This CVPR 2020 paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Frequency Domain Compact 3D Convolutional Neural Networks

Hanting Chen'?, Yunhe Wang?, Han Shu?, Yehui Tang!?, Chunjing Xu?}
Boxin Shi**, Chao Xu!, Qi Tian?, Chang Xu’®
! Key Lab of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University.
2 Noah’s Ark Lab, Huawei Technologies. > NELVT, Dept. of CS, Peking University. * Peng Cheng Laboratory.
® School of Computer Science, Faculty of Engineering, The University of Sydney.

{htchen, yhtang, shiboxin}@pku.edu.cn, xuchao@cis.pku.edu.cn, c.xu@sydney.edu.au

{yunhe.wang, han.shu, xuchunjing, tian.qgil}@huawei.com

Abstract

This paper studies the compression and acceleration of
3-dimensional convolutional neural networks (3D CNNs).
To reduce the memory cost and computational complexity of
deep neural networks, a number of algorithms have been ex-
plored by discovering redundant parameters in pre-trained
networks. However, most of existing methods are designed
for processing neural networks consisting of 2-dimensional
convolution filters (i.e. image classification and detection)
and cannot be straightforwardly applied for 3-dimensional
filters (i.e. time series data). In this paper, we develop a
novel approach for eliminating redundancy in the time di-
mensionality of 3D convolution filters by converting them
into the frequency domain through a series of learned opti-
mal transforms with extremely fewer parameters. Moreover,
these transforms are forced to be orthogonal, and the calcu-
lation of feature maps can be accomplished in the frequency
domain to achieve considerable speed-up rates. Experi-
mental results on benchmark 3D CNN models and datasets
demonstrate that the proposed Frequency Domain Compact
3D CNNs (FDC3D) can achieve the state-of-the-art perfor-
mance, €.g. a 2Xx speed-up ratio on the 3D-ResNet-18 with-
out obviously affecting its accuracy.

1. Introduction

Deep neural networks, especially convolutional neu-
ral networks (CNNs) have been well demonstrated in a
large variety of computer vision tasks. Plenty of man-
ually designed convolutional neural networks, such as
AlexNet [17], VGGNet [29], and ResNet [13] were pro-
posed to achieve impressive classification accuracy on the
challenging ILSVRC 2012 dataset [28]. Similar successes
have been repeated in other tasks, including object detec-
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Figure 1. An illustration of the proposed FDC3D. The matrix of
feature maps and filters are converted into the frequency domain
utilizing the learned optimal transform. Then, the computation
cost can be directly reduced by structural pruning.

tion (e.g. Faster RCNN [26] and SSD [20]) and segmenta-
tion (e.g. FCN [21] and Mask r-cnn [12]). In these afore-
mentioned computer vision tasks, each individual image is
often processed separately and consumes hundreds of MB
memory. 3D convolution has been developed to tackle
video-based processing task, such as human action recog-
nition [16]. Compared to 2D convolution, more resources
would be cost if video frames are investigated at the same
for the sake of temporal information. For example, 3D-
ResNet-50 [11] requires 354MB memory and over 22G
times of floating number multiplications, which is much
higher than the conventional 2D-ResNet-50 with 103MB
memory and 4G FLOPs.

Over the years, considerable methods were proposed for
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compressing and speeding up deep neural networks. For
instance, Luo et al. [22] pruned filters based on statistics in-
formation from the next layer. Chen et al. [2] used a hash
function and represented weights in the same hash bucket
with a single parameter. Vanhouche et al. [32] explored
deep neural networks with 8-bit integer values to replace
original models with 32-bit floating values to achieve the
compression and speed-up directly. Courbariaux and Ben-
gio [4] explored neural networks with binary weights and
activations. Restgari er al. [25] further incorporated binary
convolutions into the modern neural architecture to achieve
higher performance. Wang et al. [34] compressed filters
in frequency domain with the help of discrete cosine trans-
form.

Although the above mentioned approaches have made
tremendous efforts for learning portable deep networks,
most of them are designed for 2D CNNs, and may not be
optimal to process 3D convolutional neural networks. Com-
pared with traditional convolutional networks, 3D CNN5s
are developed for processing videos (e.g. action recogni-
tion [16]) or a series of input images (e.g. medical images of
a patient [3]), and filters in 3D CNNs have an additional di-
mension. In fact, either videos or medical images can be re-
garded as an image sequence where there is high relevance
between any two adjacent images. Convolution filters in
this additional dimension should also have high temporal
similarity to extract useful information from the input data,
as shown in Figure 3.

