
Frequency Domain Compact 3D Convolutional Neural Networks

Hanting Chen1,2, Yunhe Wang2, Han Shu2, Yehui Tang1,2, Chunjing Xu2∗,

Boxin Shi3,4, Chao Xu1, Qi Tian2, Chang Xu5

1 Key Lab of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University.
2 Noah’s Ark Lab, Huawei Technologies. 3 NELVT, Dept. of CS, Peking University. 4 Peng Cheng Laboratory.

5 School of Computer Science, Faculty of Engineering, The University of Sydney.

{htchen, yhtang, shiboxin}@pku.edu.cn, xuchao@cis.pku.edu.cn, c.xu@sydney.edu.au

{yunhe.wang, han.shu, xuchunjing, tian.qi1}@huawei.com

Abstract

This paper studies the compression and acceleration of

3-dimensional convolutional neural networks (3D CNNs).

To reduce the memory cost and computational complexity of

deep neural networks, a number of algorithms have been ex-

plored by discovering redundant parameters in pre-trained

networks. However, most of existing methods are designed

for processing neural networks consisting of 2-dimensional

convolution filters (i.e. image classification and detection)

and cannot be straightforwardly applied for 3-dimensional

filters (i.e. time series data). In this paper, we develop a

novel approach for eliminating redundancy in the time di-

mensionality of 3D convolution filters by converting them

into the frequency domain through a series of learned opti-

mal transforms with extremely fewer parameters. Moreover,

these transforms are forced to be orthogonal, and the calcu-

lation of feature maps can be accomplished in the frequency

domain to achieve considerable speed-up rates. Experi-

mental results on benchmark 3D CNN models and datasets

demonstrate that the proposed Frequency Domain Compact

3D CNNs (FDC3D) can achieve the state-of-the-art perfor-

mance, e.g. a 2× speed-up ratio on the 3D-ResNet-18 with-

out obviously affecting its accuracy.

1. Introduction

Deep neural networks, especially convolutional neu-

ral networks (CNNs) have been well demonstrated in a

large variety of computer vision tasks. Plenty of man-

ually designed convolutional neural networks, such as

AlexNet [17], VGGNet [29], and ResNet [13] were pro-

posed to achieve impressive classification accuracy on the

challenging ILSVRC 2012 dataset [28]. Similar successes

have been repeated in other tasks, including object detec-

∗Corresponding author.

Figure 1. An illustration of the proposed FDC3D. The matrix of

feature maps and filters are converted into the frequency domain

utilizing the learned optimal transform. Then, the computation

cost can be directly reduced by structural pruning.

tion (e.g. Faster RCNN [26] and SSD [20]) and segmenta-

tion (e.g. FCN [21] and Mask r-cnn [12]). In these afore-

mentioned computer vision tasks, each individual image is

often processed separately and consumes hundreds of MB

memory. 3D convolution has been developed to tackle

video-based processing task, such as human action recog-

nition [16]. Compared to 2D convolution, more resources

would be cost if video frames are investigated at the same

for the sake of temporal information. For example, 3D-

ResNet-50 [11] requires 354MB memory and over 22G

times of floating number multiplications, which is much

higher than the conventional 2D-ResNet-50 with 103MB

memory and 4G FLOPs.

Over the years, considerable methods were proposed for

1641

compressing and speeding up deep neural networks. For

instance, Luo et al. [22] pruned filters based on statistics in-

formation from the next layer. Chen et al. [2] used a hash

function and represented weights in the same hash bucket

with a single parameter. Vanhouche et al. [32] explored

deep neural networks with 8-bit integer values to replace

original models with 32-bit floating values to achieve the

compression and speed-up directly. Courbariaux and Ben-

gio [4] explored neural networks with binary weights and

activations. Restgari et al. [25] further incorporated binary

convolutions into the modern neural architecture to achieve

higher performance. Wang et al. [34] compressed filters

in frequency domain with the help of discrete cosine trans-

form.

Although the above mentioned approaches have made

tremendous efforts for learning portable deep networks,

most of them are designed for 2D CNNs, and may not be

optimal to process 3D convolutional neural networks. Com-

pared with traditional convolutional networks, 3D CNNs

are developed for processing videos (e.g. action recogni-

tion [16]) or a series of input images (e.g. medical images of

a patient [3]), and filters in 3D CNNs have an additional di-

mension. In fact, either videos or medical images can be re-

garded as an image sequence where there is high relevance

between any two adjacent images. Convolution filters in

this additional dimension should also have high temporal

similarity to extract useful information from the input data,

as shown in Figure 3.

In this paper, we convert filters into the frequency do-

main to investigate their redundancy and produce compact

3D convolutional neural networks. A series of transforms

are learned to convert filters in each convolutional layer

from the spatial domain into the frequency domain. Co-

efficients of these filters will be structurally sparse in the

frequency domain, which can be significantly compressed

by discarding their subtle components. In addition, these

transforms are forced to be orthogonal during the training

procedure so that we can relax the convolution operations

in the spatial domain to the same operations on frequency

coefficients of input data and filters with extremely lower

computational complexities. Moreover, redundant filters

of small importances will also be abandoned for portable

neural networks. The illustration of the proposed method

is shown in Figure 1. Experiments on benchmark mod-

els including 3D-ResNet-18 and 3D U-Net demonstrate that

the proposed scheme outperforms state-of-the-art methods

for learning compact 3D convolutional neural networks, in

terms of compression and speed-up ratios.

