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Abstract

Employing attention mechanisms to model both global

and local features as a final pedestrian representation has

become a trend for person re-identification (Re-ID) algo-

rithms. A potential limitation of these methods is that they

focus on the most salient features, but the re-identification

of a person may rely on diverse clues masked by the most

salient features in different situations, e.g., body, clothes or

even shoes. To handle this limitation, we propose a novel

Salience-guided Cascaded Suppression Network (SCSN)

which enables the model to mine diverse salient features

and integrate these features into the final representation by

a cascaded manner.

Our work makes the following contributions: (i) We ob-

serve that the previously learned salient features may hinder

the network from learning other important information. To

tackle this limitation, we introduce a cascaded suppression

strategy, which enables the network to mine diverse poten-

tial useful features that be masked by the other salient fea-

tures stage-by-stage and each stage integrates different fea-

ture embedding for the last discriminative pedestrian rep-

resentation. (ii) We propose a Salient Feature Extraction

(SFE) unit, which can suppress the salient features learned

in the previous cascaded stage and then adaptively extracts

other potential salient feature to obtain different clues of

pedestrians. (iii) We develop an efficient feature aggrega-

tion strategy that fully increases the network’s capacity for

all potential salience features. Finally, experimental re-

sults demonstrate that our proposed method outperforms

the state-of-the-art methods on four large-scale datasets.

Especially, our approach exceeds the current best method

by over 7% on the CUHK03 dataset.

*This work was done when Xuesong Chen visited to Feng Zheng Lab

at SUSTech.
†Corresponding author.
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Figure 1. The insight of the Salience-guided Cascaded Suppres-

sion Network (SCSN). For training, each stage is guided by the

gradient from the loss function. During testing, different stage’s

features will be concatenated to generate the final diverse pedes-

trian representation. Benefiting from the suppression strategy, po-

tential important features can stand out in the next stage, which

enables different stages to discover diverse clues of pedestrians.

1. Introduction

Given a probe person image, the Person Re-identification

(Re-ID) task aims to search the picture that most likely be-

longs to the same pedestrian from the gallery (the candidate

picture set). It is commonly applied to address the issues of

cross-camera tracking and surveillance security and can be

considered as an image retrieval problem.

To this end, most existing Re-ID methods focus on learn-

ing discriminative and robust features to match the pair of

images in response to various challenges, including varying

viewing angles, lighting intensity and body pose variations.

Specifically, recent studies [9, 12, 27, 32] have shown that

combining part-based local features with global features is

an effective strategy to enhance the feature representation.

In general, considering a whole image, the global feature is

robust to the appearance changes and spatial location vari-

ations. However, lacking the supervision of fine-grained

characterizations, global features may focus on interference

information, such as backgrounds, which is not expected.

Besides, global features are prone to ignore the informa-

tion of some small regions which can make contributions

for discriminative pedestrian representation. Motivated by

such observations, the attention mechanism and part-based
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models were introduced to address these issues [5, 7]. The

employment of attention mechanisms can enforce the model

to capture the discriminative local features of human bod-

ies and reduce the interference of different variations in the

background. Meanwhile, part-based models could concen-

trate on learning more fine-grained local salience features

of different human body parts by dividing feature maps into

horizontal parts. So, with attention mechanisms, aggregat-

ing local features and global features has become a trend for

person Re-ID and it has achieved promising results.

Nevertheless, one crucial limitation of these global-local

methods, including attention-based and part-based, is the

lack of exploration of how to effectively extract discrim-

inative potential salience features of different pedestrians.

On the one hand, the attention-based methods [5, 7, 16, 38]

mainly focus on the discriminative appearances of the hu-

man body. However, the attention mechanism trained in a

weakly-supervised manner tends to learn the “easiest” fea-

tures at a compact subspace due to the partial learning be-

havior of deep models [3, 4]. In other words, deep models

easily focus on surface distribution regularities rather than

more general and diverse concepts, so that they are prone

to ignore potential information of pedestrians. On the other

hand, part-based methods [24, 36, 49] handle misalignment

and provide richer fine-grained local features by dividing

the input into many horizontal stripes. However, with the

number of parts increases, the improvement of accuracy

is minor and even gets worse. Because too fine division

deprives the semantic information of each part and makes

the network redundant as well. Moreover, if all kinds of

features are indiscriminately concatenated, some significant

discriminant features which are not distinctive in intensity

will be masked by other salient features. Therefore, how to

efficiently extract diverse salient features and how to inte-

grate these features reasonably are worthy of discussion for

the Re-ID task.