In this paper, we convert filters into the frequency do-
main to investigate their redundancy and produce compact
3D convolutional neural networks. A series of transforms
are learned to convert filters in each convolutional layer
from the spatial domain into the frequency domain. Co-
efficients of these filters will be structurally sparse in the
frequency domain, which can be significantly compressed
by discarding their subtle components. In addition, these
transforms are forced to be orthogonal during the training
procedure so that we can relax the convolution operations
in the spatial domain to the same operations on frequency
coefficients of input data and filters with extremely lower
computational complexities. Moreover, redundant filters
of small importances will also be abandoned for portable
neural networks. The illustration of the proposed method
is shown in Figure 1. Experiments on benchmark mod-
els including 3D-ResNet-18 and 3D U-Net demonstrate that
the proposed scheme outperforms state-of-the-art methods
for learning compact 3D convolutional neural networks, in
terms of compression and speed-up ratios.

This paper is organized as follows. Section 2 inves-
tigates related works on network pruning algorithms and
3D convolutional networks. Section 3 proposes a three-
dimensional neural network pruning method by converting
filters to frequency domain. Section 5 illustrates experimen-

tal results of the proposed method on benchmark datasets
and models and Section 6 concludes the paper.

2. Related Works

Here we first study the 3D CNNs in various tasks, and
then review pruning methods for deep neural networks.

2.1. 3D Convolutional Neural Networks

3D convolutional neural networks are proposed to tackle
multi-frame or multi-image inputs, which become more and
more popular in recent applications such as videos and vol-
umetric images processing. The seminal work [16] de-
veloped 3D convolution filters by extracting features from
temporal dimension, thereby capturing the multi-frame mo-
tion information. Tran et al. [31] further proposed C3D
for generic spatio-temporal feature learning in large-scale
dataset and outperforms 2D convolutional neural network,
which demonstrate the 3D convolution filters are more suit-
able to tack the information in videos. Feichtenhofer et
al. [6] proposed a two-stream convolutional neural network
which consist of both 2D and 3D convolution filters to ex-
tract both the spatial and temporal information. Hara et
al. [10] pushed the classical 2D-ResNet [13] to three di-
mension and achieved better performance than the relatively
shallow C3D networks. Moreover, Hara et al. [11] evalu-
ated that the current video datasets have sufficient data for
the training of very deep models like ResNet-152. Besides
the video classification, 3D CNNs have been widely used
in medical image segmentation, since the brain MRI im-
ages are volumetric. 3D U-Net [3] have been introduced
to perform end-to-end segmentation on volumetric medical
images.

Although 3D CNNs have achieved satisfactory perfor-
mance in video and volumetric images processing tasks,
their massive computation cost prevents their deployment
on mobile and edge devices. There are urgently require-
ments in the compression of 3D convolutional neural net-
works.

2.2. Network Pruning

Network Pruning aims to remove redundant weights
in CNNs to accelerate and compress the original net-
work. Denton et al. [5] decomposed the weights in fully-
connected layers by exploiting singular value decomposi-
tion (SVD). Han et al. [8] introduce pruning, trained quan-
tization and Huffman coding to largely reduce the storage
of neural networks. Li et al. [19] proposed to remove the
filters that have a small impact on the output by calculating
their ¢1-norm. Molchanov et al. [24] pruned the weights
based on Taylor expansion to approximate the change in
cost functions. Han et al. [9] combined pruning, quanti-
zation and Huffman coding technique to achieve a higher
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compression ratio. Hu et al. [15] propose a data-driven ap-
proach to remove redundant filters with less impacts. Luo et
al. [22] pruned filters based on the reconstruction error in
its next layer instead of current layer and regard filter prun-
ing as an optimization problem. He ef al. [14] proposed a
novel channel pruning method to select important channels
in each layer based on LASSO regression. Gui et al. [ 7] pro-
posed a novel Adversarially Trained Model Compression
(ATMC) framework to unify existing compression methods
(pruning, factorization, quantization). Wu ef al. [35] pro-
posed a novel spectrally relaxed k-means regularization for
convolution filters to achieve through compression weight-
sharing. Yang et al. [36] designed LegoNets where the con-
ventional filters are replaced with efficient Lego filters.