This paper is organized as follows. Section 2 inves-

tigates related works on network pruning algorithms and

3D convolutional networks. Section 3 proposes a three-

dimensional neural network pruning method by converting

filters to frequency domain. Section 5 illustrates experimen-

tal results of the proposed method on benchmark datasets

and models and Section 6 concludes the paper.

2. Related Works

Here we first study the 3D CNNs in various tasks, and

then review pruning methods for deep neural networks.

2.1. 3D Convolutional Neural Networks

3D convolutional neural networks are proposed to tackle

multi-frame or multi-image inputs, which become more and

more popular in recent applications such as videos and vol-

umetric images processing. The seminal work [16] de-

veloped 3D convolution filters by extracting features from

temporal dimension, thereby capturing the multi-frame mo-

tion information. Tran et al. [31] further proposed C3D

for generic spatio-temporal feature learning in large-scale

dataset and outperforms 2D convolutional neural network,

which demonstrate the 3D convolution filters are more suit-

able to tack the information in videos. Feichtenhofer et

al. [6] proposed a two-stream convolutional neural network

which consist of both 2D and 3D convolution filters to ex-

tract both the spatial and temporal information. Hara et

al. [10] pushed the classical 2D-ResNet [13] to three di-

mension and achieved better performance than the relatively

shallow C3D networks. Moreover, Hara et al. [11] evalu-

ated that the current video datasets have sufficient data for

the training of very deep models like ResNet-152. Besides

the video classification, 3D CNNs have been widely used

in medical image segmentation, since the brain MRI im-

ages are volumetric. 3D U-Net [3] have been introduced

to perform end-to-end segmentation on volumetric medical

images.

Although 3D CNNs have achieved satisfactory perfor-

mance in video and volumetric images processing tasks,

their massive computation cost prevents their deployment

on mobile and edge devices. There are urgently require-

ments in the compression of 3D convolutional neural net-

works.

2.2. Network Pruning

Network Pruning aims to remove redundant weights

in CNNs to accelerate and compress the original net-

work. Denton et al. [5] decomposed the weights in fully-

connected layers by exploiting singular value decomposi-

tion (SVD). Han et al. [8] introduce pruning, trained quan-

tization and Huffman coding to largely reduce the storage

of neural networks. Li et al. [19] proposed to remove the

filters that have a small impact on the output by calculating

their ℓ1-norm. Molchanov et al. [24] pruned the weights

based on Taylor expansion to approximate the change in

cost functions. Han et al. [9] combined pruning, quanti-

zation and Huffman coding technique to achieve a higher

1642

compression ratio. Hu et al. [15] propose a data-driven ap-

proach to remove redundant filters with less impacts. Luo et

al. [22] pruned filters based on the reconstruction error in

its next layer instead of current layer and regard filter prun-

ing as an optimization problem. He et al. [14] proposed a

novel channel pruning method to select important channels

in each layer based on LASSO regression. Gui et al. [7] pro-

posed a novel Adversarially Trained Model Compression

(ATMC) framework to unify existing compression methods

(pruning, factorization, quantization). Wu et al. [35] pro-

posed a novel spectrally relaxed k-means regularization for

convolution filters to achieve through compression weight-

sharing. Yang et al. [36] designed LegoNets where the con-

ventional filters are replaced with efficient Lego filters.

Although aforementioned trimming method can achieve

satisfactory results in CNN compression, they mainly fo-

cused on pruning the conventional 2D CNNs instead of the

3D CNNs, which take an important role on video tasks.

Zhang et al. [37] adapted a regularization based pruning al-

gorithm [33] to 3D CNNs. However, there are no special

design for 3D convolution filters with an additional tempo-

ral dimension. In this paper, we propose a novel method to

learn optimal transform for eliminating the temporal dimen-

sional redundancy of 3D convolution filters in frequency do-

main.

3. Approach

In this section, we will first introduce the preliminaries of

3D CNNs and then investigate the possibility for compress-

ing 3D filters in the frequency domain. Then, we investigate

a novel method for learning a series of orthogonal bases for

effectively removing redundant parameters in 3D CNNs.

3.1. 3D Convolution in the Frequency Domain

Different from the conventional networks, the number of

dimensionality is four in 3D CNNs for the input data, i.e.

X ∈ R
H×W×c×T , where H , W are the height and width of

the input data, respectively, c is the number of the channel

number, and T denotes the additional temporal dimension.

Similarly, each convolution filter in 3D CNNs will have an

additional dimension, i.e. F ∈ R
d×d×c×t×N , where d × d

is the size of filter, N is the number of filters, t and c are

numbers of temporal dimension and channel, respectively.

The 3D convolution operation can be formulated as

Y = F ∗ X + b, (1)

where ∗ is the convolution operation, Y ∈ R
H′

×W ′
×N×T ′

is the output feature map, H ′, W ′, T ′ are height, width, and

the temporal dimension of Y , respectively, and b is the bias

term.