In this paper, to further improve the model’s feature rep-

resentation capability, we present a salience-guided cas-

caded feature suppression mechanism that enables the net-

work to adaptively extract all potential salient pedestrian

features. More specifically, we propose a feature aggrega-

tion strategy which consists of a Residual Dual Attention

Module (RDAM) and a Non-local Multi-stage Feature Fu-

sion (NMFF) block, to better aggregate low-level and high-

level features of the backbone, and a Salient Feature Ex-

tract (SFE) unit to effectively yet efficiently extract diverse

potential features. With the help of the feature aggregation

strategy, our network can make better use of low-level fea-

tures, such as the color and texture of the clothes, which

greatly improves the feature representation capability of the

backbone. Hence, the cascaded suppression head with SFE

units can extract salience features via a cascaded suppres-

sion update. In practice, we first employ a global stage on

top of the backbone to extract the most salient region-level

information with the SFE unit. In order to boost informa-

tion flow in our feature suppression mechanism, the salient

feature learned at a certain stage is first integrated with the

global feature to enhance this stage’s feature discriminabil-

ity, and then it will be suppressed to get the salience-free in-

put feature for the next stage. Similarly, for the rest stages,

the network will mine some other important potential fea-

tures with the SFE unit after the previous salient feature be-

ing suppressed. We illustrate the salience-guided cascaded

suppression network in Fig. 1.

To summarize, our proposed work makes the following

contributions:

• We introduce a novel cascaded feature suppression

mechanism that can mine all potential salient fea-

tures stage-by-stage and integrate these discriminative

salience features with the global feature, forming the

final diverse feature representation of pedestrians.

• We devise a Salient Feature Extraction(SFE) unit to

adaptively extract potential salient features by sup-

pressing the most salient features.

• We incorporate an efficient feature aggregation strat-

egy, consisting of the RDAM and the NMFF block,

which increases the network’s capacity for all poten-

tial salience features.

• Extensive experiments on Market1501 [50], DukeMT-

MC-ReID [52], CUHK03 [22] and MSMT17 [42] de-

monstrate that our method significantly outperforms

the existing state-of-the-art methods on four popular

benchmarks.

2. Related Work

Due to the improvement of computing power, in recent

years, deep learning based methods are developed to ad-

dress the person Re-ID task. Below, we review the most

representative methods which are related to our work.

Part-based algorithms: Pyramid [49], PCB [36] and

MGN [41] achieve state-of-the-art performance by integrat-

ing global features and many stripe-based features. This

strategy often requires a complex network to learn and

combine different levels of features, which bringing perfor-

mance improvements but suffering from over-fitting and in-

formation redundancy. Compared with [36, 41, 49] which

divide the feature maps horizontally, other methods learn

more semantic local features guided by prior knowledge.

Attention-related methods [5, 7, 16, 38] employ different

attention modules to improve feature representation and

achieve further performance gains on the baseline. Fur-

thermore, incorporating prior knowledge such as the hu-

man body structure has also been proved to be an effective

method [23, 29, 33, 39, 45, 47]. Meanwhile, GLAD [43]
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Figure 2. The pipeline of our Salience-guided Cascaded Suppression Network (SCSN). After the modified ResNet50 backbone, we employ

several independent feature suppression stages. During training, both the ID loss and Triplet loss are used to supervise the learning of these

stages, respectively. In the testing, all features of different stages are concatenated together as the final descriptor of a pedestrian image.

integrates features from both local and global regions us-

ing the detected human body parts. Similar to the atten-

tion strategies, [48] employs composite models to extract

specific salience features from different parts of the human

body in an unsupervised manner. However, such methods

are prone to possible noises from the pose estimation and

semantic parsing algorithms.

Non-part-based algorithms: Recently, to improve the

global feature’s attention to local information, some adver-

sarial occluded samples [18] and a synthetic dataset [2]

are constructed to improve the Re-ID model’s feature ex-

traction ability. Moreover, lots of metric learning meth-

ods [6, 14, 35] aim to enlarge the inter distance while re-

ducing intra distinction, which improve the representation

of Re-ID task. And in our work, we also use the triplet

loss [14]. Further, in GSRW [30], a novel group-shuffling

random walk network is proposed to improve the training

and testing processes by gallery-to-gallery affinities.

3. Proposed Method

We aim to optimize the architecture of the model to adap-

tively extract the potential salient feature of pedestrians. To

this end, we proposed the Salience-guided Cascaded Sup-

pression Network (SCSN). It introduces two new compo-

nents: the feature aggregation modules (residual dual at-

tention module and non-local fusion block) and the salient

feature extraction unit. For convenience, in stage t, we de-

note the input feature map as Xt, the boosted feature map

as Y t, and the suppressed feature map for the input of t+1
stage as Xt+1. Our framework is illustrated in Fig. 2 .