Although aforementioned trimming method can achieve
satisfactory results in CNN compression, they mainly fo-
cused on pruning the conventional 2D CNNss instead of the
3D CNNs, which take an important role on video tasks.
Zhang et al. [37] adapted a regularization based pruning al-
gorithm [33] to 3D CNNs. However, there are no special
design for 3D convolution filters with an additional tempo-
ral dimension. In this paper, we propose a novel method to
learn optimal transform for eliminating the temporal dimen-
sional redundancy of 3D convolution filters in frequency do-
main.

3. Approach

In this section, we will first introduce the preliminaries of
3D CNNs and then investigate the possibility for compress-
ing 3D filters in the frequency domain. Then, we investigate
a novel method for learning a series of orthogonal bases for
effectively removing redundant parameters in 3D CNNs.

3.1. 3D Convolution in the Frequency Domain

Different from the conventional networks, the number of
dimensionality is four in 3D CNNs for the input data, i.e.
X € REXWXeXT \where H, W are the height and width of
the input data, respectively, c is the number of the channel
number, and 7" denotes the additional temporal dimension.
Similarly, each convolution filter in 3D CNNs will have an
additional dimension, i.e. F € REXdxextxN where d x d
is the size of filter, N is the number of filters, ¢ and ¢ are
numbers of temporal dimension and channel, respectively.
The 3D convolution operation can be formulated as

YV=FxX+Db, (1)
where * is the convolution operation, ) € RH XWX NxT’
is the output feature map, H', W', T” are height, width, and
the temporal dimension of ), respectively, and b is the bias
term.

Considering that there are considerable redundant pa-
rameters and filters in most of existing 2D CNNs such

as VGGNet-16 [29] and ResNet-50 [13], and current 3D
CNNs are mainly modified from some 2D models, e.g.
3D-ResNet-18 [10] and 3D-UNet [3], we should also de-
velop effective algorithms for recognizing redundancy in
3D CNNs. Existing pruning methods have been proved to
be successful in conventional neural networks. Although
these methods can be directly adapted in 3D CNNs to
achieve considerable speed-up and compression ratio [37],
the temporal dimension, which is the major difference be-
tween 2D and 3D CNN:s, is ignored. In fact, the adjacent
frames in videos are highly correlated. The 3D convolution
filters, which extract the information in multi-frame inputs,
also present similar property. Comparing with the height
and length dimension of the filters, the temporal dimension
has more redundancy, which is shown in Fig. 3. To this end,
we are motivated to convert the 3D convolution filters into
frequency domain, where the transformed representations
is more sparse than the original signals and can be easily
compressed.

There are a number of transforms for factorizing input
signals and discovering their redundancy in the frequency
domain, e.g. Discrete Fourier Transform (DFT [27]) and
Discrete Cosine Transform (DCT [1]). Since coefficients in
the Fourier frequency domain are imaginary values which
do not suitable for compressing deep neural networks, we
utilize DCT with real values for compressing 3D convolu-
tion filters. As mentioned above, the temporal dimension of
3D convolution filters have more computational cost com-
pared with the spatial dimension. Therefore, we propose
to transform these filters into the frequency domain in the
temporal dimension. In specific, we first reformulate the
convolution operation w.r.t. Fcn. 1 according to the forth di-
mension (i.e. temporal dimension) in F as

d*c
Y=XTF=3 ulfi 2)

i=1

where X € REexH'W'T" converts X into a matrix ac-
cording to the filter size and parameters (e.g. padding and
stride), F € REXN and v ¢ RE'WT'XN are matri-
ces of filters and output feature maps, respectively. x; €
ROH'W'T and f; € RN is achieved by matrix partition:
XU =l21,...,2q2¢, F = [f1,..., fazc] ". The bias term
is dropped for simplicity.

For a given ¢t-dimensional vector f € R**1, its DCT rep-
resentation c in the frequency domain can be formulated as

t—1
Cm = Zfi cos [:m(z + ;)] , 3)
i=0

where c,,, is the m-th coefficient of f in the DCT frequency
domain (m € {1,---,t}). Equally, the DCT can be ex-
pressed as a matrix multiplication, i.e. ¢ = Sf, where S is
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a t x t transform matrix of DCT, which can be calculated
according to the above function.