Considering that there are considerable redundant pa-

rameters and filters in most of existing 2D CNNs such

as VGGNet-16 [29] and ResNet-50 [13], and current 3D

CNNs are mainly modified from some 2D models, e.g.

3D-ResNet-18 [10] and 3D-UNet [3], we should also de-

velop effective algorithms for recognizing redundancy in

3D CNNs. Existing pruning methods have been proved to

be successful in conventional neural networks. Although

these methods can be directly adapted in 3D CNNs to

achieve considerable speed-up and compression ratio [37],

the temporal dimension, which is the major difference be-

tween 2D and 3D CNNs, is ignored. In fact, the adjacent

frames in videos are highly correlated. The 3D convolution

filters, which extract the information in multi-frame inputs,

also present similar property. Comparing with the height

and length dimension of the filters, the temporal dimension

has more redundancy, which is shown in Fig. 3. To this end,

we are motivated to convert the 3D convolution filters into

frequency domain, where the transformed representations

is more sparse than the original signals and can be easily

compressed.

There are a number of transforms for factorizing input

signals and discovering their redundancy in the frequency

domain, e.g. Discrete Fourier Transform (DFT [27]) and

Discrete Cosine Transform (DCT [1]). Since coefficients in

the Fourier frequency domain are imaginary values which

do not suitable for compressing deep neural networks, we

utilize DCT with real values for compressing 3D convolu-

tion filters. As mentioned above, the temporal dimension of

3D convolution filters have more computational cost com-

pared with the spatial dimension. Therefore, we propose

to transform these filters into the frequency domain in the

temporal dimension. In specific, we first reformulate the

convolution operation w.r.t. Fcn. 1 according to the forth di-

mension (i.e. temporal dimension) in F as

Y = X⊤F =

d2c∑

i=1

x⊤

i fi, (2)

where X ∈ R
d2ct×H′W ′T ′

converts X into a matrix ac-

cording to the filter size and parameters (e.g. padding and

stride), F ∈ R
d2ct×N and Y ∈ R

H′W ′T ′
×N are matri-

ces of filters and output feature maps, respectively. xi ∈
R

t×H′W ′T ′

and fi ∈ R
t×N is achieved by matrix partition:

X⊤ = [x1, . . . , xd2c], F = [f1, . . . , fd2c]
⊤. The bias term

is dropped for simplicity.

For a given t-dimensional vector f ∈ R
t×1, its DCT rep-

resentation c in the frequency domain can be formulated as

cm =

t−1∑

i=0

fi cos

[
π

t
m(i+

1

2
)

]
, (3)

where cm is the m-th coefficient of f in the DCT frequency

domain (m ∈ {1, · · · , t}). Equally, the DCT can be ex-

pressed as a matrix multiplication, i.e. c = Sf , where S is

1643

a t × t transform matrix of DCT, which can be calculated

according to the above function.

Since S is an orthogonal matrix, i.e. S⊤S = I , where I

is a t × t identity matrix, we can simultaneously apply the

DCT and its inverse transformation on the filter matrix and

the input data in temporal dimension to convert Eqn. 2 into

the frequency domain, i.e.

Y =

d2c∑

i=1

x⊤

i S
⊤Sfi = X⊤Ŝ⊤ŜF,

s.t. Ŝ =




S 0 · · · 0
0 S · · · 0
...

...
. . .

...

0 0 · · · S


 ,

(4)

where Ŝ is a d2ct× d2ct block diagonal matrix.

By transforming the filters into frequency domain, we

can easily compress the network by utilizing the sparsity

of converted filters. As the non-structured weight prun-

ing [8] cannot directly accelerate deep neural networks

without special implement on the matrices multiplications

(e.g. sparse convolution), we attempt to address the 3D

CNN compression task from the structured pruning per-

spective [22, 14], which directly reduces the number of

columns or rows in matrices of convolution filters. There-

fore, we discard the redundant temporal dimension of 3D

convolution filters (i.e. some rows in ŜF) with subtle ℓ2
norms and reduce Fcn. 4 to

Y =

d2c∑

i=1

x⊤

i (M ⊙ S)⊤(M ⊙ S)fi

= X⊤(M̂ ⊙ Ŝ)⊤(M̂ ⊙ Ŝ)F

s.t. M̂ =




M 0 · · · 0
0 M · · · 0
...

...
. . .

...

0 0 · · · M


 ,

(5)

where M ∈ t × t is a mask matrix to discard rows with

smaller values in frequency domain and ⊙ is Hadamard

product. In specific, the importance value Vi for i-th tem-

poral dimension is formulated as ‖(
∑d2c

j=1
Sfj)i,∗‖2, i.e. the

ℓ2-norm for the converted filters of i-th temporal dimension,

where the (·)i,∗ denotes the i-th row of this matrix. The

mask matrix M is then conducted as M = [M1, ...,Mt]
⊤,

where Mi = 0 if Vi is the k smallest in all Vi (i ∈ {1, ...t})
and otherwise Mi = 1 (0,1 denotes t-dimensional vector

with all values as 0,1). k is determined by the pruning rate,

which will be discussed after. Thus, the complexity will be

reduced naturally.