3.1. Residual Dual Attention Module

The Residual Dual Attention Module (RDAM) consists

of a Channel-wise Attention Module(CAM) and a Residual

Spatial Attention Module (RSAM), in which the channel-

wise attention module explores the correlation between

channel features and the residual spatial attention module

is responsible for exploring the semantically strong features

within the spatial dimension.

Channel-wise Attention: The high-level convolutional

feature in a trained CNN module is well-known to have

remarkable localization ability for a semantic-related ob-

ject. The channel-wise attention is introduced to enhance

the representational ability for various pedestrians by ex-

plicitly modeling the interdependencies between the chan-

nel of convolutional features. To obtain the channel atten-

tion weight, we squeeze the spatial dimension of the input

feature map by average pooling (to identify the extent of

the object) and max pooling (to identify one discrimina-

tive part) simultaneously, generating two different 1D con-

text descriptors: M c
avg and M c

max, which is similar to [44].

We then aggregate these descriptors via an attention mech-

anism [17] to obtain our channel attention map Ac. The

detailed architecture of the attention agent is illustrated in

Fig. 2(A). For a input, the channel attention vector is com-

puted as:

Ac = σ(W2δ(W1M
c
avg) +W2δ(W1M

c
max)). (1)

Herein, W1 and W2 are the parameters of FC layers and σ,

δ denote the Sigmoid and ReLU function, respectively. The

constructed channel-wise attention Ac is further applied to

the original feature maps via channel-wise multiplication

to enhance more informative channels and suppressing less

useful ones. Then the obtained feature representations are

further leveraged by the Residual Spatial Attention Module.

Residual Spatial Attention: The residual spatial atten-

tion is designed to guide the network to gather more neces-

sary semantical information in the spatial dimension, which

is complementary to the channel attention. To obtain the

spatial attention map, we firstly aggregate the channel-wise
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information of a feature map by two pooling operations: av-

erage pooling and max pooling, and generate two 2D maps:

Ms
avg ∈ R

H×W and Ms
max ∈ R

H×W . We then employ a

convolution layer to aggregateMs
avg,M

s
max and further ob-

tain the spatial attention map Wn ∈ R
H×W which encodes

the locations to emphasize or suppress and n denotes the

layer index of one stage. Consequently, inspired by [8], we

allow the spatial attention information of previous blocks

to propagate along with adjacent modules, named residual

spatial aggregation, which enhances the consistency and ro-

bustness of spatial correlation estimation. Specifically, at

each layer n in the same stage of backbone, As
n is the resid-

ual refined spatial map and As
n−1 is the spatial map of the

previous block. Then the update operation is defined as:

As
n = σ(As

n−1 + β · (Wn −As
n−1)), (2)

where β is a trainable variable initialized as 1, σ is the sig-

moid activation function and we set As
0 = 0 for the first

layer of each stage. Finally, As
n is applied to the input via

an element-wise multiplication, as shown in Fig. 2(B).
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Figure 3. Illustration of the pyramid average pooling process.

3.2. Non­local Multistage Feature Fusion

Features fusion of different levels [20] has been demon-

strated to be helpful to semantic segmentation, classifica-

tion and detection. Common fusing operations are con-

ducted in a pixel-wise, such as addition or concatenation,

which has a limited performance gain because low-level

features lack semantic information. To aggregate the fea-

tures from different stages that are worth retaining for the fi-

nal representation, we incorporate a non-local block to fuse

multi-level features by leveraging long-range dependencies

inspired by [54], called Non-local Multi-stage Feature Fu-

sion (NMFF) block. Next, we elaborate on the detail of the

NMFF block presented in Fig. 5. Specifically, we consider

two types of source information for non-local fusion block:

a high-level feature map Fh ∈ R
Ch×Hh×Wh and a low-level

feature map Fl ∈ R
Cl×Hl×Wl , where C,W and H denote

the number of channel, width and height of features, respec-

tively. Then, we employ three 1×1 convolutions ψq , ψv and

ψk to transform F into compact embedding Fq ∈ R
C

′

×Nh ,

Fv ∈ R
C

′

×S and Fk ∈ R
S×C

′

as:

Fq = ψq(Fh), Fk = ψk(Fl), Fv = ψv(Fl), (3)

X
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Figure 4. The detailed architecture of the Salient Feature Extrac-

tion (SFE) unit.
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Figure 5. The detailed architecture of the Non-local Multistage

Feature Fusion (NMFF) block.

where Nh = Wh × Hh and S represents pyramid average

pooling pixels, as showed in Fig. 3. Consequently, we ob-

tain the similarity matrixM ∈ R
S×Nh by applying softmax

on the matrix multiplication of Fk, Fq and then the fused

output Fhl ∈ R
Cf×Nh is computed by a matrix multiplica-

tion of M and Fv:

Fhl =M × Fv = Fsoftmax(Fk × Fq)× Fv. (4)

Based on the above presentation, for the n stages employed

for feature fusion, the final multi-stage fused feature Ff is

obtained by

Ff = φ(Fhl1 , Fhl2 , ... , Fhln), (5)

where φ denotes a 1×1 convolution to reduce those features

into a compact embedding.