Since S is an orthogonal matrix, i.e. STS = I, where I
is a t x t identity matrix, we can simultaneously apply the
DCT and its inverse transformation on the filter matrix and
the input data in temporal dimension to convert Eqn. 2 into
the frequency domain, i.e.

d%c
Y=Y a/STSfi=XxTSTSF,

i=1

. o s --- 0

where S is a d2ct x dct block diagonal matrix.

By transforming the filters into frequency domain, we
can easily compress the network by utilizing the sparsity
of converted filters. As the non-structured weight prun-
ing [8] cannot directly accelerate deep neural networks
without special implement on the matrices multiplications
(e.g. sparse convolution), we attempt to address the 3D
CNN compression task from the structured pruning per-
spective [22, 14], which directly reduces the number of
columns or rows in matrices of convolution filters. There-
fore, we discard the redundant temporaAl dimension of 3D
convolution filters (i.e. some rows in SF') with subtle /o
norms and reduce Fcn. 4 to

d?c
Y=Y ol (M0 8)T (Mo 8)f,

i=1

=X"(MoS)T(MoS)F
M0 0 )
_ 0 M 0
s.t. M = . 9
0 0 M

where M € t x t is a mask matrix to discard rows with
smaller values in frequency domain and ® is Hadamard
product. In specific, the importance value V; for i-th tem-

poral dimension is formulated as || (2?2:01 Sf;)i«l|2. i.e. the
{o-norm for the converted filters of ¢-th temporal dimension,
where the (-); . denotes the i-th row of this matrix. The
mask matrix M is then conducted as M = [My, ..., My] T,
where M; = 0if V; is the k smallestin all V; (i € {1, ...t})
and otherwise M; = 1 (0, 1 denotes ¢t-dimensional vector
with all values as 0,1). k is determined by the pruning rate,
which will be discussed after. Thus, the complexity will be
reduced naturally.

Note that the computational complexity for converting
the input data into the frequency domain through S in Fen. 4

is O(H'W'T"d?ct?). 1f we also apply DCT to other dims
(channel dimension and kernel size dimension) in X', the
computational complexity will be significantly increased to
O(H'W'T'd*c*t?). Therefore, we only eliminate the re-
dundancy in the temporal dimension using DCT.

3.2. Learning to Transform 3D Filters

A frequency domain based 3D convolutional networks
compression method has been proposed in Fcn. 5 by con-
verting all filters using DCT. However, DCT is designed
for natural images or videos based on some priories, which
is not perfectly suitable for seeking the group sparsity of
3D convolution filters. Therefore, we propose to learn op-
timal transform to eliminate the redundancy in the tempo-
ral dimension of 3D convolution filters. Besides utilizing
fixed dictionaries or spatial-frequency domain transforms,
we make the transform for converting filter matrix in an ar-
bitrary 3D convolutional layer learnable, i.e.

min|[Y — X F|[} + N|SF|l1, st. STS=1. (6)
where S € R'*? is the desired transformation for convert-
ing all convolution filters into the frequency domain, I is a
t x t identity matrix for making S orthogonal to ensure the
equality of convolution in the coefficient domain, the last
term is the conventional ¢;-norm for eliminating subtle ele-
ments in SF" and ) is a trade-off hyper-parameter to balance
the two terms.

As mentioned above, we introduce a mask matrix M to
structured pruning the 3D convolution filters. Therefore,
the /5 1-norm is more suitable for pruning the row of filters
in frequency domain, that is, discard the redundant rows in
SF. The object function can be reformulated as:

d?c
in||Y — X F||% + A ; t. STS=1
min | I+ NSl s S
(7
where || - ||2,1 is the £ 1-norm for seeking group sparsity.

Besides the redundancy in the temporal dimension, we
can also discard redundant channels for the 3D convolu-
tional networks. We further apply the idea of channel prun-

ing [14]:

%n;lm/—Z&X?Fiu?pﬂlwuh ()
’ =1

where F; and X; denotes each channel of filters and inputs,
B is introduced to find redundant input channels and + is
a penalty coefficient. The important input channel can be
selected by minimizing the ¢;-norm of 3. Then, we can
discard the input channels with smaller 5.