Note that the computational complexity for converting

the input data into the frequency domain through S in Fcn. 4

is O(H ′W ′T ′d2ct2). If we also apply DCT to other dims

(channel dimension and kernel size dimension) in X , the

computational complexity will be significantly increased to

O(H ′W ′T ′d4c2t2). Therefore, we only eliminate the re-

dundancy in the temporal dimension using DCT.

3.2. Learning to Transform 3D Filters

A frequency domain based 3D convolutional networks

compression method has been proposed in Fcn. 5 by con-

verting all filters using DCT. However, DCT is designed

for natural images or videos based on some priories, which

is not perfectly suitable for seeking the group sparsity of

3D convolution filters. Therefore, we propose to learn op-

timal transform to eliminate the redundancy in the tempo-

ral dimension of 3D convolution filters. Besides utilizing

fixed dictionaries or spatial-frequency domain transforms,

we make the transform for converting filter matrix in an ar-

bitrary 3D convolutional layer learnable, i.e.

min
S

||Y −X⊤F ||2F + λ||ŜF ||1, s.t. S⊤S = I. (6)

where S ∈ R
t×t is the desired transformation for convert-

ing all convolution filters into the frequency domain, I is a

t× t identity matrix for making S orthogonal to ensure the

equality of convolution in the coefficient domain, the last

term is the conventional ℓ1-norm for eliminating subtle ele-

ments in SF and λ is a trade-off hyper-parameter to balance

the two terms.

As mentioned above, we introduce a mask matrix M to

structured pruning the 3D convolution filters. Therefore,

the ℓ2,1-norm is more suitable for pruning the row of filters

in frequency domain, that is, discard the redundant rows in

ŜF . The object function can be reformulated as:

min
S

||Y −X⊤F ||2F + λ||
d2c∑

i=1

Sfi||2,1, s.t. S⊤S = I.

(7)

where || · ||2,1 is the ℓ2,1-norm for seeking group sparsity.

Besides the redundancy in the temporal dimension, we

can also discard redundant channels for the 3D convolu-

tional networks. We further apply the idea of channel prun-

ing [14]:

min
β,F

||Y −
c∑

i=1

βiX
⊤

i Fi||
2

F + γ||β||1, (8)

where Fi and Xi denotes each channel of filters and inputs,

β is introduced to find redundant input channels and γ is

a penalty coefficient. The important input channel can be

selected by minimizing the ℓ1-norm of β. Then, we can

discard the input channels with smaller β.

By combining the goal of Fcn. 7 and Fcn. 8, the objective

function for eliminating the redundancy of temporal dimen-

sion as well as the input channels of filters simultaneously

1644

Algorithm 1 Compressing 3D convolutional neural net-

works in the frequency domain.

Input: A pre-trained 3D convolutional neural network N
with p convolutional layers L1, . . . ,Lp, channel and

temporal dimensional pruning rate pci and pti for each

layer Li, parameters of different objects: λ and γ.

1: for i = 1 to p do

2: Extract convolution filters in Li to form F and ini-

tialize transform Si and channel sparsity parameter β;

3: repeat

4: Randomly select a batch of data to forward N ;

5: Calculate the input data X for Li using N ;

6: Calculate feature maps Y for Li using N ;

7: Convert F into frequency domain using Si;

8: Solve Fcn. 9 to simultaneously updating trans-

form Si and channel sparsity parameter β.

9: until convergence

10: Discard the subtle filters according to β and pci .

11: Eliminate the redundancy in temporal dimension

according to pti and following Fcn. 5.

12: Save the optimal transform Si for layer Li.

13: end for

14: Fine-tune N̂ by keeping the discarded components;

Output: The compact 3D network N̂ .

can be reformulated as

min
S,F,β

||Y −
c∑

i=1

βiX
⊤

i Fi||
2

F + γ||β||1 + λ|||
d2c∑

j=1

Sfj ||2,1,

s.t. S⊤S = I.
(9)

Fcn. 9 can be naturally optimized used stochastic gradi-

ent descent. After we find the solution of Fcn. 9, we can

eliminate the unnecessary filters to compress the neural net-

work. Given the pruning rate of channel and temporal di-

mensional as pc and pt, the filters with pc smallest β will be

discarded and the rows of mask matrix M with k = t × pt
smallest importance value V will be set as 0. The detailed

procedures of the proposed frequency domain compact 3D

CNNs (FDC3D) is summarized in Algorithm 1.

4. Analysis on Compression and Speed-up

The computational complexity of the original convolu-

tion (i.e. Fcn. 2) is:

O(H ′W ′T ′d2ctN). (10)

After learning the optimal transform S using Fcn. 2,

the computational complexity of the convolution in the fre-

quency domain can be written as:

O(H ′W ′T ′d2ct2) +O(H ′W ′T ′d2ctN), (11)

which is slighly higher than Fcn. 10, since t ≪ N (e.g.

t = 3 and N = 64 in the second layer of 3D-ResNet-18).

