latent space Φ(·) plays a key

role in our model. To an extreme, if Φ(·) is the RGB

space, optimizing LPA encourages our model to simply

copy (Â+ − Â−) to B, which could look artificial, because

most semantic attribute changes are actually nonlinear in

this space.

Bengio et al. [3] showed that a well trained CNN could

unfold natural images to a space where semantic changes

become linear. Following work [5, 39] also indicates that

high-level attribute changes can be achieved by linearly in-

terpolating in the ImageNet pretrained deep feature space.

This suggests that by seeing a large volume of images, a

deep neural network could unfold natural images to a space

where many semantic changes are linear and the assumption

of Eq. (5) is mostly true.

We follow the setting of [5, 39] and use ReLU3 1,

ReLU4 1 and ReLU5 1 features of VGG-19 [34] to form

Φ(·). It works well in our experiments. We also believe it

is possible to find/learn other space for certain specific at-

tributes, which will be explored in our future work.

Calibration of Domain Shift As A and B are of differ-

ent domains, Φ(B) and Φ(Â) may also suffer from distribu-

tion shift. We remedy this by introducing domain-specific

batch normalization [4], i.e.,

Φ(B)i =
Φ(B)i
σB
i

, Φ(B̂+)i =
Φ(B̂+)i

σB
i

,

Φ(Â)i =
Φ(Â)i
σA
i

, Φ(Â+)i =
Φ(Â+)i
σA
i

,

(6)

where Φ(·)i denotes the ith channel of Φ(·). σA
i and σB

i

are the standard variation of Φ(Â)i and Φ(B̂)i respectively.

They are computed by the moving average scheme. Note

that we do not normalize the means because they are can-

celed out in Eq. (5). Despite its simplicity, this normaliza-

tion scheme can largely improve the quality of our model.

We have also tried other normalization including Batch

Whitening [33] and CORAL [35]. They do not lead to sig-

nificant improvement, albeit costing much computation.

The final loss functions of FB �→A and FA �→B are

LFB �→A
= λGANLGAN +LADA +Lrec +LPA,

LFA �→B
= Lrec +LPA, (7)

where λGAN is set as 0.1 with cross-validation.

3.3. Handling Multiple Target Domains

Note that the above solution works best when target im-

ages come from one domain. If target images are from dif-

ferent domains with highly different appearance (e.g., oil

painting, sketches and cats, as shown in Fig. 3(a)), the

above model may fail. The reason is that FB �→A(·) could

map target images of different styles to an unitary domain

A, which tends to suppress the original style information.

This makes it hard to reconstruct FA �→B(·) since style in-

formation is needed in this phase.
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(a) Input (c) Adapter (d) I2I model (e) Reconstuctor (f) Output

Style feature

(b) Style Net

Figure 3. Illustration of our framework. (a) is the input image. (b) is the style network S(·). It extracts style feature, which controls affine

parameters of AdaIN layers in the reconstructor network FA �→B(·). (c) is the adapter network FB �→A(·), which adapts a target image

to the valid input domain of the base I2I model. (d) is the base I2I model F
A−

�→A+(·), which maps a neural expression image towards

“surprise” expression. (e) is the reconstructor network FA �→B(·). (f) contains results by translating attribute of target images. Note that

even if the four input images are of different styles/categories, the target attribute is still modified successfully.

To address this problem, we additionally incorporate

style network S(·) that maps an input target image to a style

feature, which is a 1×1×c vector. Then, we add an adaptive

instance normalization (AdaIN) [16] layer after each con-

volutional layer of FA �→B(·) (except for the output layers).

The affine parameters of these AdaIN layers are controlled

by this style feature. Specifically, for the i-th convolutional

layer, the AdaIN layer works as

yi = γS(xi)(
xi − µ(xi)

σ(xi)
) + βS(xi), (8)

where xi and yi refer to the input and output of the AdaIN

layer, µ(xi) and σ(xi) denote the mean and variance of xi

across the spatial dimensions, γS(xi) and βS(xi) are parame-

ters of the AdaIN layers, which are implemented by linearly

projecting S(xi) to match the channel number of xi.

