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Abstract

Person Search is a practically relevant task that aims to

jointly solve Person Detection and Person Re-identification

(re-ID). Specifically, it requires to find and locate all in-

stances with the same identity as the query person in a set

of panoramic gallery images. One major challenge comes

from the contradictory goals of the two sub-tasks, i.e., per-

son detection focuses on finding the commonness of all per-

sons while person re-ID handles the differences among mul-

tiple identities. Therefore, it is crucial to reconcile the rela-

tionship between the two sub-tasks in a joint person search

model. To this end, we present a novel approach called

Norm-Aware Embedding to disentangle the person embed-

ding into norm and angle for detection and re-ID respec-

tively, allowing for both effective and efficient multi-task

training. We further extend the proposal-level person em-

bedding to pixel-level, whose discrimination ability is less

affected by misalignment. We outperform other one-step

methods by a large margin and achieve comparable perfor-

mance to two-step methods on both CUHK-SYSU and PRW.

Also, our method is easy to train and resource-friendly, run-

ning at 12 fps on a single GPU.

1. Introduction

In visual surveillance systems, the most fundamental

problems are 1) how to locate persons within images, and

2) how to determine, if a query person is present in a par-

ticular set of images, typically across different cameras.

The above two problems are usually investigated as the two

independent tasks of Pedestrian Detection and Person Re-

identification (re-ID). However, in practical applications, it

is favorable to solve them in a joint framework, not only for

convenience and high efficiency, but also for better perfor-

mance. The task of Person Search, as introduced in [46],
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Figure 1. Illustration on how person and background represen-

tations are scattered in the embedding space. Black arrows de-

note background while colorful ones denote persons with different

identities. Gray surfaces are the decision boundary for person and

background. (a) For L2 normalized embeddings, the inter-class

angle distances for different persons are squeezed by backgrounds.

(b) Norm-aware embeddings separate persons and background by

norms and discriminate person identities by angles, thus the con-

strain on inter-class distances is relaxed.

has the goal to retrieve a query person from a gallery of

uncropped images captured by different cameras. Person

search inherits difficulties from both re-ID and detection,

e.g. viewpoint and illumination variance, cluttered back-

ground, occlusion, changing poses, etc., and is thus more

challenging than either of the two tasks alone.

A standard way to address person search is to use a two-

step strategy, i.e., cascading a pedestrian detector and a re-

ID feature extractor trained separately (e.g. [61, 3, 21, 16]).

All candidate persons are cropped from the gallery images

according to the detector, and fed into a standard person re-

ID model. In contrast, others propose to share the backbone

network between detection and re-ID [44, 42, 26, 2, 30, 47].

Given an uncropped image, these models output bounding

box coordinates and the corresponding L2 normalized iden-

tity embeddings for all the persons within. These works ex-

tend e.g. Faster R-CNN [34] by stacking an additional fully-
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connected layer to produce L2 normalized embeddings and

train the whole model jointly with standard detection losses

and an identity classification loss. Nonetheless, they suffer

from the conflicting objectives of detection and re-ID dur-

ing training, as pointed out by [3]. An intuitive illustration

for L2 normalized embeddings is shown in Fig. 1(a). The

detection classification objective tends to squeeze the em-

bedding space for all persons regardless of the identities, so

as to better separate from background. Therefore, sharing

the feature space with background instances limits the angu-

lar margin between different identities. As a consequence,

due to the inherent trade-off between the two tasks, their

detection and re-ID performances are typically both lower

than the separately-trained counterparts.

In this work, our goal is to develop a light-weight yet

accurate model for person search. We adopt the one-step

strategy, i.e., jointly optimize detection and re-ID in an end-

to-end model, and relieve the objective contradictory prob-

lem by explicit decomposition. Specifically, we share the

representations for detection and re-ID completely but de-

compose the features in the polar coordinate system, where

each embedding vector is decomposed to radial norm r and

angle θ. The radial norm r is used for pedestrian detec-

tion and could be interpreted as the detection confidence

of a bounding box. The angle term θ measures the cosine

similarity between persons, which is widely used in per-

son re-ID. The principle idea is demonstrated in Fig. 1(b).