3.3. Salient Feature Extraction Unit

As shown in Fig. 4, SFE unit behaves like a salience fea-

ture receptor that perceives which part-based features are

discriminative. The unit can be decomposed into a salience

descriptor and a salience selector.

Salience Descriptor: We divide the feature map into

different stripes. Although we do not explicitly define the

specific region features corresponding to each stripe of an

object, this descriptor can be prone to guide each stripe to

adaptively mine important information. As shown in Fig. 4,

for a given input feature mapXt ∈ R
C×H×W at t stage, we

uniformly split it into several part-based stripes and each of

which has the size ofC×(H/K)×W , whereK denotes the

number of stripes. Then, a convolutional layer followed by
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batch normalization and ReLU is explored to capture fine-

granularity information of each stripe, generating a compact

feature descriptor with the shape of 1× (H/K)×W . Con-

sequently, we apply a global average pooling operation on

the feature descriptor to get the feature vector z ∈ R
k×1.

Obviously, the larger the number of part-based stripes is,

the finer the feature descriptor is.

Salience Selector: After obtaining the feature vector z,

we employ the salience selector that consists of a softmax

activation and an element-wise multiplication ⊙, which is

analogous to an attention mechanism. Then we can get the

salience-sensitive weightsW = (w1, ... , wk)
T and salience

local feature Sal(Xt):

Sal(Xt) =W ⊙Xt, (6)

wi =
exp(zi)∑k

1
exp(zj)

, i ∈ [1, k]. (7)

Sal(Xt) is highlighted in stage t while will be suppressed

in stage t+ 1.

3.4. Salience­Guided Cascaded Suppression Net­
work

Multi-Stage Suppression: Our proposed SCSN em-

ploys ResNet50 as the backbone. Notice that we modified

the downsample strides of Stage3 and Stage4 to 1 to pre-

serve more spatial information. After getting the basic fea-

ture from the backbone, we extract potential salience fea-

ture stage-by-stage. Specifically, for stage t, we first extract

salient feature Sal(Xt) of this stage by SFE unit and then

the Sal(Xt) will be integrated with the base input feature

Xt as follow:

Y t = Xt + Sal(Xt), (8)

where Y t denotes the salience boosted feature. The promo-

tion of Sal(Xt) alleviates the dilution of detail information

due to the global average pooling and the summation in-

tegration method also avoids the dimensional inefficiency

caused by concatenation. Consequently, to mine other po-

tential salient features, we apply a salience mask on the

output of stage t to suppress Sal(Xt) and obtain the input

Xt+1 of stage t+ 1:

Xt+1 = Xt
· B(Xt), (9)

where B is a binary mask which takes values of the most

salient Sal(Xt) to 0 and others to 1. The suppression oper-

ation relieves the coverage effect of Sal(Xt) on other fea-

tures and makes potential information stand out. Therefore,

the network can further discover more potential features.

The detailed pipeline of SCSN is shown in Fig. 2. We con-

sider backbone’s last convolution block followed by a SFE

unit as the global (t = 1) stage. The feature extracted in

Backbone BackboneStageⅠQuery Query StageⅠStageⅡ StageⅡ

Figure 6. The feature visualization for 4 hard samples with similar

appearances. Warmer color denotes higher value. We can observe

that the backbone features are not accurate enough such as the

interference of background, as shown in the red circles. However,

the stage I features extracted by SFE unit focus on such salient

features, as noted in red boxes. And, after the salience feature

suppression, stage II discovers some potential features which are

also important but masked by salient features of stage I.

the global context is the most salient one among all stripe-

based local features. The following stages then continue to

mine salience features in the same manner. Fig. 6 shows an

intuitive salient feature visualization of 4 hard samples with

similar appearances. To avoid information redundancy, we

first apply global pooling on the boosted output Y t to gen-

erate a 2048-dimensional feature vector and then use the FC

layer to reduce the vector dimension. Note that, in our ex-

periments, the global stage uses the average pooling to get

the feature vector while the following stages use the max

pooling because salience suppression operation causes in-

stability of the mean of the features.