This style feature extraction-adaptation scheme provides

a skip path for FA �→B(·) to access the style information.

Thus decent reconstruction can be achieved. In our sup-

plementary material, we visualize the learned style feature,

which suggests that it captures appearance information of

the input image. The whole framework is shown as Fig. 3.

4. Experiments

4.1. Ablation Study

We first evaluate each component in our framework

quantitatively. CelebA [25] contains 200K celebrity im-

ages, each with 40 attribute labels. We use these image to

form domain A. Each attribute can be used to divide A into

A
− and A

+. To form domain B, we generate four stylized

versions using the method of [18]1.

1We use the implementation from https://github.com/

pytorch/examples/tree/master/fast_neural_style,

which provides 4 pretrained models for different styles, including candy,

mosaic, udnie and rain-princess.

Separation of training and testing sets follows the setting

of [25]. For the stylized domain, only samples with nega-

tive labels are involved during training; while for the origi-

nal image domain A, all training samples are incorporated.

Thus, the model cannot see any stylized images of positive

labels during training. In our experiments, we use attributes

‘Smiling’, ‘Smaller Eyes’, ‘Mustache’ and ‘Mouth Open’

to evaluate our approach.

Evaluation Metrics We introduce the translation accuracy

(ACC) to quantify how effective a model modifies the label

of a target sample from “-” to “+”, which is defined as

ACC =
1

N

N∑

i=1

CB(B̂+
i ), (9)

where N is the number of testing samples, and B̂+
i is the ith

generated sample. CB(·) is a classifier trained on stylized

images, which outputs 1 for “+” and 0 for “−”.

Besides modifying the target attribute, the model should

not introduce much disturbance to the input sample. Thus,

we also use the Frchet Inception Distance (FID) [13] to

measure the quality of the generated images. FID scores

differentiate between generated and real samples. They are

sensitive to various disturbance [13], such as noise, blur-

ring, and swirling.

Effectiveness of Each Component We evaluate each term

using the stylized CelebA dataset described above. The α in

Eq. (5) is set to 1, and its influence will be discussed later.

Table 1 compares ACC and FID by ablating each compo-

nent in our model.

The 1st column (“Base I2I”) presents a baseline that di-

rectly applies the base I2I model trained on A (original im-

age) to B (stylized image). This does not yield good-quality

results. Our approach (“DAI2I”) consistently and signif-

icantly improves the performance of “I2I” and achieves
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Attribute Metrics Base I2I w/o LADA w/o Lrec w/o LPA w/o BN w/o AdaIN DAI2I

Smiling
ACC(%) 15.3 0.2 87.9 15.3 92.4 95.3 96.1

FID 56.6 10.8 41.9 56.6 41.4 18.5 14.9

Smaller Eyes
ACC(%) 53.4 2.6 77.2 77.2 47.7 80.5 80.1

FID 130.7 7.3 72.8 50.1 7.9 11.3 8.6

Mustache
ACC(%) 12.1 1.6 75.9 68.4 52.5 96.2 96.9

FID 178.9 16.7 26.4 88.1 14.6 15.2 14.2

Mouth Open
ACC(%) 88.3 1.8 31.7 37.4 51.0 90.1 90.3

FID 65.7 8.4 25.9 49.9 6.0 7.4 6.2

Table 1. Evaluating our approach with stylized CelebA data. “Base I2I” means applying StarGAN to the stylized images, which is the

baseline. The 2nd (“w/o LADA”) - 6th (“DAI2I”) columns report the performance on variants of our framework on domain B. “w/o

LADA”, “w/o Lrec” and “w/o LPA” denote ablating Eqs. (3), (4) and (5) respectively, while keeping other parts intact. “no BN” means

removing distribution calibration in Eq. (6). “no AdaIN” means removing adaptive instance normalization in Section 3.3. Finally, DAI2I

denotes our final full model. For each row, the best result is marked in red.