During training, the embedding norms are optimized with a

binary classification loss, and the angles are optimized with

an OIM loss [44], which is a multi-class cross-entropy loss

with normalized softmax weights. During inference, we fix

the norm of the query person to 1 and calculate its simi-

larity (dot product) to an arbitrary proposal, which is de-

termined by both the norm and angle. Therefore, a high

value of similarity indicates both high detection confidence

and high identity similarity. Since the embedding norm is

explicitly utilized, we call our method norm-aware embed-

ding (NAE).

Another challenge for joint detection and re-ID is the

spatial misalignment problem. Typically, when we train a

detector, one proposal is sampled as positive when it has a

larger Intersection over Union (IoU) than 0.5 to any ground

truth box. This relatively loose matching criterion makes

sure to sample enough positives in each mini-batch, but has

a negative effect as it includes many mis-aligned samples.

Those samples with low alignment quality are harmful for

re-ID performance [61] as the included background clutter

usually plays a negative role on the features’ discrimination

ability. In order to alleviate this problem, we propose to

re-weight features of each local patch according to its con-

fidence of belonging to a person. Specifically, we perform

fine-grained person/background classification for each pro-

posal, i.e., we predict for each pixel location the confidence

of belonging to a person, which is then used as the spatial at-

tention weight for feature aggregation. After re-weighting,

the features used for re-ID are expected to focus more on the

person area while suppressing the background clutter, and

thus become more discriminative for identity classification.

Our approach using the above fine-grained classification is

compatible with the norm-aware embedding, hence called

NAE+.

In summary, the main contributions of this work are as

follows:

• We propose the norm-aware embedding method

(NAE) for person search. NAE mitigates the objec-

tive contradictory problem by decomposing the feature

embedding into norm and angle for detection and re-ID

respectively.

• A pixel-wise extension, denoted as NAE+, is proposed

to deal with the misalignment problem for end-to-end

person search.

• Our methods are fast, explainable and achieve com-

petitive performance on standard benchmarks (CUHK-

SYSU and PRW).

2. Related Work

Person Search. Recently, person search has raised a lot

of interest to researchers in the computer vision community.

Zheng et al. [61] first make a thorough evaluation on a num-

ber of combinations of different detectors and re-identifiers.

They also propose a cascaded fine-tuning strategy for train-

ing and Confidence Weighted Similarity (CWS) for person

matching. Lan et al. [21] analyze the resolution diversity

problem in person search and solve the multi-scale match-

ing problem by Cross-Level Semantic Alignment (CLSA).

Chen et al. [3] raise attention on the contradictory objective

problem in person search, and propose to avoid it by sepa-

rating detection and re-identification. Han et al. [16] point

out that the bounding boxes produced by a vanilla detector

are not optimal for re-ID. Thus they develop an RoI trans-

form layer that enables gradient flow from the re-identifier

to the detector for localization refinement.

In contrast to the above two-step methods, other works

aim to solve the person search problem more efficiently us-

ing one-step methods. For example, the Online Instance

Matching (OIM) loss [44] and Center Loss [42, 40] are

used to address the ill-conditioned training problem and en-

hance the feature discrimination power. Yan et al. [47] and

Munjal et al. [30] propose to enrich the features with sur-

rounding persons or the query person respectively. In [26]

and [2], they discard the proposal generation operation and

search the query person directly on the uncropped images

by sequential decision making or reinforcement learning.

In this paper, we also adopt the one-step strategy. Based

on the OIM model [44], we improve the feature learning

with our norm-aware embedding. Additionally, the final
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similarity calculation of our method is similar to CWS.

Different from the original form which is used in a post-

processing step, CWS in our method is naturally induced

from the explicit decomposition in the polar coordinate sys-

tem. Therefore, it is also useful to guide the training process

for better feature learning.

Person re-ID. Early person re-ID models focus on design-

ing features manually [37, 11, 58, 24] and learning effec-

tive distance metrics [20, 23, 50]. Recently, CNNs have

become the de facto standard for building a re-ID model.