By combining the goal of Fcn. 7 and Fen. 8, the objective
function for eliminating the redundancy of temporal dimen-
sion as well as the input channels of filters simultaneously
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Algorithm 1 Compressing 3D convolutional neural net-
works in the frequency domain.

Input: A pre-trained 3D convolutional neural network A
with p convolutional layers L4,...,L,, channel and
temporal dimensional pruning rate p., and p;, for each
layer £;, parameters of different objects: A and ~.

1: fori=1topdo

2: Extract convolution filters in £; to form F' and ini-
tialize transform .S; and channel sparsity parameter [3;
3: repeat
4: Randomly select a batch of data to forward N
5: Calculate the input data X for £; using NV;
6: Calculate feature maps Y for £; using
7: Convert F' into frequency domain using S;;
8: Solve Fen. 9 to simultaneously updating trans-
form S; and channel sparsity parameter 3.
9: until convergence
10 Discard the subtle filters according to 3 and py, .
11: Eliminate the redundancy in temporal dimension
according to p;, and following Fen. 5.
12: Save the optimal transform S; for layer £;.
13: end for

14: Fine-tune A/ by keeping the discarded components;
Output: The compact 3D network N,

can be reformulated as

c d’c
min [V = 3 B XTFillf + 1181+ Al Sllza,
o i=1 j=1

st. STS=1I

)
Fen. 9 can be naturally optimized used stochastic gradi-
ent descent. After we find the solution of Fcn. 9, we can
eliminate the unnecessary filters to compress the neural net-
work. Given the pruning rate of channel and temporal di-
mensional as p. and py, the filters with p. smallest 5 will be
discarded and the rows of mask matrix M with k =t X p;
smallest importance value V' will be set as 0. The detailed
procedures of the proposed frequency domain compact 3D

CNNs (FDC3D) is summarized in Algorithm 1.

4. Analysis on Compression and Speed-up

The computational complexity of the original convolu-
tion (i.e. Fen. 2) is:

O(H'W'T'd*ctN). (10)

After learning the optimal transform S using Fen. 2,
the computational complexity of the convolution in the fre-
quency domain can be written as:

OH'W'T'dct*) + O(H'W'T'd*ctN),  (11)

which is slighly higher than Fen. 10, since ¢ < N (e.g.
t = 3 and N = 64 in the second layer of 3D-ResNet-18).

After removing the redundant parameters, the kernel size
of temporal dimension ¢ can be reduced to ¢/, after network
trimming, the input channel ¢ can be reduced to ¢/, so the
computational complexity can be written as:

O(H/W/T/dZCItQ) _|_ O(HIW/T/dQCIt/N), (12)

so the speedup of the compression method can be written

as:
. _ OH'W'T'dct?) + OH'W'T'EHN) 't
° O(H'W'T"d2ctN) T
(13)

As for the parameters, we use parameters of one con-
volution layer to analyse for simplified. The number of pa-
rameters is N C'd*t before compression. After compression,
the temporal dimension can be reduced to ¢’ and the input
channel can be reduced to ¢’ with channel pruning. We also
need to add a transformation matrix S which has a number
of parameters of ¢2. Therefore, the compression rate can be
written as

NPt +txt
" T T Ned?t

As the parameters of transformation matrix is relatively
small compared to the parameters of convolution filters. the
parameters of this matrix can be ignoge/d. Then, the com-

pression rate can be approximated as <t
ct

(14)

5. Experiments

In this section, we will demonstrate the effectiveness of
the proposed 3D CNN compression method on UCF101 and
Brats18 dataset. Massive experiments on ablation study and
visualization are also conducted to have an explicit under-
standing of the proposed algorithm.

5.1. Experiments on UCF101

We first implement experiments on the UCFI101
dataset [30], which is composed of 101 action classes, over
13k clips and 27 hours of video data. We compare the pro-
posed method with Taylor Pruning (TP) [24], Filter Prun-
ing (FP) [19] and Regularization-based Pruning (RP) [37].
We use the 3D-ResNet-18 [31] as the backbone, which is
modified from 2D-ResNet-18 by converting each of the 2D
convolution filters to 3D convolution filters. The increased
temporal dimension parameter of kernel is same with the
other two spatial dimensions.