(a) input (b) α = 1 (c) α = 2 (d) α = 3

Figure 4. Results of using different α on stylized CelebA data. Rows 1-4

correspond to Smiling, Smaller Eyes, Mustache and Mouth Open.

much higher ACC and lower FID scores.

Note that LADA, Lrec, LPA, and distribution calibra-

tion (Eq. (6)) are all important in our DAI2I model; dis-

abling each would cause performance drop. For example,

without LADA, ACC reduces significantly and the DAI2I

model fails to change anything because FB �→A(·) does not

map the input image to the valid set of the I2I model. Thus

the target attribute cannot be translated successfully.

Removing LPA causes both FID and ACC drop. This in-

dicates that the perceptual analogy loss not only guides the

model to modify the target attribute of B, but also prevents

false changes. We have also ablated the distribution cali-

bration (“w/o BN”), which also causes degradation of per-

formance. This suggests that perceptual analogy loss works

better on well aligned deep features. Lrec is also useful in

our model, as it provides useful regularization on FA �→B(·)
and FB �→A(·). Discarding the AdaIN introduced in Section

3.3 degrades performance. Finally, removing LGAN makes

the model totally fail.

Influence of α In Eq. (5), α is used to control the scale

of (Φ(Â+) − Φ(Â)). A large α amplifies the difference of

Φ(Â+) and Φ(Â), and makes the effect stronger. However,

since F
A−

�→A+(·) may not be perfect, it may introduce sub-

tle artifacts, which could be amplified when α increases.

This is illustrated in Fig. 4. When α is too large, undesired

structures may appear.

4.2. Comparison with Other Methods

4.2.1 Cross-domain Expression Manipulation

In this section, we demonstrate that our framework can han-

dle cross-domain expression manipulation on diverse real-

world data. RaFD [20] is a face dataset that contains 67

people displaying 8 expressions, including a “neutral” ex-

pression and 7 other emotional ones. This dataset serves as

the source domain A. The “neutral” expression forms A−,

while others form A
+. Three other datasets serve as do-

main B, including a sketch dataset, an oil painting dataset,

and a cat face dataset. The sketch dataset [41] contains 187

images (128 for training and 59 for testing). The oil paint-

ing dataset [21] contains 1,664 images (1,572 for training

and 92 for testing). The cat face dataset [21] contains 870

images (770 for training and 100 for testing).

Expressions of these three target datasets are not biased,

and are thus treated as “neutral”. We use the StarGAN

model [8] trained with RaFD [20] as our base I2I model.

Then, we train a unified DAI2I that adapts the base I2I

model for sketches, oil paintings and cat faces.

Results and Analysis We first compare our DAI2I with

StarGAN, the base I2I model. As shown in Fig. 5, directly

applying StarGAN trained on RaFD does not lead to sat-

isfactory results on out-of-domain samples. In most cases,

StarGAN cannot modify the target attribute correctly, and
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Datasets Methods happy angry sad contemptuous disgusted fearful surprised Overall

Sketch
Base I2I (%) 63.6 21.9 21.4 28.9 9.0 14.3 3.8 26.3

DAI2I (%) 99.3 82.2 59.2 77.2 72.2 37.3 53.0 68.7

Painting
Base I2I (%) 48.7 26.5 30.1 30.3 21.9 15.5 34.5 30.7

DAI2I (%) 93.5 33.8 54.0 55.0 49.6 31.2 65.4 55.1

Cat
Base I2I (%) 7.2 16.6 16.4 22.0 4.5 10.9 12.7 22.9

DAI2I (%) 74.8 44.9 32.2 27.5 28.0 21.9 58.3 43.0

Table 2. Expression recognition test on each attribute. Each column corresponds to one target attribute. Each entry reports the percentage

that the chosen attribute is consistent with the target one. The better one is marked in red.