After removing the redundant parameters, the kernel size

of temporal dimension t can be reduced to t′, after network

trimming, the input channel c can be reduced to c′, so the

computational complexity can be written as:

O(H ′W ′T ′d2c′t′2) +O(H ′W ′T ′d2c′t′N), (12)

so the speedup of the compression method can be written

as:

rc =
O(H ′W ′T ′d2ct′2) +O(H ′W ′T ′d2c′t′N)

O(H ′W ′T ′d2ctN)
≈

c′t′

ct
(13)

As for the parameters, we use parameters of one con-

volution layer to analyse for simplified. The number of pa-

rameters is NCd2t before compression. After compression,

the temporal dimension can be reduced to t′ and the input

channel can be reduced to c′ with channel pruning. We also

need to add a transformation matrix S which has a number

of parameters of t2. Therefore, the compression rate can be

written as

rs =
Nc′d2t′ + t× t

Ncd2t
(14)

As the parameters of transformation matrix is relatively

small compared to the parameters of convolution filters. the

parameters of this matrix can be ignored. Then, the com-

pression rate can be approximated as c′t′

ct
.

5. Experiments

In this section, we will demonstrate the effectiveness of

the proposed 3D CNN compression method on UCF101 and

Brats18 dataset. Massive experiments on ablation study and

visualization are also conducted to have an explicit under-

standing of the proposed algorithm.

5.1. Experiments on UCF101

We first implement experiments on the UCF101

dataset [30], which is composed of 101 action classes, over

13k clips and 27 hours of video data. We compare the pro-

posed method with Taylor Pruning (TP) [24], Filter Prun-

ing (FP) [19] and Regularization-based Pruning (RP) [37].

We use the 3D-ResNet-18 [31] as the backbone, which is

modified from 2D-ResNet-18 by converting each of the 2D

convolution filters to 3D convolution filters. The increased

temporal dimension parameter of kernel is same with the

other two spatial dimensions.

We use stochastic gradient descent (SGD) with a initial

learning rate of 0.005, a momentum of 0.9 and a weight de-

cay of 1e− 5 to train the networks. The learning rate is di-

vided by 10 after the validation loss saturates. The network

is trained for 300 epoch. Training samples are randomly

1645

generated from videos with a 16 sample duration and ran-

domly cropped to 112 × 112 in order to perform data aug-

mentation following [11]. Mean subtraction is performed

to subtract the mean values of ActivityNet from the sample

for each color channel. pc and pt are set as 1

4
and 1

3
for 2×

speed-up, and 5

8
and 1

3
for 4× speed-up, respectively.

Table 1. The increased error when accelerating 3D-ResNet-18 on

UCF101 (baseline: 72.50%). 2× and 4× denote the speed-up ra-

tios.

Method
Increased err.(%)

2× 4×
TP [24] ([37]’s impl.) 5.72 14.24

FP [19] ([37]’s impl.) 1.60 6.92

RP [37] 0.41 2.87

Ours (FDC3D) 0.10 2.16

Table 1 reports the compression results of different meth-

ods on the UCF101 dataset. The original 3D-ResNet-

18 model achieves a 72.50% accuracy. Taylor Prun-

ing (TP) and Filter Pruning (FP) have been successfully

applied in 2D-convolutional neural networks. However,

the compressed models of these methods suffer degrada-

tion when compared with the original models (5.72% and

1.60% for 2× acceleration), which suggests that the con-

ventional 2D compression algorithms are not fully suitable

for 3D convolution filters. RP proposed a three-dimensional

regularization-based neural network pruning method, which

suffers only 0.41% and 2.87% increased errors for 2× and

4× acceleration. However, RP does not consider the high-

relevance between filters in temporal dimensional, which

is the key difference between compression of 2D and 3D

convolution filters. By introducing the optimal transform

for the temporal dimensional of 3D CNNs, the proposed

method could reach 2× and 4× speed-up with only 0.10%
and 2.16% accuracy drop. The proposed method outper-

forms previous pruning approach, which demonstrate the

effectiveness of the proposed method for eliminating the re-

dundancy of temporal dimension for the 3D convolution fil-

ters.

5.2. Ablation Study

In the above sections, the effectiveness of the proposed

method for learning frequency compact 3D CNNs have

been verified. The proposed algorithm introduces optimal

transform to convert the filters into the frequency domain

instead of using DCT. Moreover, to eliminating the redun-

dancy in channel dimensional as well as temporal dimen-

sional, we introduce the channel pruning [14] and combine

it with the proposed optimal transform in Fcn. 9. Therefore,

it is necessary to study the influence of the proposed optimal

transform.

We conduct the ablation experiment on the UCF-101

dataset. We use the 3D-ResNet-18 as the original model.

Table 2. Effectiveness of eliminating redundancy in the frequency

domain of the proposed FDC3D.

