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Abstract

Pruning convolutional filters has demonstrated its effec-

tiveness in compressing ConvNets. Prior art in filter prun-

ing requires users to specify a target model complexity (e.g.,

model size or FLOP count) for the resulting architecture.

However, determining a target model complexity can be

difficult for optimizing various embodied AI applications

such as autonomous robots, drones, and user-facing appli-

cations. First, both the accuracy and the speed of ConvNets

can affect the performance of the application. Second,

the performance of the application can be hard to assess

without evaluating ConvNets during inference. As a con-

sequence, finding a sweet-spot between the accuracy and

speed via filter pruning, which needs to be done in a trial-

and-error fashion, can be time-consuming. This work takes

a first step toward making this process more efficient by al-

tering the goal of model compression to producing a set of

ConvNets with various accuracy and latency trade-offs in-

stead of producing one ConvNet targeting some pre-defined

latency constraint. To this end, we propose to learn a global

ranking of the filters across different layers of the ConvNet,

which is used to obtain a set of ConvNet architectures that

have different accuracy/latency trade-offs by pruning the

bottom-ranked filters. Our proposed algorithm, LeGR, is

shown to be 2⇥ to 3⇥ faster than prior work while hav-

ing comparable or better performance when targeting seven

pruned ResNet-56 with different accuracy/FLOPs profiles

on the CIFAR-100 dataset. Additionally, we have evaluated

LeGR on ImageNet and Bird-200 with ResNet-50 and Mo-

bileNetV2 to demonstrate its effectiveness. Code available

at https://github.com/cmu-enyac/LeGR.

1. Introduction

Building on top of the success of visual perception [49,

17, 18], natural language processing [10, 11], and speech

recognition [6, 45] with deep learning, researchers have

started to explore the possibility of embodied AI applica-

tions. In embodied AI, the goal is to enable agents to take

actions based on perceptions in some environments [51].

We envision that next generation embodied AI systems

will run on mobile devices such as autonomous robots and

drones, where compute resources are limited and thus, will

require model compression techniques for bringing such in-

telligent agents into our lives.

In particular, pruning the convolutional filters in Con-

vNets, also known as filter pruning, has shown to be an

effective technique [63, 36, 60, 32] for trading accuracy

for inference speed improvements. The core idea of fil-

ter pruning is to find the least important filters to prune by

minimizing the accuracy degradation and maximizing the

speed improvement. State-of-the-art filter pruning meth-

ods [16, 20, 36, 70, 46, 8] require a target model complex-

ity of the whole ConvNet (e.g., total filter count, FLOP

count1, model size, inference latency, etc.) to obtain a

pruned network. However, deciding a target model com-

plexity for optimizing embodied AI applications can be

hard. For example, considering delivery with autonomous

drones, both inference speed and precision of object de-

tectors can affect the drone velocity [3], which in turn af-

fects the inference speed and precision2. For an user-facing

autonomous robot that has to perform complicated tasks

such as MovieQA [56], VQA [2], and room-to-room nav-

igation [1], both speed and accuracy of the visual percep-

tion module can affect the user experience. These afore-

mentioned applications require many iterations of trial-and-

error to find the optimal trade-off point between speed and

accuracy of the ConvNets.

More concretely, in these scenarios, practitioners would

have to determine the sweet-spot for model complexity and

accuracy in a trial-and-error fashion. Using an existing fil-

ter pruning algorithm many times to explore the impact

of the different accuracy-vs.-speed trade-offs can be time-

consuming. Figure 1 demonstrates the usage of filter prun-

ing for optimizing ConvNets in aforementioned scenarios.