Such models are usually trained as a feature extractor with

siamese loss [49, 22, 1, 36, 27, 45], triplet loss [7, 4] or

cross-entropy loss [43, 59, 61, 10, 41]. Instead of averaging

the convolutional features from all locations, latest methods

extract part-level features and join them together as the final

person embedding [35, 39, 57, 48]. These methods usually

partition the feature maps into horizontal stripes for fine-

grained feature learning. Our pixel-wise extension of the

norm-aware embedding is also inspired by this approach.

Instead of dividing the feature maps into blocks, we use a

pixel-wise probability map to re-weight the features at ev-

ery location, which is further supervised by a segmentation

loss with bounding box annotations.

Pedestrian Detection. Similar to person re-ID, early

pedestrian detection methods are also based on hand-crafted

features [12, 8, 9, 51, 54]. Deep neural networks, as ver-

satile feature extractors, have dominated this task in re-

cent years [52, 53, 32, 31]. Successful general object

detection models are adapted for pedestrians, such as R-

CNN [13, 52, 53] and Faster R-CNN [34, 55, 56]. In this

work, we also build our model based on the adapted Faster

R-CNN, which is extensible for fine-grained feature learn-

ing and reaches a sweet spot between speed and accuracy.

Embedding Norms. It is common practice to normal-

ize the deep embeddings with unit length in face recog-

nition [28, 29, 6], person re-ID [10, 41] and person

search [44]. To the best of our knowledge, only two pa-

pers discuss the efficacy of embedding norms [15, 38]. Guo

et al. [15] find that the norm of the softmax weight vector

is related to the sample number of this class. They further

propose to promote the norms of underrepresented classes

in order to improve the performance of one-shot face recog-

nition. Wang et al. [38] also use normalized embeddings

to represent face identities. Additionally, they regress the

norm of the embedding to the age of the given person by

reducing the mean squared error between these two during

training. However, the norm information is then ignored

for age-invariant face recognition when matching identities.

Different from the above two works, our method makes ex-

plicit use of the embedding norms rather than employing

them as a regularization term during training. By using the

norm for the classification task (person vs. background), we

endow the norm with a clear semantic meaning, i.e., the de-

person/bg

classification

box regression

RoIAlignconv conv identity 

classification

Multi-task Head

Figure 2. Overall architecture for one-step methods based on

Faster R-CNN [34]. Black arrows denote the forward pass and col-

orful ones denote different supervision signals. Region Proposal

Net is omitted for simplicity.

tection confidence, which is essential for person search.

3. Methodology

A typical one-step person search method based on Faster

R-CNN [34] is illustrated in Fig. 2. A multi-task head for

localization, detection and re-ID is added on top of the top

convolutional features of Faster R-CNN.

The first and most representative one-step method is

OIM [44], where an L2 normalized fully connected layer

is concatenated to the global average pooled convolutional

features. As is shown in Fig. 3(a), the box regression and

region classification losses remain the same as in Faster

R-CNN, with an identity classification loss supervising

the person embeddings produced by the fully connected

layer. In contrast, our norm-aware embedding method, il-

lustrated in Fig. 3(b), removes the original region classifi-

cation branch and uses the embedding norm as the binary

person/background classification confidence.

In this section, we will describe the norm-aware embed-

ding head in detail and present the pixel-wise extension for

fine-grained feature learning.

3.1. NormAware Embedding

On top of the final convolutional features, we first apply

global average pooling (GAP) and a fully connected (FC)

layer to get the d dimensional feature vector x, where d is

fixed to 256 following [44]. Then x is decomposed explic-

itly in the polar coordinate system as:

x = r · θ, (1)

where norm r ∈ [0,+∞) and angle θ is a 256-dimensional

vector with unit length.