Method
Increased err.(%)

2× 4×
Ours

0.81 3.58
(only pruning channels)

Ours
0.42 2.96

(with DCT)

Ours
0.10 2.16

(with optimal transform)

The experimental details are the same as those in Sec-

tion 5.1. Table 2 reports the results of eliminating redun-

dancy in the frequency domain of the proposed FDC3D. If

we do not prune the temporal dimension (i.e. only pruning

the channels), the compressed network suffers 0.81% and

3.58% accuracy drops for 2× and 4× speed-up ratio. By

applying the DCT on the filters, the compressed network

can achieve higher accuracy under the same speed-up ra-

tio, which demonstrate the effectiveness of eliminating the

redundancy in temporal dimensional. However, DCT is de-

signed for natural images and is not perfectly suitable for

the filters in 3D CNNs. By learning the optimal transform

for each layer, the compressed network only suffers 0.10%

and 2.16% accuracy drops for 2× and 4× speed-up ratio.

The results shows the superiority of learning optimal trans-

form for compressing the temporal dimension in 3D CNNs.

5.3. Single Layer Pruning

1 2 3 4 5 6 7

speed-up ratio

0

5

10

15

20

25

in
cr
ea
se
d
er
ro
r(
%)

min 2
DCT

OT

Figure 2. Single layer performance after pruning using different

methods (without fine-tuning). The min ℓ2 denotes directly re-

moving the temporal dimensional of filters with minimal ℓ2-norm.

DCT denotes applying DCT on filters before pruning the temporal

dimensional and OT denotes applying the proposed optimal trans-

form before pruning.

In this subsection, we evaluate the performance of the

proposed method in a single layer to achieve a explicit un-

derstanding of the effectiveness of the frequency domain

compression. We use the 3D-ResNet-18 [11] as the orig-

inal model on the UCF-101 dataset. For convenience, we

1646

only compress the temporal dimensional using the proposed

method using Fcn. 7. We compare our algorithm with two

naive compression strategies on the temporal dimensional:

1. directly removing the temporal dimensional of filters

with smaller ℓ2-norm; 2. using DCT to convert filters into

frequency domain instead of optimal transform.

We perform the pruning in the first convolutionnal layer,

whose filters are of 7 × 7 × 7 size and number of temporal

dimension is 7. The result of single layer pruning is shown

in Figure 2. As the speed-up ratio increases, the error in-

creases. Directly removing the temporal dimension with

minimal ℓ2-norm would largely affect the performance of

3D CNNs, which demonstrate each dimension is important

for the 3D convolution filter. Therefore, we use DCT to

convert the filters into frequency domain, which achieves

better performance under the same speed-up ratio. By uti-

lizing the learned optimal transform, the proposed method

achieve the best performance, which demonstrate the opti-

mal transform is suitable for seeking the group sparsity of

3D convolution filters.

5.4. Pruning for Different Depths

The effectiveness of the proposed method has been veri-

fied on 3D-ResNet-18. To further investigate the generality

of the proposed scheme, we evaluate the proposed FDC3D

on different depths of 3D-ResNet [11] on the UCF-101

dataset. We exploit the proposed method on ResNet-34,

ResNet-50 and ResNet-101. The training settings are the

same as those in Section 5.1.

Table 3. The increased error for different architectures on UCF101

dataset. 2× and 4× denote the speed-up ratios.

Architecture Accuracy (%)
Increased err.(%)

2× 4×
ResNet-34 81.1 0.13 1.94

ResNet-50 81.8 0.06 1.63

ResNet-101 83.5 0.02 1.31

Table 3 shows the compression results on different

depths of 3D-ResNet. As the model becomes deeper, its

accuracy increases. However, their computational cost

and storage are larger. Therefore, we utilize the proposed

method to accelerate these networks. The proposed algo-

rithms can achieve 2× speed-up ratio on various architec-

tures without obvious accuracy drop. Moreover, the in-

creased error becomes smaller for deeper model, which sug-

gests that the larger model has more redundancy and the

proposed can effectively reduce the computation cost of

these heavy models.

5.5. Visualization of filters

To eliminating the redundancy of 3D convolution filters,

we transform the filters into the frequency domain. By ap-

plying optimal transform to the feature maps, the convo-

lution can be directly calculated in the frequency domain.

Though we do not need to transform the compressed filters

back into the spatial domain when calculating 3D convo-

lutions, we reconstruct the convolution filters in the spatial

domain for a more intuitive visualization.

(a) The original convolution filters.

(b) The converted filters in the frequency domain.

(c) The reconstructed convolution filters.
Figure 3. Visualzation of filters on the UCF101 datset. The filters

in red box are reserved.

We visualize the filters of 3D-ResNet-18 [11] in the first

convolution layer on the UCF101 dataset in Figure 3. The

size of original filter is 7 × 7 × 7 with 3 input channels

and 64 output channels. For convenience, we only visual-

ize one filter among these channels. Figure 3 (a) shows the

original filters. As the adjacent input images are highly rel-

evant, the filter to extract the volumetric images also shows

similar pattern for adjacent temporal dimension, which sug-

gests that there are lot of redundancy in 3D convolutional

nerual networks. Conventional 2D CNN compression meth-

ods which pruning the weights with smaller values are thus

not suitable in this situation. Therefore, we introduce opti-

mal transform to convert filters into frequency domain. Fig-

ure 3 (b) shows the filters in the frequency domain trans-

formed by the learned optimal transform. The converted

filters can be easily divided into high-frequency filters and

low-frequency filters. Therefore, we can keep the four fil-

ters with rich information in Figure 3 (b), which is boxed

out with the red lines. Figure 3 (c) shows the filters recon-

structed by the reserved four filters in the frequency domain.