Comparison with Feature Erasing: Inspired by the

cognitive process of humans, ‘deliberately’ suppressing the

areas we are not interested in is to better focus on our at-

tention [21]. The similar idea of feature erasing has also

been used for weakly-supervised object localization and se-

mantic segmentation [15, 46]. However, the purpose and

implementation of these methods are different from ours.

Specifically, by erasing the object-related region that the

network already captured, these methods encourage CNN

to discover more semantic areas related to object for the in-

tegral object attention. On the contrary, the proposed SFE

unit aims to extract the most salience feature that can distin-

guish one instance to others, looking for a salience subset in

the basis feature space instead of searching for a more com-

plete feature space as [15, 46] did.

Moreover, our approach is more labor-saving than other

methods that rely on auxiliary information, such as attribute

learning [24] and pose/human parsing [19, 25, 29]. Specif-

ically, with the large labeled datasets, attribute learning

methods force the network to pay attention to local contexts

by the supervision of specific labels. But the large num-

ber of attribute-labels cannot always be taken for granted.

Meanwhile, pose/human parsing related methods utilize the

prior human body knowledge that comes from the pose es-

timation and semantic parsing algorithms. They are prone
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to be misguided by the noise of prior because semantic seg-

mentation and pose estimation themselves are challenging

tasks in complex scenarios.

Loss Function: Identification loss gets the ID prediction

logits of images, which is similar to the classification loss,

defined as:

Lid =

N
∑

i=1

−qi log (pi)

{

qi = ε/N y 6= i,
qi = 1− εN−1

N
y = i,

(10)

where y and pi denote the ground-truth ID label and the pre-

dicted logit of class i, respectively. N represents the number

of classes and qi is the smoothed label which is proposed in

[37] and ε = 0.1 is used to smooth the label.

In addition, considering the property of Re-ID, that is,

finding the most similar series of people from the gallery,

we introduce the idea of metric learning, which enables the

network to find features that are useful for similarity met-

rics[13]. Therefore, we employ the triplet loss to enhance

the final ranking performance, which is defined as:

Ltp =
∑

N
[dp − dn]+ , (11)

where dp is the feature distance of the same identity and dn
denotes the distance of different identities. N is the batch-

size of triplet samples and [·]
+

means max(·, 0). Triplet

loss aims to ensure that the distance between positive sam-

ple pairs is less than the distance between negative sample

pairs. The final loss of our model can be written as:

L = Lid + Ltp. (12)

Finally, we jointly train the end-to-end multi-staged sup-

pression network with intermediate supervision loss.

4. Experiments

4.1. Implementation

Experimental details: We resize all images into the res-

olution of 384×128 and set the number of stripes K = 8.

Our backbone is ResNet50 pre-trained on ImageNet. For

data augmentation, we deploy random horizontal flipping

and random erasing in the training dataset, which is the

same as [26]. For each iteration, mini-batch sampled to the

triplet loss consists of B = P · I images, including ran-

domly selected P identities and randomly sampled I im-

ages for each identity. Here we take P = 48 and I = 4.

For NMFF block, we take c34f = 2048 and c
′

= 256 for

Market1501, and set c14f = c24f = c34f = 512, c
′

= 64
for the rest three datasets. We employ Adam as the opti-

mizer with the weight decay factor of 0.0005. In addition,

a warmup strategy is applied to make the training gradient

smooth. In practice, we first spend 20 epochs to linearly in-

crease the learning rate from 1.25×10−4 to 2.5×10−3 (20

Method Backbone mAP rank 1

SCSN(4 stages) ResNet50 88.30 92.40

SCSN(3 stages) ResNet50 88.50 95.70

*ABDNet [7](ICCV19) ResNet50 88.28 95.60

†Pyramid[49](CVPR19) ResNet101 88.20 95.70

DCDS[1](ICCV19) ResNet101 85.80 94.81

* †MHN(PCB) [5](ICCV19) ResNet50 85.00 95.10

†MGN [24] (ACM MM 18) ResNet50 86.90 95.70

BFE [10](ICCV19) ResNet50 86.20 95.30

*†CASN(PCB)[51](CVPR19) ResNet50 82.80 94.40

*†AANet[38](CVPR19) ResNet152 83.41 93.93

*IANet[16](CVPR19) ResNet50 83.10 94.40

*†VPM[34](CVPR19) ResNet50 80.80 93.00

§PSE+ECN[29](CVPR18) ResNet50 80.50 90.40

†PCB+RPP[36](ECCV18) ResNet50 81.60 93.80

†PCB[36](ECCV18) ResNet50 77.40 92.30

*DuATM [31](CVPR18) DenseNet121 76.60 91.40

§Pose-transfer[25](CVPR18) DenseNet169 56.90 78.50

§SPReID[19](CVPR18) ResNet152 83.36 93.68

Tricks[26](CVPRW19) SEResNet101 87.30 94.60

*Mancs[40](ECCV18) ResNet50 82.30 93.10

PAN[53](TCSVT18) ResNet50 63.40 82.80

SVDNet[35](CVPR17) ResNet50 62.10 82.30

∗ Attention related, † Stripes related, § Pose or human parsing related.