With prior approaches, one has to go through the process of

finding constraint-satisfying pruned-ConvNets via a prun-

1The number of floating-point operations to be computed for a ConvNet

to carry out an inference.
2Higher velocity requires faster computation and might cause accuracy

degradation due to the blurring effect of the input video stream.
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Figure 1: Using filter pruning to optimize ConvNets for em-

bodied AI applications. Instead of producing one ConvNet

for each pruning procedure as in prior art, our proposed

method produces a set of ConvNets for practitioners to effi-

ciently explore the trade-offs.

ing algorithm for every model complexity considered un-

til practitioners are satisfied with the accuracy-vs.-speedup

trade-off. Our work takes a first step toward alleviating the

inefficiency in the aforementioned paradigm. We propose to

alter the objective of pruning from outputting a single Con-

vNet with pre-defined model complexity to producing a set

of ConvNets that have different accuracy/speed trade-offs,

while achieving comparable accuracy with state-of-the-art

methods (as shown in Figure 4). In this fashion, the model

compression overhead can be greatly reduced, which results

in a more practical usage of filter pruning.

To this end, we propose learned global ranking (or

LeGR), an algorithm that learns to rank convolutional fil-

ters across layers such that the ConvNet architectures of

different speed/accuracy trade-offs can be obtained easily

by dropping the bottom-ranked filters. The obtained archi-

tectures are then fine-tuned to generate the final models. In

such a formulation, one can obtain a set of architectures by

learning the ranking once. We demonstrate the effectiveness

of the proposed method with extensive empirical analyses

using ResNet and MobileNetV2 on CIFAR-10/100, Bird-

200, and ImageNet datasets. The main contributions of this

work are as follows:

• We propose learned global ranking (LeGR), which pro-

duces a set of pruned ConvNets with different accu-

racy/speed trade-offs. LeGR is shown to be faster than

prior art in ConvNet pruning, while achieving compa-

rable accuracy with state-of-the-art methods on three

datasets and two types of ConvNets.

• Our formulation towards pruning is the first work that

considers learning to rank filters across different layers

globally, which addresses the limitation of prior art in

magnitude-based filter pruning.

2. Related Work

Various methods have been developed to compress

and/or accelerate ConvNets including weight quantiza-

tion [47, 71, 29, 30, 65, 24, 12, 7], efficient convolution op-

erators [25, 22, 61, 26, 67], neural architecture search [69,

9, 4, 15, 54, 53, 52], adjusting image resolution [55, 5],

and filter pruning, considered in this paper. Prior art on fil-

ter pruning can be grouped into two classes, depending on

whether the architecture of the pruned-ConvNet is assumed

to be given.

Pre-defined architecture In this category, various work

proposes different metrics to evaluate the importance of fil-

ters locally within each layer. For example, some prior

work [32, 19] proposes to use `2-norm of filter weights as

the importance measure. On the other hand, other work

has also investigated using the output discrepancy between

the pruned and unpruned network as an importance mea-

sure [23, 40]. However, the key drawback for methods that

rank filters locally within a layer is that it is often hard to

decide the overall target pruned architectures [20]. To cope

with this difficulty, uniformly pruning the same portion of

filters across all the layers is often adopted [19].

Learned architecture In this category, pruning algo-

rithms learn the resulting structure automatically given a

controllable parameter to determine the complexity of the

pruned-ConvNet. To encourage weights with small magni-

tudes, Wen et al. [60] propose to add group-Lasso regular-

ization to the filter norm to encourage filter weights to be

zeros. Later, Liu et al. [36] propose to add Lasso regular-

ization on the batch normalization layer to achieve pruning

during training. Gordon et al. [16] propose to add compute-

weighted Lasso regularization on the filter norm. Huang

et al. [27] propose to add Lasso regularization on the out-

put neurons instead of weights. While the regularization

pushes unimportant filters to have smaller weights, the fi-

nal thresholding applied globally assumes different layers

to be equally important. Later, Louizos et al. [39] have pro-

posed L0 regularization with stochastic relaxation. From a

Bayesian perspective, Louizos et al. [38] formulate prun-

ing in a probabilistic fashion with a sparsity-induced prior.

Similarly, Zhou et al. [70] propose to model inter-layer de-

pendency. From a different perspective, He et al. propose

an automated model compression framework (AMC) [20],

which uses reinforcement learning to search for a ConvNet

that satisfies user-specified complexity constraints.