To interpret the norm r as the detection confidence, we

use a monotonic mapping to squeeze its magnitude to the

range of [0, 1]:

r̃ = σ

(

r − E[r]
√

Var[r] + ǫ
· γ + β

)

, (2)
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Figure 3. Multi-task head architecture for Online Instance Match-

ing (OIM), norm-aware embedding (NAE) and its pixel-wise ex-

tension (NAE+). Dashed arrows indicate that the procedure is only

enabled during inference.

where σ is the sigmoid activation, within which is a batch

normalization [19] layer.

The original embedding x is then scaled into our norm-

aware embedding x̃:

x̃ = r̃ · θ (3)

This procedure is represented by the dashed arrows in

Fig. 3(b).

Inference & Matching. For a query person, we first ex-

tract its embedding x̃q by removing the RPN module and

setting the proposal coordinate with the given bounding

box. Since the query bounding box definitely contains a

person, we manually set the norm of x̃q to 1. Then, the sim-

ilarity of the query person and an arbitrary detected person

xg in the gallery is calculated as follows:

sim(x̃q, x̃g) = x̃
T
q x̃g = r̃g · θ

T
q θg (4)

In the above equation, θ
T
q θg is the cosine similarity be-

tween the query and the gallery person. Thus, the final simi-

larity equals the cosine similarity weighted by the detection

confidence, which is especially useful to suppress false de-

tections. Meanwhile, it also shares the same formation as

Class Weighted Similarity (CWS) [61]. However, instead

of just using CWS as a post-processing step, we leverage

it to explicitly decompose the embedding for the detection

and re-ID objectives during training. We further demon-

strate the efficacy of CWS in Sec. 4.3.

Training. As can be seen from Eq. 4, our norm-aware

embedding is able to discriminate person identity as well as

suppress false detections. Therefore, it can be supervised by

re-ID and detection signals simultaneously during training.

Specifically, the detection signal is cast on the scaled norm

r̃ and formulated as a binary classification:

Ldet = −y log(r̃)− (1− y) log(1− r̃) (5)

where y is a {0, 1} label indicating if this proposal is consid-

ered as background or person. Meanwhile, we use an OIM

loss [44] Lreid on the normalized angular vector θ, which is

a multi-class cross-entropy loss that minimizes the angular

margin for the same identity and maximizes that of different

identities. The bounding box regression loss Lbox remains

identical to the form defined by Faster R-CNN. The three

loss functions are illustrated by the yellow, green and blue

arrows respectively in Fig. 3(b). Together with RPN classi-

fication and regression losses, they are jointly optimized by

Stochastic Gradient Descent (SGD).

3.2. PixelWise Extension

In Sec. 3.1, the convolutional features of each proposal

are collapsed into a vector by global average pooling, los-

ing spatial information. In this way, the person embeddings

would suffer from distracting noise of the misaligned re-

gions (the black region in Fig. 4). To address this problem,

we propose NAE+, which is a pixel-wise extension of NAE.

We carefully leverage the spatial information via highlight-

ing the body part and suppressing the misaligned regions.

Specifically, we first predict a 256×k×k tensor from the top

feature map with a 1× 1 convolutional layer. Then the 256-

dimensional vectors at all locations can be normalized and

scaled into norm-aware embeddings, while still preserving

the spatial structure. An illustration is shown in Fig. 3(c).

In this way, the mapped norm r̃i at each location acts as a

spatial attention, calibrating the per-pixel importance before

the tensor is collapsed into the final matching vector.

The training of NAE+ can be formulated in a seman-

tic segmentation manner, i.e., supervising all the mapped

norms with a per-pixel cross-entropy loss. Different from

the standard semantic segmentation approach, the ground

truth class map is not available in person search datasets,

hence we need to generate the coarse ground truth from

bounding box annotations. The generation process is shown

in Fig. 4. For each RoI, we set its intersection to the ground

truth bounding box as 1 and leave the rest as 0. Bilinear
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Figure 4. Pixel-wise label generation from bounding box annota-

tion. Red box is the ground truth while blue box is the proposal.