Table 1. Comparison with state-of-the-art person Re-ID methods

on the Market1501 dataset.

times) and then employ a cosine annealing strategy to de-

crease the learning rate from 2.5× 10−3 to 0, using another

200 epochs.

Protocols: To compare the performance of the pro-

posed method with the existing advanced Re-ID methods,

we adopt the Cumulative Matching Characteristics (CMC)

at rank1 and mean Average Precision (mAP) as the evalua-

tion metrics for each query image on 4 datasets. It is worth

noting that re-ranking is not used for simplicity.

4.2. Datasets

Market1501: It [50] consists of 32668 images of 1501

individuals in total, among which 12936 images of 751 per-

sons are used as the training set. And 19732 images of 750

people are separated into the testing set with 3368 query im-

ages as well as 16364 gallery images. Besides, this dataset

is shot by six different cameras with bounding-boxes anno-

tated by the Deformable Part Model (DPM) detector [11].

DukeMTMC-ReID: It is a subset of the DukeMTMC

[52] and is also a popular dataset for human Re-ID, in-

cluding 36411 images of 1812 identities from eight high-

resolution cameras. Specifically, the training set contains

16522 images of 702 identities that are randomly selected

from the overall images, and the testing set comprises the

other 2228 query images and 17661 gallery ones.

CUHK03: This dataset [22] comprehends 14097 images

of 1467 persons from ten cameras and is divided into the

training set of 767 individuals and the testing set of 700

individuals. Besides, it provides two types of annotations,
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Method Backbone mAP rank 1

SCSN(4 stages) ResNet50 79.00 91.00

SCSN(3 stages) ResNet50 79.00 90.10

†Pyramid [49](CVPR19) ResNet101 79.00 89.00

*ABDNet [7](ICCV19) ResNet50 78.60 89.00

†MGN [24] (ACM MM 18) ResNet50 78.40 88.70

*†MHN(PCB)[5](ICCV19) ResNet50 77.20 89.10

BFE [10](ICCV19) ResNet50 75.90 88.90

* †CASN(PCB)[51](CVPR19) ResNet50 73.70 87.70

DCDS[1](ICCV19) ResNet101 75.50 87.50

* †AANet[38] (CVPR19) ResNet152 74.29 87.65

§PSE+ECN[29](CVPR18) ResNet50 75.70 84.50

*IANet[16](CVPR19) ResNet50 73.40 83.10

*VPM[34](CVPR19) ResNet50 72.60 83.60

*DuATM [31](CVPR18) DenseNet121 64.60 81.80

†PCB+RPP[36](ECCV18) ResNet50 69.20 83.30

§SPReID[19](CVPR18) ResNet152 73.34 85.95

§Pose-transfer[25](CVPR18) DenseNet169 56.90 78.50

Tricks[26](CVPRW19) SEResNet101 78.00 87.50

*Mancs[40](ECCV18) ResNet50 82.30 93.10

SVDNet[35](CVPR17) ResNet50 56.80 76.70

PAN[53](TCSVT18) ResNet50 51.51 71.59

∗ Attention related, † Stripes related, § Pose or human parsing related

Table 2. Comparison with state-of-the-art person Re-ID methods

on the DukeMTMC-ReID dataset.

i.e., manually labeled pedestrian boxes and DPM detected

boxes. More concretely, the manually labeled part con-

sists of 7368 training images, 1400 query images and 5328

gallery images; the DPM detected part includes 7365 train-

ing images, 1400 query images and 5332 gallery images.

MSMT17: It [42] is a new public person Re-ID dataset.

There are 126441 images of 4101 identities captured by

a 15-camera network, including 12 outdoor and 3 indoor,

in this largest dataset. And all the boxes are annotated by

Faster RCNN [28]. Therefore, MSMT17 is more challeng-

ing than other public person Re-ID datasets, due to its mas-

sive scale, more complex and dynamic scenes.

4.3. Comparison with State­of­the­Art Methods

We compare the proposed SCSN with current state-of-

the-art methods on four datasets, including Market1501,

DukeMTMC-ReID, CUHK03 and MSMT17 to demon-

strate the robustness and the superior performance over

other advanced methods. Results are given as following.

Market1501: Table 1 shows the results of Market1501.