While these prior approaches provide competitive

pruned-ConvNets under a given target model complexity,

it is often hard for one to specify the complexity parameter

when compressing a ConvNet in embodied AI applications.

To cope with this, our work proposes to generate a set of
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pruned-ConvNets across different complexity values rather

than a single pruned-ConvNet under a target model com-

plexity.

We note that some prior work gradually prunes the Con-

vNet by alternating between pruning out a filter and fine-

tuning, and thus, can also obtain a set of pruned-ConvNets

with different complexities. For example, Molchanov et

al. [43] propose to use the normalized Taylor approxima-

tion of the loss as a measure to prune filters. Specifically,

they greedily prune one filter at a time and fine-tune the net-

work for a few gradient steps before the pruning proceeds.

Following this paradigm, Theis et al. [57] propose to switch

from first-order Taylor to Fisher information. However, our

experiment results show that the pruned-ConvNet obtained

by these methods have inferior accuracy compared to the

methods that generate a single pruned ConvNet.

To obtain a set of ConvNets across different complex-

ities with competitive performance, we propose to learn a

global ranking of filters across different layers in a data-

driven fashion such that architectures with different com-

plexities can be obtained by pruning out the bottom-ranked

filters.

3. Learned Global Ranking

The core idea of the proposed method is to learn a rank-

ing for filters across different layers such that a ConvNet of

a given complexity can be obtained easily by pruning out

the bottom rank filters. In this section, we discuss our as-

sumptions and formulation toward achieving this goal.

As mentioned earlier in Section 1, often both accuracy

and latency of a ConvNet affect the performance of the over-

all application. The goal for model compression in these

settings is to explore the accuracy-vs.-speed trade-off for

finding a sweet-spot for a particular application using model

compression. Thus, in this work, we use FLOP count for the

model complexity to sample ConvNets. As we will show in

Section 5.3, we find FLOP count to be predictive for latency.

3.1. Global Ranking

To obtain pruned-ConvNets with different FLOP counts,

we propose to learn the filter ranking globally across lay-

ers. In such a formulation, the global ranking for a given

ConvNet just needs to be learned once and can be used

to obtain ConvNets with different FLOP counts. How-

ever, there are two challenges for such a formulation. First,

the global ranking formulation enforces an assumption that

the top-performing smaller ConvNets are a proper subset

of the top-performing larger ConvNets. The assumption

might be strong because there are many ways to set the fil-

ter counts across different layers to achieve a given FLOP

count, which implies that there are opportunities where the

top-performing smaller network can have more filter counts

in some layers but fewer filter counts in some other layers

compared to a top-performing larger ConvNet. Nonethe-

less, this assumption enables the idea of global filter rank-

ing, which can generate pruned ConvNets with different

FLOP counts efficiently. In addition, the experiment results

in Section 5.1 show that the pruned ConvNets under this

assumption are competitive in terms of performance with

the pruned ConvNets obtained without this assumption. We

state the subset assumption more formally below.

Assumption 1 (Subset Assumption) For an optimal

pruned ConvNet with FLOP count f , let F(f)l be the

filter count for layer l. The subset assumption states that

F(f)l  F(f 0)l 8 l if f  f 0.

Another challenge for learning a global ranking is the

hardness of the problem. Obtaining an optimal global rank-

ing can be expensive, i.e., it requires O(K ⇥K!) rounds of

network fine-tuning, where K is the number of filters. Thus,

to make it tractable, we assume the filter norm is able to

rank filters locally (intra-layer-wise) but not globally (inter-

layer-wise).

Assumption 2 (Norm Assumption) `2 norm can be used

to compare the importance of a filter within each layer, but

not across layers.

We note that the norm assumption is adopted and empiri-

cally verified by prior art [32, 62, 20]. For filter norms to

be compared across layers, we propose to learn layer-wise

affine transformations over filter norms. Specifically, the

importance of filter i is defined as follows:

Ii = ↵l(i) kΘik
2
2 + l(i), (1)

where l(i) is the layer index for the ith filter, k·k2 denotes

`2 norms, Θi denotes the weights for the ith filter, and α 2
R

L, κ 2 R
L are learnable parameters that represent layer-

wise scale and shift values, and L denotes the number of

layers. We will detail in Section 3.2 how α-κ pairs are

learned so as to maximize overall accuracy.