Black region is marked as 0, white being one and gray being val-

ues in between. Bilinear interpolation is used to match the label

size to the feature map size.

interpolation is used to resize the RoI box into k × k. The

loss is then formulated as follows:

Ldet+ = −
1

k2

k2

∑

i=1

yi log(r̃i) + (1− yi) log(1− r̃i) (6)

where yi is the generated per-pixel label with its value lying

between [0, 1]. The label generation procedure is illustrated

in Fig. 4.

During inference, even though the per-pixel probability

map is trained, a single probability is needed to measure the

detection confidence. A direct approach is to use the av-

eraged probability Ei[r̃i] across all spatial locations. How-

ever, we find through our experiments that this approach

works poorly, i.e., the confidence of a valid bounding box

is too low since the mean value would be diluted by the

inevitable background regions with low confidence. We ad-

dress this problem by simply stretching the magnitude of

Ei[r̃i]. Specifically, for each image, all the detection con-

fidences are divided by the maximum value among them,

such that all of them are expanded and still range between

0 and 1.

Compared to NAE, NAE+ does not increase the number

of parameters. It only adds a small overhead on computa-

tion, while improving the person search accuracy as demon-

strated by experiments.

4. Experiments

In this section, we perform a thorough evaluation of our

NAE and NAE+. We begin by introducing the datasets

and evaluation protocols, after which we describe the im-

plementation in detail. Comprehensive analysis and visual

inspections are conducted to explore the efficacy of our

method. We further compare our method with the state-of-

the-arts w.r.t. both search performance and running speed.

4.1. Datasets and Settings

CUHK-SYSU [44] is a hybrid dataset consisting of city

scenes shot by a moving camera and screenshots of movies.

A total of 18,184 uncropped images and 96,143 bound-

ing boxes are collected, among which 11,206 images and

55,272 pedestrians are used for training. The testing set in-

cludes 2,900 query persons and 6,978 gallery images. For

each query, different gallery sizes are defined by the bench-

mark to assess the scaling ability of different models. If not

specified, we use the gallery size of 100 by default.

PRW [61] is extracted from video frames recorded by 6 sta-

tionary cameras that are installed at different locations in a

university campus. There are 11,816 frames with 43,110
bounding boxes, where 34,304 of them are annotated with

932 identities and the rest marked as unknown identities.

In the training set, there are 5,704 images with 482 identi-

ties. The testing set contains 2,057 query persons and each

of them are to be searched in a gallery with 6,112 images.

Therefore, the gallery size is significantly larger than the

default setting of CUHK-SYSU.

Evaluation Protocol. Similar to person re-ID [60], Mean

Average Precision (mAP) and Cumulative Matching Char-

acteristics (CMC top-K) are standard metrics used to mea-

sure person search performance. However, a candidate in

the ranking list would only be considered correct if its IoU

to the ground truth bounding box is larger than 0.5, which

is the main difference from the re-ID approach.

4.2. Implementation Details1

Our model consists of three major parts: a stem net-

work for spatial feature extraction, a region proposal net-

work (RPN) for candidate bounding box sampling and a

head network for proposal classification and regression.

We adopt an ImageNet-pretrained [5] ResNet-50 [18]

as our backbone network, with the foremost four residual

blocks, i.e., ‘conv1’ to ‘conv4’, used as the stem network.

A standard RPN is built on top of the stem network to

generate pedestrian candidate bounding boxes. We follow

the anchor settings in [25] and sample the positive proposals

with a lower bound IoU of 0.5 to the ground truth, and the

IoU interval for negative proposals is [0.1, 0.5).
Next, the proposals are cropped and reshaped to 14× 14

by an RoIAlign layer [17]. The head network, which is the

‘conv5’ residual block of ResNet-50, is used to transform

the proposals into 2048-dimensional 7 × 7 feature maps.

Task-specific heads for bounding box regression and norm-

aware embedding generation are added on top of the feature

maps. We set the spatial size k to 7 for NAE+, which is

depicted in Fig. 3(c).