By introducing the optimal transform, we can compress the

3D convolution filters with little loss of information.

5.6. 3D­UNet on Brats 2018

Besides video recognition, another important applica-

tion of 3D CNNs is medical image segmentation. The

Brain Tumor Segmentation (Brats) dataset [23] provides

multi-modal magnetic resonance imaging (MRI) images

and expert-labeled ground truth for the segmentation of

brain tumors. The task of this dataset is to produce segmen-

1647

tation labels of different glioma sub-regions by using the

provided data in per-operative MRI scans. The sub-regions

contain the enhancing tumor, the tumor core and the whole

tumor. The dataset consists of 285 samples and is sepa-

rated into training set with 228 samples and validation set

with 57 samples, respectively. As the medical images are

volumetric, conventional 2D CNNs cannot fully extract the

information from the multi-image inputs. 3D U-Net [3] is

therefore proposed for tackle this medical image segmenta-

tion problem. We implement experiments on the Brats 2018

dataset using the Residual 3D U-Net [18] as the backbone.

We use stochastic gradient descent (SGD) with a initial

learning rate of 0.001, a momentum of 0.9 and a weight de-

cay of 1e− 5 to train the networks. The learning rate is di-

vided by 10 after the validation loss saturates. The network

is trained for 300 epoch. Training samples are reshaped to

160×192×128. The batch size is set as 1. For the proposed

method, pc and pt are set as 1

4
and 1

3
.

Table 4. The dice coefficient (higher is better) when accelerating

3D U-Net on the Brats 2018 dataset. The speed-up ratio is 2× for

the FC3D U-Net.
Model Dice(ET) Dice(WT) Dice(TC)

3D U-Net 0.7974 0.7971 0.6908

FC3D U-Net 0.7832 0.7831 0.6816

Table 4 reports the compression results of the proposed

method on the Brats 2018 dataset. We use the dice co-

efficient as the evaluation index, which is widely used in

the medical segmentation tasks. The dice similarity coef-

ficient is a similarity measure to calculate the spatial over-

lap between two samples. The lower dice coefficient indi-

cates the better performance. The original 3D U-Net model

achieves 0.7974, 0.7971 and 0.6908 dice score for the seg-

mentation of enhancing tumor (ET), whole tumor (WT) and

tumor core (TC), respectively. Then we apply the proposed

FDC3D to the 3D U-Net. As a result, the compressed net-

work achieves 0.7832, 0.7831 and 0.6816 dice score for the

segmentation of ET, WT and TC, which demonstrate the

proposed method can perform well in the volumetric image

segmentation tasks.

To further evaluate the performance of the compressed

network with the original network, we visualize segmenta-

tion results by using 3D U-Net and the frequency domain

compressed 3D U-Net in Figure 4. The enhancing tumor,

tumor core and whole tumor are marked as blue, green

and yellow, respectively. Figure 4 (a) shows the ground

truth and Figure 4 (b) shows the segmentation results of

3D U-Net. As a result, the 3D U-Net can successfully seg-

ment different parts for the medical volumetric MRL im-

ages. Considering that the heavy computation cost of 3D

U-Net, we exploit the proposed FDC3D to eliminate its re-

dundancy. Figure 4 (c) shows the segmentation result of

the compressed network. The proposed method can achieve

(a) Ground truth (b) 3D U-Net (c) FC3D U-Net
Figure 4. Example segmentation results on the Brats 2018 dataset.

similar result with the original network while with fewer

parameters and lower computation cost.

6. Conclusions

As videos become ubiquitous due to the growing of mul-

timedia on Internet, the 3-dimensional convolutional neu-

ral networks have been proposed to tackle multi-frame or

multi-image datasets. However, 3D CNNs requires enor-

mous computation resources, which prevents its usage in

edge devices such as cameras and mobile phones. Here

we present an effective compression method to eliminate

the redundancy of 3D convolution filters in the frequency

domain, namely FDC3D. The 3D convolution filters are

converted into the frequency domain with structural spar-

sity in temporal dimensional utilizing the learned optimal

transform, where the redundant parameters can be easily re-

moved. Then the convolution can be calculated in the fre-

quency domain by also applying optimal transform to the

feature maps. The redundancy in the channel dimensional

is also considered to achieve higher speed-up ratio. Detailed

analysis including ablation study and visualization are con-

ducted to demonstrate the effectiveness of the proposed al-

gorithm. Experiments on action classification and medi-

cal image segmentation shows that the proposed FDC3D

achieve higher performance than the state-of-the-art meth-

ods.

Acknowledgement

We thank anonymous reviewers for their helpful com-

ments. This work is supported by National Nat-

ural Science Foundation of China under Grant No.

61876007, 61872012, National Key R&D Program of

China (2019YFF0302902), Beijing Academy of Artificial

Intelligence (BAAI), and Australian Research Council un-

der Project DE-180101438.