We use stochastic gradient descent (SGD) with a initial
learning rate of 0.005, a momentum of 0.9 and a weight de-
cay of le — 5 to train the networks. The learning rate is di-
vided by 10 after the validation loss saturates. The network
is trained for 300 epoch. Training samples are randomly
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generated from videos with a 16 sample duration and ran-
domly cropped to 112 x 112 in order to perform data aug-
mentation following [|1]. Mean subtraction is performed
to subtract the mean values of ActivityNet from the sample
for each color channel. p. and p, are set as % and % for 2x
speed-up, and 2 and £ for 4x speed-up, respectively.

Table 1. The increased error when accelerating 3D-ResNet-18 on
UCF101 (baseline: 72.50%). 2x and 4x denote the speed-up ra-
tios.

Method Increased err.(%)
2% 4x

TP [24] ([37]’s impl.) 5.72 14.24
FP [19] ([37]’s impl.) 1.60 6.92
RP [37] 0.41 2.87
Ours (FDC3D) 0.10 2.16

Table 1 reports the compression results of different meth-
ods on the UCF101 dataset. The original 3D-ResNet-
18 model achieves a 72.50% accuracy. Taylor Prun-
ing (TP) and Filter Pruning (FP) have been successfully
applied in 2D-convolutional neural networks. However,
the compressed models of these methods suffer degrada-
tion when compared with the original models (5.72% and
1.60% for 2x acceleration), which suggests that the con-
ventional 2D compression algorithms are not fully suitable
for 3D convolution filters. RP proposed a three-dimensional
regularization-based neural network pruning method, which
suffers only 0.41% and 2.87% increased errors for 2x and
4x acceleration. However, RP does not consider the high-
relevance between filters in temporal dimensional, which
is the key difference between compression of 2D and 3D
convolution filters. By introducing the optimal transform
for the temporal dimensional of 3D CNNs, the proposed
method could reach 2x and 4x speed-up with only 0.10%
and 2.16% accuracy drop. The proposed method outper-
forms previous pruning approach, which demonstrate the
effectiveness of the proposed method for eliminating the re-
dundancy of temporal dimension for the 3D convolution fil-
ters.

5.2. Ablation Study

In the above sections, the effectiveness of the proposed
method for learning frequency compact 3D CNNs have
been verified. The proposed algorithm introduces optimal
transform to convert the filters into the frequency domain
instead of using DCT. Moreover, to eliminating the redun-
dancy in channel dimensional as well as temporal dimen-
sional, we introduce the channel pruning [14] and combine
it with the proposed optimal transform in Fcn. 9. Therefore,
it is necessary to study the influence of the proposed optimal
transform.

We conduct the ablation experiment on the UCF-101
dataset. We use the 3D-ResNet-18 as the original model.

Table 2. Effectiveness of eliminating redundancy in the frequency
domain of the proposed FDC3D.

Method Increased err.(%)
2x 4x
(only PfuIEi)rli;SChannels) 0.81 3.58
(wit(l)luI;SCT) 0.42 2.96
(with optir?lzlrstransform) 0.10 2.16

The experimental details are the same as those in Sec-
tion 5.1. Table 2 reports the results of eliminating redun-
dancy in the frequency domain of the proposed FDC3D. If
we do not prune the temporal dimension (i.e. only pruning
the channels), the compressed network suffers 0.81% and
3.58% accuracy drops for 2x and 4x speed-up ratio. By
applying the DCT on the filters, the compressed network
can achieve higher accuracy under the same speed-up ra-
tio, which demonstrate the effectiveness of eliminating the
redundancy in temporal dimensional. However, DCT is de-
signed for natural images and is not perfectly suitable for
the filters in 3D CNNs. By learning the optimal transform
for each layer, the compressed network only suffers 0.10%
and 2.16% accuracy drops for 2x and 4x speed-up ratio.
The results shows the superiority of learning optimal trans-
form for compressing the temporal dimension in 3D CNNs.

5.3. Single Layer Pruning

increased error (%)
2 = N ~
. B B S 8

=3

speed-up ratio

Figure 2. Single layer performance after pruning using different
methods (without fine-tuning). The min /5 denotes directly re-
moving the temporal dimensional of filters with minimal ¢2-norm.
DCT denotes applying DCT on filters before pruning the temporal
dimensional and OT denotes applying the proposed optimal trans-
form before pruning.