These methods are divided into two groups: the top of Ta-

ble 1 are methods that integrate local features and global

features, called the global-local group and the bottom

are methods merely employing global features, called the

global group. Our SCSN obtains the best mAP performance

and the same rank1 result as Pyramid [49]. However, it

is worth pointing out that Pyramid benefits from a larger

backbone and a more complex pyramidal feature set (in-

cluding 21 stripe features). Tricks is the representative of

the global group. With the strong backbone SEResNet101,

Method Backbone
Labeled Detected

mAP rank1 mAP rank1

SCSN(4 stages) ResNet50 84.00 86.80 81.00 84.70

SCSN(3 stages) ResNet50 83.30 86.30 80.20 84.10

†Pyramid[49](CVPR19) ResNet101 76.90 78.90 74.80 78.90

BFE[10](ICCV19) ResNet50 76.70 79.40 73.50 76.40

*†MHN(PCB)[5](ICCV19) ResNet50 72.40 77.20 65.40 71.70

†MGN[24] (ACM MM 18) ResNet50 67.40 68.00 66.00 68.00

†PCB+RPP[36](ECCV18) ResNet50 - - 57.50 63.70

* †CASN(PCB)[51](CVPR19) ResNet50 68.00 73.70 64.40 71.50

Tricks[26](CVPRW19) SEResNet101 70.40 72.00 68.00 69.60

*Mancs[40](ECCV18) ResNet50 63.90 69.00 60.50 65.50

SVDNet[35](CVPR17) ResNet50 37.80 40.90 37.30 41.50

PAN[53](TCSVT18) ResNet50 35.00 36.90 34.00 36.30

∗ Attention related, † Stripes related

Table 3. Comparison with state-of-the-art person Re-ID methods

on the CUHK03 dataset with the 767/700 split.

Tricks achieves comparative results. However, the inherent

defect of the global feature, that is, the dilution of the lo-

cal significant information, limits further improvement of

such methods. Finally, our proposed cascaded feature sup-

pression strategy achieves further improvements, benefit-

ting from the employ of potential salient features explored

by SFE units.

DukeMTMC-ReID: The results of this dataset are

shown in Table 2. Similar to Market1501 dataset, the pro-

posed SCSN also achieves the best results on rank1 and

exceeds Pyramid [49] / ABDNet [7] by 2.0%. Besides, we

achieve the same mAP performance as Pyramid [49] while

uses a lightweight backbone.

CUHK03: It is a more challenging dataset, compared

with Market1501 and DukeMTMC-ReID. This is reflected

in 1) CUHK03 has fewer samples and the viewpoint vari-

ations and the occlusion problems are serious; 2) the an-

notation of bounding boxes marked by object detection al-

gorithm has location offsets. While, as reported in Ta-

ble 3, SCSN substantially exceeds Pyramid [49] / BFE [10]

by 7.1%/7.3% in mAP and 7.9%/7.4% in rank1 metric on

the labeled dataset and exceeds the performances of Pyra-

mid [49] / BFE [10] by 6.2%/7.5% in mAP and 5.8%/8.3%
in rank1 on the detected dataset, achieving the most out-

standing results. The experimental results clearly demon-

strate that under the condition of limited training samples,

mining potential features and integrating these complemen-

tary features enjoys great advantages. Specifically, with

limited samples, the attention mechanism is prone to par-

tially learn the most significant features, but the learned bi-

ased feature maybe not robust and essential because it will

change and even be lost during testing. Meanwhile, indis-

criminate stacking redundant local features, such as Pyra-

mid [49], can only bring limited improvements.

MSMT17: Table 4 shows the results of MSMT17 which

is the latest and largest Re-ID dataset and the amount of

methods that report on this dataset is less because it is re-

cently publicly-available. SCSN achieves the best perfor-

mances on rank1 and rank5 metrics.
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Method Backbone mAP rank1 rank5

SCSN(4 stages) ResNet50 58.50 83.80 91.50

SCSN(3 stages) ResNet50 58.00 83.00 91.20

ABDNet[7](ICCV19) ResNet50 60.80 82.30 90.60

BFE[10](ICCV19) ResNet50 51.50 78.80 89.10

IANet[16](CVPR19) ResNet50 46.80 75.50 85.50

GLAD[43](ACM MM 17) ResNet50 34.00 61.40 76.80

PDC[32](ICCV17) GoogLeNet 29.70 58.00 73.60

ResNet50[13](CVPR16) Baseline 33.90 63.20 -

Table 4. Comparison with state-of-the-art person ReID methods

on the MSMT17 dataset.