1648

References

[1] Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Dis-

crete cosine transform. IEEE transactions on Computers,

100(1):90–93, 1974. 3

[2] Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q

Weinberger, and Yixin Chen. Compressing convolutional

neural networks. arXiv preprint arXiv:1506.04449, 2015. 2

[3] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp,

Thomas Brox, and Olaf Ronneberger. 3d u-net: learning

dense volumetric segmentation from sparse annotation. In

International conference on medical image computing and

computer-assisted intervention, pages 424–432. Springer,

2016. 2, 3, 8

[4] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Train-

ing deep neural networks with weights and activations con-

strained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

2

[5] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann Le-

Cun, and Rob Fergus. Exploiting linear structure within con-

volutional networks for efficient evaluation. In NIPS, 2014.

2

[6] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. In CVPR, pages 1933–1941, 2016. 2

[7] Shupeng Gui, Haotao N Wang, Haichuan Yang, Chen Yu,

Zhangyang Wang, and Ji Liu. Model compression with ad-

versarial robustness: A unified optimization framework. In

NeuriPS, pages 1283–1294, 2019. 3

[8] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015. 2, 4

[9] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

NIPS, 2015. 2

[10] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Learn-

ing spatio-temporal features with 3d residual networks for

action recognition. In Proceedings of the IEEE International

Conference on Computer Vision, pages 3154–3160, 2017. 2,

3

[11] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can

spatiotemporal 3d cnns retrace the history of 2d cnns and im-

agenet? In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, pages 6546–6555, 2018. 1,

2, 6, 7

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 1

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 1, 2, 3

[14] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1389–1397, 2017. 3, 4, 6

[15] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung

Tang. Network trimming: A data-driven neuron pruning ap-

proach towards efficient deep architectures. arXiv preprint

arXiv:1607.03250, 2016. 3

[16] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolu-

tional neural networks for human action recognition. IEEE

transactions on pattern analysis and machine intelligence,

35(1):221–231, 2013. 1, 2

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, 2012. 1

[18] Kisuk Lee, Jonathan Zung, Peter Li, Viren Jain, and H Sebas-

tian Seung. Superhuman accuracy on the snemi3d connec-

tomics challenge. arXiv preprint arXiv:1706.00120, 2017.

8

[19] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. arXiv

preprint arXiv:1608.08710, 2016. 2, 5, 6

[20] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In ECCV, 2016. 1

[21] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, 2015. 1

[22] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

In Proceedings of the IEEE international conference on com-

puter vision, pages 5058–5066, 2017. 2, 3, 4

[23] Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree

Kalpathy-Cramer, Keyvan Farahani, Justin Kirby, Yuliya

Burren, Nicole Porz, Johannes Slotboom, Roland Wiest,

et al. The multimodal brain tumor image segmentation

benchmark (brats). IEEE transactions on medical imaging,

34(10):1993–2024, 2014. 7

[24] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,

and Jan Kautz. Pruning convolutional neural networks for re-

source efficient inference. arXiv preprint arXiv:1611.06440,

2016. 2, 5, 6

[25] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification us-

ing binary convolutional neural networks. arXiv preprint

arXiv:1603.05279, 2016. 2

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NIPS, 2015. 1

[27] Oren Rippel, Jasper Snoek, and Ryan P Adams. Spectral

representations for convolutional neural networks. In NIPS,

2015. 3

[28] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 115(3):211–252,

2015. 1

[29] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. ICLR,

2015. 1, 3

[30] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.

Ucf101: A dataset of 101 human actions classes from videos

in the wild. arXiv preprint arXiv:1212.0402, 2012. 5

1649

[31] Du Tran, Lubomir D Bourdev, Rob Fergus, Lorenzo Torre-

sani, and Manohar Paluri. C3d: generic features for video

analysis. CoRR, abs/1412.0767, 2(7):8, 2014. 2, 5

[32] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Im-

proving the speed of neural networks on cpus. In Deep

Learning and Unsupervised Feature Learning Workshop,

NIPS, 2011. 2

[33] Huan Wang, Qiming Zhang, Yuehai Wang, and Roland Hu.

Structured deep neural network pruning by varying regular-

ization parameters. ArXiv preprint: 1804.09461, 2018. 3

[34] Yunhe Wang, Chang Xu, Shan You, Dacheng Tao, and Chao

Xu. Cnnpack: Packing convolutional neural networks in the

frequency domain. In NIPS, 2016. 2

[35] Junru Wu, Yue Wang, Zhenyu Wu, Zhangyang Wang, Ashok

Veeraraghavan, and Yingyan Lin. Deep k-means: Re-

training and parameter sharing with harder cluster assign-

ments for compressing deep convolutions. 2018. 3

[36] Zhaohui Yang, Yunhe Wang, Chuanjian Liu, Hanting Chen,

Chunjing Xu, Boxin Shi, Chao Xu, and Chang Xu. Legonet:

Efficient convolutional neural networks with lego filters. In

ICML, pages 7005–7014, 2019. 3

[37] Yuxin Zhang, Huan Wang, Yang Luo, Lu Yu, Haoji Hu,

Hangguan Shan, and Tony QS Quek. Three-dimensional

convolutional neural network pruning with regularization-

based method. In 2019 IEEE International Conference on

Image Processing (ICIP), pages 4270–4274. IEEE, 2019. 3,

5, 6

1650