During training, we sample 5 images for each batch,

which are resized to 900 × 1,500. Our model is trained

on a single NVIDIA Tesla P40 GPU for 22 epochs, with an

initial learning rate of 0.003 which is progressively warmed

up during the first epoch and decreased by 10 at the 16-th

epoch. The momentum and weight decay of SGD are set to

1https://github.com/DeanChan/NAE4PS
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Detector Recall AP Re-idetntifier mAP top-1

OIM-base 89.3 79.7
OIM-base 84.4 86.1

NAE 90.0 91.8

NAE 92.6 86.8
OIM-base 85.9 87.6

NAE 91.5 92.4

GT 100 100
OIM-base 90.7 91.2

NAE 93.5 94.0

Table 1. Analytical experiment results on CUHK-SYSU. The up-

per block uses the detected boxes of OIM-base, while the lower

block uses the NAE detection results.

Method mAP top-1 ∆mAP ∆top-1

OIM-base 84.4 86.1

OIM-base w/ CWS 87.1 88.5 +2.7 +2.4

NAE 91.5 92.4

NAE w/o CWS 89.9 91.3 -1.6 -1.1

Table 2. Ablation experiments on Class Weighted Similarity.

0.9 and 5 × 10−4 respectively. As for NAE+, we initialize

the weights with a trained NAE model by converting the FC

layer weights into 1×1 convolution weights. It is then fine-

tuned for 11 epochs. The learning rate is set to 0.003 for the

first 8 epochs, and then decayed to 0.0003 for the remaining

3 epochs.

At test time, the number of proposals is set to 300. Non-

maximum Suppression [14] with a threshold of 0.4 is used

to filter out redundant boxes.

4.3. Analytical Experiments

As mentioned in the introduction section, person search

accuracy is affected by both the detection quality and the

identity recognition accuracy. In order to better understand

how well our NAE method handles the above two sub-tasks,

we disentangle the person search into detection and re-ID

and evaluate their performances individually.

We implement the analysis on our norm-aware embed-

ding and the OIM baseline model. Four variants are evalu-

ated, namely

• OIM-base: Our re-implementation of the OIM

model [44] which shares the same architecture settings

as our NAE model described in Sec. 4.2. Benefiting

from large input image size [56], dense anchor set-

ting [25] and RoIAlign [17], our OIM-base is signif-

icantly better than the original implementation.

• OIM-base w/ CWS: Using the trained model of OIM-

base and apply Class Weighted Similarity [61] when

matching gallery persons to the query.

• NAE: Our norm-aware embedding model as described

in Sec. 3.1.

• NAE w/o CWS: Identical to NAE but only using the

normalized embedding θ without the scale operation

Figure 5. Pixel-wise norm predictions of NAE+ on CUHK-SYSU.

Warmer color represents larger norm, which indicates a higher

probability of this position being a person. The detection perfor-

mance of NAE+ is 93.0% and 82.1% w.r.t. Recall and AP, remain-

ing similar to to that of NAE.

(the vector marked in green in Fig. 3(b)).

All models are trained on CUHK-SYSU and tested under a

gallery size of 100.

For pedestrian detection, we use Recall and Average Pre-

cision (AP) as the performance metrics. For person re-ID,

mAP and top-1 accuracy are adopted. They are the same

as in person search, but the embeddings for matching are

extracted differently. We remove the RPN of the trained

model and set the proposals manually with the boxes to be

inspected. Therefore, an end-to-end person search model

serves solely as a re-ID feature extractor.

The evaluation results are collected in Tab. 1 and Tab. 2,

from which we make the following conclusions.

The detection quality of NAE is better. The detection

results are recorded in the second column of Tab. 1, from

which we can see that our NAE model achieves 92.6% and

86.8% w.r.t. Recall and AP, surpassing OIM-base by 3.3
and 7.1 pp. respectively. The better detection quality indi-

cates that the detection objective in NAE is optimized more

smoothly and effectively than in our OIM-base. The final

person search performance of NAE is also better than OIM-

base, thanks to the high-quality bounding boxes.