4.4. Ablation Studies

To demonstrate the effects of feature aggregation and

feature suppression blocks in SCSN, we incrementally eval-

uate each module on DukeMTMC-ReID. We take ResNet50

with the global branch as the baseline, employing the ID

loss and Triplet loss. Nine variants are then conducted

based on the baseline: a) baseline + CAM; b) baseline +

SAM (without residual update); c) baseline+ RSAM ; d)

baseline+ CAM +SAM ; e) baseline + RDAM (CAM +

RSAM); f) B&A + SFE; g) B&A + SFE∗1; h) SCSN (B&A

+ SFE∗2) and i) SCSN (B&A + SFE∗3), where B&A rep-

resents the backbone equipped with the residual dual atten-

tion attention module. Table 5 presents the ablation study

results, from which several observations could be drawn:

1) All these three attention modules: CAM, Spatial At-

tention Module(SAM), and RSAM improve the baseline

and the RDAM that combines the CAM and RSAM mech-

anisms can further improve performances, which demon-

strates their complementary property and the feature extrac-

tion ability. Specifically, the RSAM achieves better per-

formance than SAM. Because the spatial attention mod-

ule trained in a weakly-supervised manner, without residual

connection, cannot obtain accurate position attention maps

[7, 15]. There are two reasons: 1) the weakly-supervised

training manner, without a powerful supervisory, result that

gradient of SAM might be vanishing in the backpropagation

process, especially for modules in shallow layers; 2) com-

pared with higher blocks that have rich semantic features,

such as the human body, shallow layers focus more on the

low-level feature, such as color and texture, which pose an

obstacle to get accurate context attention maps.

2) By combining the proposed cascaded feature suppres-

sion strategy and attention mechanisms, performance is fur-

ther boosted. Specifically, in our experiments, 3 or 4 cas-

caded stages achieve the best performance. Too many cas-

caded stages can lead to inferior results. We argue that for a

pedestrian, its distinctive features are limited so excessive

suppressions force the network to learn some non-robust

features. Besides, since the features of different stages are

contacted during the testing, too many stages can cause the

feature vectors redundant, diluting the salient features and

increasing the computation amount.

Method Backbone mAP rank 1

Baseline ResNet50 71.50 86.10

Baseline + CAM ResNet50 73.80 87.40

Baseline + SAM(without residual) ResNet50 73.50 86.60

Baseline + RSAM ResNet50 74.10 87.30

Baseline + CAM+SAM ResNet50 75.80 87.80

Baseline + RDAM(CAM+RSAM) ResNet50 76.20 88.90

B&A + SFE*1 ResNet50 78.30 89.50

B&A + SFE*2 ResNet50 78.80 89.80

B&A + SFE*3 ResNet50 78.50 90.20

SCSN(B&A+SFE*2+NMFF) ResNet50 79.00 90.10

SCSN(B&A+SFE*3+NMFF) ResNet50 79.00 91.00

Table 5. Ablation study of SCSN on DukeMTMC-ReID dataset.

Here NMFF denotes the non-local multistage feature fusion block

with all four stages in ResNet50.

Method B B+N(14) B+N(24) B+N(34) B+N(24,34) B+N(14,24,34)

mAP 78.50 78.60 78.10 77.80 78.02 79.00

rank1 89.50 89.90 89.30 89.50 89.54 90.10

Table 6. The effect of different feature fusion strategies, where N
denotes the NMFF block and B denotes the baseline without fea-

ture fusion. The number of combinations represent the fused fea-

ture of different stages of ResNet50. As illustrated, merely merg-

ing advanced features, such as (24) and (34), does not bring too

much gain because these advanced features have more similar dis-

tributions. On the other hand, the fusion of shallow features can

significantly improve the accuracy of the network.

3) The feature aggregation modules and the suppression

mechanism are complementary. Specifically, without the

aggregation module improving the context-awareness of the

backbone, the suppression mechanism may focus on the in-

terference information in the background. In contrast, with-

out the suppression modules, the attention and aggregation

mechanisms tend to only learn the most salient features

that can distinguish each identity and ignore other impor-

tant information. More detailed differences in feature fu-

sion strategies of NMFF are shown in Table 6.

5. Conclusion

In this paper, we propose a novel method called Salience-

guided Cascaded Suppression Network (SCSN) for person

re-identification which solves the problems of how to ex-

tract discriminative features and how to integrate these fea-

tures. The suppression strategy can be considered as a

salient dropout scheme that enables the network to adap-

tively mine potential significant information on different

important levels. Extensive experiments demonstrate that

our method achieves state-of-the-art results on 4 popu-

lar person Re-ID benchmarks, and it is worth noting that

our proposed method makes over 7% improvement on

CUHK03 datasets. In the future, it is meaningful to investi-

gate a more effective feature extraction method.
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