Based on these learned affine transformations from

Eq. (1) (i.e., the α-κ pair), the LeGR-based pruning pro-

ceeds by ranking filters globally using I and prunes away

bottom-ranked filters, i.e., smaller in I , such that the FLOP

count of interest is met, as shown in Figure 2. This pro-

cess can be done efficiently without the need of training

data (since the knowledge of pruning is encoded in the α-κ

pair).

3.2. Learning Global Ranking

To learn α and κ, one can consider constructing a rank-

ing with α and κ and then uniformly sampling ConvNets

across different FLOP counts to evaluate the ranking. How-

ever, ConvNets obtained with different FLOP counts have

drastically different validation accuracy, and one has to
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Figure 2: The flow of LeGR-Pruning. kΘk
2
2 represents the filter norm. Given the learned layer-wise affine transformations,

i.e., the α-κ pair, LeGR-Pruning returns filter masks that determine which filters are pruned. After LeGR-Pruning, the pruned

network will be fine-tuned to obtain the final network.

know the Pareto curve3 of pruning to normalize the val-

idation accuracy across ConvNets obtained with different

FLOP counts. To address this difficulty, we propose to eval-

uate the validation accuracy of the ConvNet obtained from

the lowest considered FLOP count as the objective for the

ranking induced by the α-κ pair. Concretely, to learn α and

κ, we treat LeGR as an optimization problem:

argmax
α,κ

Accval(Θ̂l) (2)

where

Θ̂l = LeGR-Pruning(α,κ, ⇣̂l). (3)

LeGR-Pruning prunes away the bottom-ranked filters until

the desired FLOP count is met as shown in Figure 2. ⇣̂l
denotes the lowest FLOP count considered. As we will dis-

cuss later in Section 5.1, we have also studied how ⇣̂ affects

the performance of the learned ranking, i.e., how the learned

ranking affects the accuracy of the pruned networks.

Specifically, to learn the α-κ pair, we rely on approaches

from hyper-parameter optimization literature. While there

are several options for the optimization algorithm, we

adopt the regularized evolutionary algorithm (EA) proposed

in [48] for its effectiveness in the neural architecture search

space. The pseudo-code for our EA is outlined in Algo-

rithm 1. We have also investigated policy gradients for solv-

ing for the α-κ pair, which is shown in Appendix B. We can

equate each α-κ pair to a network architecture obtained by

LeGR-Pruning. Once a pruned architecture is obtained, we

fine-tune the resulting architecture by ⌧̂ gradient steps and

use its accuracy on the validation set4 as the fitness (i.e.,

3A Pareto curve describes the optimal trade-off curve between two met-

rics of interest. Specifically, one cannot obtain improvement in one metric

without degrading the other metric. The two metrics we considered in this

work are accuracy and FLOP count.
4We split 10% of the original training set to be used as validation set.

Algorithm 1 Learning α,κ with regularized EA

Input: model Θ, lowest constraint ⇣̂l, random walk size

�, total search iterations E, sample size S, mutation ratio

u, population size P , fine-tune iterations ⌧̂

Output: α,κ

Initialize Pool to a size P queue

for e = 1 to E do

α = 1, κ = 0

if Pool has S samples then

V = Pool.sample(S)

α,κ = argmaxFitness(V )

end if

Layer= Sample u% layers to mutate

for l 2 Layer do

stdl=computeStd([Mi 8 i 2 l])

αl = αl ⇥ α̂l, where α̂l ⇠ eN (0,σ2)

κl = κl + κ̂l, where κ̂l ⇠ N (0,stdl)
end for

Θ̂l = LeGR-Pruning-and-fine-tuning(α,κ, ⇣̂l, ⌧̂ , Θ)