NAE is more discriminative for re-identification. In the

lower block of Tab. 1, we can see that NAE achieves 91.5%
and 92.4% w.r.t. mAP and top-1, outperforming OIM-base

with NAE detected boxes by 5.6 and 4.8 pp. The perfor-

mance improvement also holds when switching the bound-

ing boxes to the ground truth boxes or OIM-base detections,

as is shown in the upper and lower block of Tab. 1. These

results suggest that NAE has better re-ID accuracy, which

indicates that the discrimination power of NAE is superior

to OIM.

Class Weighted Similarity is helpful. In Tab. 2, we can

see that adding CWS to OIM-base yields a gain of +2.7 and
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Method

CUHK-SYSU PRW

mAP top-1 mAP top-1

o
n
e-

st
ep

OIM [44] 75.5 78.7 21.3 49.9

IAN [42] 76.3 80.1 23.0 61.9

NPSM [26] 77.9 81.2 24.2 53.1

RCAA [2] 79.3 81.3 - -

CTXGraph [47] 84.1 86.5 33.4 73.6

QEEPS [30] 88.9 89.1 37.1 76.7

OIM-base (ours) 84.4 86.1 34.0 75.9

NAE (ours) 91.5 92.4 43.3 80.9

NAE+ (ours) 92.1 92.9 44.0 81.1

tw
o
-s

te
p

DPM+IDE [61] - - 20.5 48.3

CNN+MGTS [3] 83.0 83.7 32.6 72.1

CNN+CLSA [21] 87.2 88.5 38.7 65.0

FPN+RDLR [16] 93.0 94.2 42.9 70.2

Table 3. Comparison with state-of-the-arts. One-step methods are

gathered in the upper block while two-step methods are in the

lower block. Best results in each block are marked in bold.

+2.4 pp. for mAP and top-1 respectively. Meanwhile, re-

moving CWS from NAE makes mAP and top-1 drop from

91.5 to 89.9 and 92.4 to 91.3. These results confirm the pos-

itive efficacy of CWS. As a naturally induced form of NAE,

CWS also contributes to the person search performance of

our method.

In conclusion, our norm-aware embedding successfully

alleviates the contradictory objectives of detection and re-

ID by decomposing embedding explicitly into norm and an-

gle. The detection and re-ID sub-tasks both achieve better

results than the baseline. As a result, the final person search

performance of our method is remarkable, which can be at-

tributed to the improvements on the two sub-tasks.

4.4. Visualized Inspections

To inspect the efficacy of the NAE+ method, we visu-

alize the output probability maps in Fig. 5. Specifically,

we remove the RPN and RoIAlign modules from a trained

NAE+ model and forward the input image directly through

the whole network. The output probability map, composed

of the mapped norms r̃i at each location, is upsampled with

bilinear interpolation to match the input image size. We

then represent the probability maps with different colors and

overlay them with the corresponding input images. We ob-

serve from Fig. 5 that NAE+ successfully highlights the hu-

man body region and suppresses background clutters, which

makes the embedding more robust to noises. As is shown

in Tab. 3, NAE+ outperforms NAE consistently on CUHK-

SYSU and PRW.

We also show some qualitative search results in Fig. 7.

The selected cases are representative hard ones, including

crowd overlapping (case a, f), confusing appearance (c, d,

f, g), viewpoint change (c, d, f, g) and obstacle occlusion
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Figure 6. Performance comparison on CUHK-SYSU with varying

gallery sizes. Dashed lines represent two-step methods while solid

lines denote one-step methods.

GPU (TFLOPs) MGTS QEEPS NAE NAE+

K80 (4.1) 1269 - 663 606

P6000 (12.6) - 300 - -

P40 (11.8) - - 158 161

V100 (14.1) - - 83 98

Table 4. Speed comparison on different GPUs. Running time is

measured in milliseconds.

(e, g). Our NAE method successfully localize and match

the query person in most of the hard cases, although there is

still room to improve the performance on extreme instances

like (f) and (g). Moreover, our NAE+ method is better than

NAE as it returns the correct result for all scenarios.