Datasets happy angry sad contemptuous disgusted fearful surprised Overall

Sketch 92.9 94.4 88.5 86.3 89.6 88.3 87.5 89.8

Painting 84.3 76.8 82.6 77.6 78.3 80.3 76.7 79.7

Cat 69.9 86.5 92.4 84.0 74.1 82.0 79.3 81.0

Table 3. Quality comparison test on each attribute. Each column corresponds to one target attribute. Each entry reports the percentage that

our method is preferred by subjects. All entries are larger than 50%, suggesting that our results are consistently preferred by subjects.

yet introduces strong artifacts. In comparison, our DAI2I

model successfully modifies the target attributes without

bringing much irrelevant change. More results are pre-

sented in our supplementary material.

In addition to visual comparison, we also conduct user

study on the Amazon Mechanical Turk, including expres-

sion recognition and quality comparison tests. Each set of

Tables 2-3 is computed by 2,500 comparisons. In the ex-

pression recognition test, given an edited image, subjects

are asked to select the best-matched expression from 7 pos-

sible candidates. In Table 2, we report the percentages that

the chosen expression is the same as expected.

In the quality comparison test, subjects are given an orig-

inal image and two edited ones (ours vs. StarGAN) of the

same identity and the same target expression, and are asked

to pick one with better quality. Table 3 reports the per-

centages that our approach is chosen. It shows that our ap-

proach largely outperforms the base I2I model (StarGAN)

and manifests the usefulness of our model in this challeng-

ing task.

4.2.2 Cross-Domain Novel View Synthesis

Given a single 2D image, the target of novel view synthesis

is to generate images from other viewpoints. Recent work

[37] shows that it can be formulated as an I2I problem. In

this section, we show that our framework can also handle

cross-domain samples.

Datasets and settings Multi-PIE [10] contains 337 per-

sons under 13 horizontal camera poses with 15◦ intervals.

This dataset is used as A. We take the frontal view as A−,

and the −30◦, −15◦, 15◦ and 30◦ views as A
+. To eval-

uate the cross-domain performance, we use the sketch [41]

and oil painting [21] datasets described above as B. Note

that only images in frontal view are used for training and

testing. CRGAN [37] trained with Multi-PIE is used as our

base I2I model. We compare our DAI2I with two related

approaches, i.e., CRGAN [37] and DRGAN [38].

Results and Analysis As shown in Fig. 6 (rows 2 and 3),

both CRGAN [37] and DRGAN [38] do not perform well

when directly applied to sketch and oil painting images. Al-

though they successfully synthesize face photos of the target

view, the color, illumination and style are different from the

input images. In contrast, our model synthesizes the sketch

and oil photos without falsely changing other factors. This

manifests the strong capacity of our approach in creating

novel views in the form of sketches even without seeing any

non-frontal sketch/oil painting images.

5. Limitations and Conclusion

We have stated early in the introduction that our frame-

work is based on the assumption that images of the source

and target domain can be transformed bidirectionally, and

attribute changes in the source domain can be transferred to

the target domain in certain latent space. Violating it may

produce less satisfactory results. For example, to replace

the sketch dataset with cat face dataset in Section 4.2.2 is

not suggested, since viewpoint change of 2D human faces

does not generalize well for cat faces.

Given an image-to-image translation model trained on

a certain domain, this paper has presented a general frame-

work to adapt it for a new domain. On the one hand, this ex-

tends the applicability of existing models, allowing for a lot

of interesting applications. On the other hand, it also shows

a way for a neural network to generate new images that do

not look like training data. This is achieved by generaliz-

ing the relation of one domain to another, which simulates

how human creates new arts through analogy. Extensive ex-

periments manifest that our framework works with different

I2I models, largely improving their performance on unseen

target domains.
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