Fitness = Accval(Θ̂l)
Pool.replaceOldestWith(α,κ, F itness)

end for

validation accuracy) for the corresponding α-κ pair. We

note that we use ⌧̂ to approximate ⌧ (fully fine-tuned steps)

and we empirically find that ⌧̂ = 200 gradient updates work

well under the pruning settings across the datasets and net-

works we study. More concretely, we first generate a pool of

candidates (α and κ values) and record the fitness for each

candidate, and then repeat the following steps: (i) sample a

subset from the candidates, (ii) identify the fittest candidate,

(iii) generate a new candidate by mutating the fittest candi-

date and measure its fitness accordingly, and (iv) replace the

oldest candidate in the pool with the generated one. To mu-
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tate the fittest candidate, we randomly select a subset of the

layers Layer and conduct one step of random-walk from

their current values, i.e., ↵l,l 8 l 2 Layer.

We note that our layer-wise affine transformation for-

mulation (Eq. 1) can be interpreted from an optimization

perspective. That is, one can upper-bound the loss differ-

ence between a pre-trained ConvNet and its pruned-and-

fine-tuned counterpart by assuming Lipschitz continuity on

the loss function, as detailed in Appendix A.

4. Evaluations

4.1. Datasets and Training Setting

Our work is evaluated on various image classification

benchmarks including CIFAR-10/100 [31], ImageNet [50],

and Birds-200 [58]. CIFAR-10/100 consists of 50k training

images and 10k testing images with a total of 10/100 classes

to be classified. ImageNet is a large scale image classifica-

tion dataset that includes 1.2 million training images and

50k testing images with 1k classes to be classified. Also,

we benchmark the proposed algorithm in a transfer learning

setting since in practice, we want a small and fast model

on some target datasets. Specifically, we use the Birds-200

dataset that consists of 6k training images and 5.7k testing

images covering 200 bird species.

For Bird-200, we use 10% of the training data as the val-

idation set used for early stopping and to avoid over-fitting.

The training scheme for CIFAR-10/100 follows [19], which

uses stochastic gradient descent with nesterov [44], weight

decay 5e�4, batch size 128, 1e�1 initial learning rate with

decrease by 5⇥ at epochs 60, 120, and 160, and train for

200 epochs in total. For control experiments with CIFAR-

100 and Bird-200, the fine-tuning after pruning is done as

follows: we keep all training hyper-parameters the same

but change the initial learning rate to 1e�2 and train for 60

epochs (i.e., ⌧ ⇡ 21k). We drop the learning rate by 10⇥ at

30%, 60%, and 80% of the total epochs, i.e., epochs 18, 36,

and 48. To compare numbers with prior art on CIFAR-10

and ImageNet, we follow the number of iterations in [72].

Specifically, for CIFAR-10 we fine-tuned for 400 epochs

with initial learning rate 1e�2, drop by 5⇥ at epochs 120,

240, and 320. For ImageNet, we use pre-trained models and

we fine-tuned the pruned models for 60 epochs with initial

learning rate 1e�2, drop by 10⇥ at epochs 30 and 45.

For the hyper-parameters of LeGR, we select ⌧̂ = 200,

i.e., fine-tune for 200 gradient steps before measuring the

validation accuracy when searching for the α-κ pair. We

note that we do the same for AMC [20] for a fair compari-

son. Moreover, we set the number of architectures explored

to be the same with AMC, i.e., 400. We set mutation rate

u = 10 and the hyper-parameter of the regularized evolu-

tionary algorithm by following prior art [48]. In the fol-

lowing experiments, we use the smallest ⇣ considered as ⇣̂l

to search for the learnable variables α and κ. The found

α-κ pair is used to obtain the pruned networks at various

FLOP counts. For example, for ResNet-56 with CIFAR-

100 (Figure 3a), we use ⇣̂l = 20% to obtain the α-κ pair

and use the same α-κ pair to obtain the seven networks

(⇣ = 20%, ..., 80%) with the flow described in Figure 2.