4.5. Comparison to the Stateofthearts

In this section, we compare our NAE and NAE+ to state-

of-the-art methods on person search in Tab. 3. All the re-

sults are gathered according to their search strategies, i.e.,

one-step methods in the upper block and two-step method

in the lower block. ‘DPM’, ‘CNN’ and ‘FPN’ stand for

Deformable Part Model [14], ResNet-50-based Faster R-

CNN [34] and Feature Pyramid Network [25] respectively.

They are individually trained as vanilla pedestrian detectors.

Comparison on CUHK-SYSU. As shown in Tab. 3, both

NAE and NAE+ outperform all other one-step methods,

including the strong counterparts QEEPS [30] and CTX-

Graph [47]. Note that their forward pass requires some

computationally heavy operations, e.g. siamese attention

and additional graph convolutions. In contrast, our method

only needs a single forward pass, consuming less comput-

ing resources and memory. Our method is also comparable

to the top two-step method ‘FPN + RDLR’ [16], which uses

two backbones for detection and re-ID respectively. We

believe the performance-boosting components of [16], i.e.,

feature pyramid network, RoI transform layer and proxy

triplet loss, could also bring improvements to our method,

which is however beyond the scope of this paper.

In Fig. 6, we further evaluate the performance under

larger search scopes. As is defined in [44], each query per-
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Q        OIM            NAE           NAE+              Q               OIM                          NAE                     NAE+

Figure 7. Top-1 search results for several hard samples. ‘Q’ stands for the query image, for each we show the top-1 match given by OIM-

base, our NAE and NAE+. Green/red boxes denote the correct/wrong results respectively. (a)∼(e) are cases where OIM-base fails while

NAE and NAE+ succeed. (f) and (g) are failure cases for both OIM-base and NAE, except for NAE+.

son is matched in galleries with an increasing size. From

Fig. 6 we can see that the mAP for all methods decrease

monotonically as the gallery size becomes larger. This phe-

nomenon indicates that it is more difficult to match a per-

son in larger scopes, which is a typical challenge in real-

world applications. Our method outperforms all the one-

step methods by a considerable margin, while achieving

similar mAP to the two-step methods at all scopes.

Comparison on PRW. In the right column of Tab. 3, we

summarize the results of our NAE and NAE+ together with

other competitive methods. Our NAE method surpasses

all previous methods, including both one-step and two-step

ones. In particular, our NAE outperforms the second best

method by a large margin of around 9 pp. w.r.t. top-1 ac-

curacy. Compared to CUHK-SYSU, PRW consists of less

training data and larger gallery size, thus it is more challeng-

ing. Our NAE method behaves better on PRW, indicating

that our method is more robust with reduced training data.

Moreover, the pixel-wise extension NAE+ further improves

over NAE by 0.7 and 0.2 pp. w.r.t. mAP and top-1 metrics,

setting the new state-of-the-art on PRW.

Timing. We compare the speed of different methods in

Tab. 4. Since different methods are implemented on dif-

ferent GPUs, we show the Tera-Floating Point Operation

per-second (TFLOPs) beside each GPU for fair compari-

son. Our NAE and NAE+ are implemented in PyTorch [33]

without bells and whistles. We test the models with an input

image size as 900× 1500, which is the same as MGTS and

QEEPS [30]. We can see from Tab. 4 that our method is

around 2 times faster than the two-step method MGTS [3].

Our method is also 2 times faster than QEEPS, which is the

current state-of-the-art one-step method. Finally, our NAE

and NAE+ methods cost 83 and 98 milliseconds per-frame

respectively on a V100 GPU. The fast speed of our method

reveals its great potential for real-world applications.

5. Conclusion

In this paper, we propose an embedding decomposing

method to deal with the contradictory objective problem of

person search. Person embeddings are disintegrated into

norm and angle, which are used to measure the detection

confidence and identity similarity accordingly. In this way,

the detection and re-ID sub-tasks both get higher perfor-

mance, which in result improves the person search accu-

racy. We further extend our method from region-level to

pixel-level in order to extract more fine-grained informa-

tion. Thorough experiments on two standard benchmarks

confirm the advantages of our method in terms of both ac-

curacy and speed.
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