In this subsection, we evaluate the performance of the
proposed method in a single layer to achieve a explicit un-
derstanding of the effectiveness of the frequency domain
compression. We use the 3D-ResNet-18 [11] as the orig-
inal model on the UCF-101 dataset. For convenience, we
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only compress the temporal dimensional using the proposed
method using Fcn. 7. We compare our algorithm with two
naive compression strategies on the temporal dimensional:
1. directly removing the temporal dimensional of filters
with smaller /5-norm; 2. using DCT to convert filters into
frequency domain instead of optimal transform.

We perform the pruning in the first convolutionnal layer,
whose filters are of 7 x 7 x 7 size and number of temporal
dimension is 7. The result of single layer pruning is shown
in Figure 2. As the speed-up ratio increases, the error in-
creases. Directly removing the temporal dimension with
minimal ¢s-norm would largely affect the performance of
3D CNNs, which demonstrate each dimension is important
for the 3D convolution filter. Therefore, we use DCT to
convert the filters into frequency domain, which achieves
better performance under the same speed-up ratio. By uti-
lizing the learned optimal transform, the proposed method
achieve the best performance, which demonstrate the opti-
mal transform is suitable for seeking the group sparsity of
3D convolution filters.

5.4. Pruning for Different Depths

The effectiveness of the proposed method has been veri-
fied on 3D-ResNet-18. To further investigate the generality
of the proposed scheme, we evaluate the proposed FDC3D
on different depths of 3D-ResNet [I1] on the UCF-101
dataset. We exploit the proposed method on ResNet-34,
ResNet-50 and ResNet-101. The training settings are the
same as those in Section 5.1.

Table 3. The increased error for different architectures on UCF101
dataset. 2x and 4 x denote the speed-up ratios.

. Increased err.(%)
Architecture | Accuracy (%) % I
ResNet-34 81.1 0.13 1.94
ResNet-50 81.8 0.06 1.63
ResNet-101 83.5 0.02 1.31

Table 3 shows the compression results on different
depths of 3D-ResNet. As the model becomes deeper, its
accuracy increases. However, their computational cost
and storage are larger. Therefore, we utilize the proposed
method to accelerate these networks. The proposed algo-
rithms can achieve 2x speed-up ratio on various architec-
tures without obvious accuracy drop. Moreover, the in-
creased error becomes smaller for deeper model, which sug-
gests that the larger model has more redundancy and the
proposed can effectively reduce the computation cost of
these heavy models.

5.5. Visualization of filters

To eliminating the redundancy of 3D convolution filters,
we transform the filters into the frequency domain. By ap-

plying optimal transform to the feature maps, the convo-
lution can be directly calculated in the frequency domain.
Though we do not need to transform the compressed filters
back into the spatial domain when calculating 3D convo-
lutions, we reconstruct the convolution filters in the spatial
domain for a more intuitive visualization.

[ 5 1 ¥

(a) The original convolution filters.

BERNEE: T

(b) The converted filters in the frequency domain.

[ [ @ ¥

(c) The reconstructed convolution filters.
Figure 3. Visualzation of filters on the UCF101 datset. The filters
in red box are reserved.

We visualize the filters of 3D-ResNet-18 [11] in the first
convolution layer on the UCF101 dataset in Figure 3. The
size of original filter is 7 X 7 x 7 with 3 input channels
and 64 output channels. For convenience, we only visual-
ize one filter among these channels. Figure 3 (a) shows the
original filters. As the adjacent input images are highly rel-
evant, the filter to extract the volumetric images also shows
similar pattern for adjacent temporal dimension, which sug-
gests that there are lot of redundancy in 3D convolutional
nerual networks. Conventional 2D CNN compression meth-
ods which pruning the weights with smaller values are thus
not suitable in this situation. Therefore, we introduce opti-
mal transform to convert filters into frequency domain. Fig-
ure 3 (b) shows the filters in the frequency domain trans-
formed by the learned optimal transform. The converted
filters can be easily divided into high-frequency filters and
low-frequency filters. Therefore, we can keep the four fil-
ters with rich information in Figure 3 (b), which is boxed
out with the red lines. Figure 3 (c) shows the filters recon-
structed by the reserved four filters in the frequency domain.
By introducing the optimal transform, we can compress the
3D convolution filters with little loss of information.