The ablation of ⇣̂l and ⌧̂ are detailed in Sec. 5.2.

We prune filters across all the convolutional layers. We

group dependent channels by summing up their importance

measure and prune them jointly. The importance measure

refers to the measure after learned affine transformations.

Specifically, we group a channel in depth-wise convolu-

tion with its corresponding channel in the preceding layer.

We also group channels that are summed together through

residual connections.

4.2. CIFAR-100 Results

In this section, we consider ResNet-56 and Mo-

bileNetV2 and we compare LeGR mainly with four filter

pruning methods, i.e., MorphNet [16], AMC [20], Fisher-

Pruning [57], and a baseline that prunes filters uniformly

across layers. Specifically, the baselines are determined

such that one dominant approach is selected from differ-

ent groups of prior art. We select one approach [16]

from pruning-while-learning approaches, one approach [20]

from pruning-by-searching methods, one approach [57]

from continuous pruning methods, and a baseline extending

magnitude-based pruning to various FLOP counts. We note

that FisherPruning is a continuous pruning method where

we use 0.0025 learning rate and perform 500 gradient steps

after each filter pruned following [57].

As shown in Figure 3a, we first observe that FisherPrun-

ing does not work as well as other methods and we hypoth-

esize the reason for it is that the small fixed learning rate in

the fine-tuning phase makes it hard for the optimizer to get

out of local optima. Additionally, we find that FisherPrun-

ing prunes away almost all the filters for some layers. On

the other hand, we find that all other approaches outperform

the uniform baseline in a high-FLOP-count regime. How-

ever, both AMC and MorphNet have higher variances when

pruned more aggressively. In both cases, LeGR outperforms

prior art, especially in the low-FLOP-count regime.

More importantly, our proposed method aims to alleviate

the cost of pruning when the goal is to explore the trade-off

curve between accuracy and inference latency. From this

perspective, our approach outperforms prior art by a signif-

icant margin. More specifically, we measure the average

time of each algorithm to obtain the seven pruned ResNet-

56 across the FLOP counts in Figure 3a using our hard-

ware (i.e., NVIDIA GTX 1080 Ti). Figure 3b shows the

efficiency of AMC, MorphNet, FisherPruning, and the pro-

posed LeGR. The cost can be broken down into two parts:

(1) pruning: the time it takes to search for a network that has
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(a)

(b)

Figure 3: (a) The trade-off curve of pruning ResNet-56 and MobileNetV2 on CIFAR-100 using various methods. We average

across three trials and plot the mean and standard deviation. (b) Training cost for seven ConvNets across FLOP counts using

various methods targeting ResNet-56 on CIFAR-100. We report the average cost considering seven FLOP counts, i.e., 20%

to 80% FLOP count in a step of 10% on NVIDIA GTX 1080 Ti. The cost is normalized to the cost of LeGR.

some pre-defined FLOP count and (2) fine-tuning: the time

it takes for fine-tuning the weights of a pruned network. For

MorphNet, we consider three trials for each FLOP count

to find an appropriate hyper-parameter � to meet the FLOP

count of interest. The numbers are normalized to the cost

of LeGR. In terms of pruning time, LeGR is 7⇥ and 5⇥
faster than AMC and MorphNet, respectively. The effi-

ciency comes from the fact that LeGR only searches the α-

κ pair once and re-uses it across FLOP counts. In contrast,

both AMC and MorphNet have to search for networks for

every FLOP count considered. FisherPruning always prune

one filter at a time, and therefore the lowest FLOP count

level considered determines the pruning time, regardless of

how many FLOP count levels we are interested in.

4.3. Comparison with Prior Art

Although the goal of this work is to develop a model

compression method that produces a set of ConvNets across

different FLOP counts, we also compare our method with

prior art that focuses on generating a ConvNet for a speci-

fied FLOP count.

CIFAR-10 In Table 1, we compare LeGR with prior art

that reports results on CIFAR-10. First, for ResNet-56, we

find that LeGR outperforms most of the prior art in both

FLOP count and accuracy dimensions and performs simi-

larly to [19, 72]. For VGG-13, LeGR achieves significantly

better results compared to prior art.