5.6. 3D-UNet on Brats 2018

Besides video recognition, another important applica-
tion of 3D CNNs is medical image segmentation. The
Brain Tumor Segmentation (Brats) dataset [23] provides
multi-modal magnetic resonance imaging (MRI) images
and expert-labeled ground truth for the segmentation of
brain tumors. The task of this dataset is to produce segmen-
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tation labels of different glioma sub-regions by using the
provided data in per-operative MRI scans. The sub-regions
contain the enhancing tumor, the tumor core and the whole
tumor. The dataset consists of 285 samples and is sepa-
rated into training set with 228 samples and validation set
with 57 samples, respectively. As the medical images are
volumetric, conventional 2D CNNs cannot fully extract the
information from the multi-image inputs. 3D U-Net [3] is
therefore proposed for tackle this medical image segmenta-
tion problem. We implement experiments on the Brats 2018
dataset using the Residual 3D U-Net [18&] as the backbone.

We use stochastic gradient descent (SGD) with a initial
learning rate of 0.001, a momentum of 0.9 and a weight de-
cay of le — 5 to train the networks. The learning rate is di-
vided by 10 after the validation loss saturates. The network
is trained for 300 epoch. Training samples are reshaped to
160x 192 x 128. The batch size is set as 1. For the proposed
method, p. and p; are set as i and %

Table 4. The dice coefficient (higher is better) when accelerating
3D U-Net on the Brats 2018 dataset. The speed-up ratio is 2x for
the FC3D U-Net.

Model Dice(ET) | Dice(WT) | Dice(TC)
3D U-Net 0.7974 0.7971 0.6908
FC3D U-Net | 0.7832 0.7831 0.6816

Table 4 reports the compression results of the proposed
method on the Brats 2018 dataset. We use the dice co-
efficient as the evaluation index, which is widely used in
the medical segmentation tasks. The dice similarity coef-
ficient is a similarity measure to calculate the spatial over-
lap between two samples. The lower dice coefficient indi-
cates the better performance. The original 3D U-Net model
achieves 0.7974, 0.7971 and 0.6908 dice score for the seg-
mentation of enhancing tumor (ET), whole tumor (WT) and
tumor core (TC), respectively. Then we apply the proposed
FDC3D to the 3D U-Net. As a result, the compressed net-
work achieves 0.7832, 0.7831 and 0.6816 dice score for the
segmentation of ET, WT and TC, which demonstrate the
proposed method can perform well in the volumetric image
segmentation tasks.

To further evaluate the performance of the compressed
network with the original network, we visualize segmenta-
tion results by using 3D U-Net and the frequency domain
compressed 3D U-Net in Figure 4. The enhancing tumor,
tumor core and whole tumor are marked as blue, green
and yellow, respectively. Figure 4 (a) shows the ground
truth and Figure 4 (b) shows the segmentation results of
3D U-Net. As a result, the 3D U-Net can successfully seg-
ment different parts for the medical volumetric MRL im-
ages. Considering that the heavy computation cost of 3D
U-Net, we exploit the proposed FDC3D to eliminate its re-
dundancy. Figure 4 (c) shows the segmentation result of
the compressed network. The proposed method can achieve

(a) Ground truth (b) 3D U-Net

(c) FC3D U-Net
Figure 4. Example segmentation results on the Brats 2018 dataset.

similar result with the original network while with fewer
parameters and lower computation cost.

6. Conclusions

As videos become ubiquitous due to the growing of mul-
timedia on Internet, the 3-dimensional convolutional neu-
ral networks have been proposed to tackle multi-frame or
multi-image datasets. However, 3D CNNs requires enor-
mous computation resources, which prevents its usage in
edge devices such as cameras and mobile phones. Here
we present an effective compression method to eliminate
the redundancy of 3D convolution filters in the frequency
domain, namely FDC3D. The 3D convolution filters are
converted into the frequency domain with structural spar-
sity in temporal dimensional utilizing the learned optimal
transform, where the redundant parameters can be easily re-
moved. Then the convolution can be calculated in the fre-
quency domain by also applying optimal transform to the
feature maps. The redundancy in the channel dimensional
is also considered to achieve higher speed-up ratio. Detailed
analysis including ablation study and visualization are con-
ducted to demonstrate the effectiveness of the proposed al-
gorithm. Experiments on action classification and medi-
cal image segmentation shows that the proposed FDC3D
achieve higher performance than the state-of-the-art meth-
ods.
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