ImageNet Results For ImageNet, we prune ResNet-50

and MobileNetV2 with LeGR to compare with prior art.

For LeGR, we learn the ranking using 47% FLOP count

for ResNet-50 and 50% FLOP count for MobileNetV2, and

use the learned ranking to obtain ConvNets for other FLOP

Table 1: Comparison with prior art on CIFAR-10. We group

methods into sections according to different FLOP counts.

Values for our approaches are averaged across three trials

and we report the mean and standard deviation. We use

boldface to denote the best numbers and use ⇤ to denote our

implementation. The accuracy is represented in the format

of pre-trained 7! pruned-and-fine-tuned.

NETWORK METHOD ACC. (%) MFLOP COUNT

RESNET-56

PF [32] 93.0 −→ 93.0 90.9 (72%)

TAYLOR [43]∗ 93.9 −→ 93.2 90.8 (72%)

LEGR 93.9 −→ 94.1±0.0 87.8 (70%)

DCP-ADAPT [72] 93.8 −→ 93.8 66.3 (53%)

CP [23] 92.8 −→ 91.8 62.7 (50%)

AMC [20] 92.8 −→ 91.9 62.7 (50%)

DCP [72] 93.8 −→ 93.5 62.7 (50%)

SFP [19] 93.6±0.6 −→ 93.4±0.3 59.4 (47%)

LEGR 93.9 −→ 93.7±0.2 58.9 (47%)

VGG-13

BC-GNJ [38] 91.9 −→ 91.4 141.5 (45%)

BC-GHS [38] 91.9 −→ 91 121.9 (39%)

VIBNET [8] 91.9 −→ 91.5 70.6 (22%)

LEGR 91.9 −→ 92.4±0.2 70.3 (22%)

counts of interest. We have compared to 17 prior meth-

ods that report pruning performance for ResNet-50 and/or

MobileNetV2 on the ImageNet dataset. While our focus

is on the fast exploration of the speed and accuracy trade-

off curve for filter pruning, our proposed method is better

or comparable compared to the state-of-the-art methods as

shown in Figure 4. The detailed numerical results are in

Appendix C. We would like to emphasize that to obtain

a pruned-ConvNet with prior methods, one has to run the

pruning algorithm for every FLOP count considered. In

contrast, our proposed method learns the ranking once and

uses it to obtain ConvNets across different FLOP counts.
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Figure 4: Results for ImageNet. LeGR is better or comparable compared to prior methods. Furthermore, its goal is to output

a set of ConvNets instead of one ConvNet. The detailed numerical results are in Appendix C.

4.4. Transfer Learning: Bird-200

We analyze how LeGR performs in a transfer learn-

ing setting where we have a model pre-trained on a large

dataset, i.e., ImageNet, and we want to transfer its knowl-

edge to adapt to a smaller dataset, i.e., Bird-200. We prune

the fine-tuned network on the target dataset directly follow-

ing the practice in prior art [68, 40]. We first obtain fine-

tuned MobileNetV2 and ResNet-50 on the Bird-200 dataset

with top-1 accuracy 80.2% and 79.5%, respectively. These

are comparable to the reported values in prior art [33, 41].

As shown in Figure 5, we find that LeGR outperforms Uni-

form and AMC, which is consistent with previous analyses

in Section 4.2.

Figure 5: Results for Bird-200.

5. Ablation Study

5.1. Ranking Performance and ⇣̂l

To learn the global ranking with LeGR without knowing

the Pareto curve in advance, we use the minimum consid-

Figure 6: Robustness to the hyper-parameter ⇣̂l. Prior art is

plotted as a reference (c.f. Figure 3a).

ered FLOP count (⇣̂l) during learning to evaluate the per-

formance of a ranking. We are interested in understanding

how this design choice affects the performance of LeGR.

Specifically, we try LeGR targeting ResNet-56 for CIFAR-

100 with ⇣̂l 2 {20%, 40%, 60%, 80%}. As shown in Fig-

ure 6, we first observe that rankings learned using differ-

ent FLOP counts have similar performances, which empiri-

cally supports Assumption 1. More concretely, consider the

network pruned to 40% FLOP count by using the ranking

learned at 40% FLOP count. This case does not take advan-

tage of the subset assumption because the entire learning

process for learning α-κ is done only by looking at the per-

formance of the 40% FLOP count network. On the other

hand, rankings learned using other FLOP counts but em-

ployed to obtain pruned-networks at 40% FLOP count have

exploited the subset assumption (e.g., the ranking learned

for 80% FLOP count can produce a competitive network
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Figure 7: Pruning ResNet-56 for CIFAR-100 with LeGR by

learning α and κ using different ⌧̂ and FLOP count con-

straints.

for 40% FLOP count). We find that LeGR with or without

employing Assumption 1 results in similar performance for

the pruned networks.

5.2. Fine-tuned Iterations

Since we use ⌧̂ to approximate ⌧ when learning the α-

κ pair, it is expected that the closer ⌧̂ to ⌧ , the better the

α-κ pair LeGR can find. We use LeGR to prune ResNet-

56 for CIFAR-100 and learn α-κ at three FLOP counts

⇣̂l 2 {10%, 30%, 50%}. We consider ⇣ to be exactly ⇣̂l
in this case. For ⌧̂ , we experiment with {0, 50, 200, 500}.

We note that once the α-κ pair is learned, we use LeGR-

Pruning to obtain the pruned ConvNet, fine-tune it for ⌧

steps, and plot the resulting test accuracy. In this exper-

iment, ⌧ is set to 21120 gradient steps (60 epochs). As

shown in Figure 7, the results align with our intuition in

that there are diminishing returns in increasing ⌧̂ . We ob-

serve that ⌧̂ affects the accuracy of the pruned ConvNets

more when learning the ranking at a lower FLOP count

level, which means in low-FLOP-count regimes, the vali-

dation accuracy after fine-tuning a few steps might not be

representative. This makes sense since when pruning away

a lot of filters, the network can be thought of as moving

far away from the local optimal, where the gradient steps

early in the fine-tuning phase are noisy. Thus, more gradi-

ent steps are needed before considering the accuracy to be

representative of the fully-fine-tuned accuracy.

5.3. FLOP count and Runtime

We demonstrate the effectiveness of filter pruning

in wall-clock time speedup using ResNet-50 and Mo-

bileNetV2 on PyTorch 0.4 using two types of CPUs. Specif-

ically, we consider both a desktop level CPU, i.e., Intel i7,

and an embedded CPU, i.e., ARM A57, and use LeGR as

the pruning methodology. The input is a single RGB image

Figure 8: Latency reduction vs. FLOP count reduction.

FLOP count reduction is indicative for latency reduction.

of size 224x224 and the program (Python with PyTorch) is

run using a single thread. As shown in Figure 8, filter prun-

ing can produce near-linear acceleration (with a slope of ap-

proximately 0.6) without specialized software or hardware

support.

6. Conclusion

To alleviate the bottleneck of using model compression

in optimizing the ConvNets in a large system, we pro-

pose LeGR, a novel formulation for practitioners to explore

the accuracy-vs-speed trade-off efficiently via filter prun-

ing. More specifically, we propose to learn layer-wise affine

transformations over filter norms to construct a global rank-

ing of filters. This formulation addresses the limitation that

filter norms cannot be compared across layers in a learnable

fashion and provides an efficient way for practitioners to ob-

tain ConvNet architectures with different FLOP counts. Ad-

ditionally, we provide a theoretical interpretation of the pro-

posed affine transformation formulation. We conduct ex-

tensive empirical analyses using ResNet and MobileNetV2

on datasets including CIFAR, Bird-200, and ImageNet and

show that LeGR has less training cost to generate the pruned

ConvNets across different FLOP counts compared to prior

art while achieving comparable performance to state-of-the-

art pruning methods.
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