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Figure 1. Left: The PressurePose dataset has 206K 3D human poses and shapes with pressure images generated by physics

simulations that drop articulated rigid body models and soft body models on a soft body model of a bed and pressure sensing

mat. Right: PressureNet is a deep learning model trained on synthetic data that performs well on real data: pressure image

input with gender (in), 3D human mesh output (out), RGB image for reference (ref).

Abstract

People spend a substantial part of their lives at rest in

bed. 3D human pose and shape estimation for this activ-

ity would have numerous beneficial applications, yet line-

of-sight perception is complicated by occlusion from bed-

ding. Pressure sensing mats are a promising alternative, but

training data is challenging to collect at scale. We describe

a physics-based method that simulates human bodies at rest

in a bed with a pressure sensing mat, and present Pressure-

Pose, a synthetic dataset with 206K pressure images with

3D human poses and shapes. We also present PressureNet,

a deep learning model that estimates human pose and shape

given a pressure image and gender. PressureNet incorpo-

rates a pressure map reconstruction (PMR) network that

models pressure image generation to promote consistency

between estimated 3D body models and pressure image in-

put. In our evaluations, PressureNet performed well with

real data from participants in diverse poses, even though it

had only been trained with synthetic data. When we ablated

the PMR network, performance dropped substantially.

1. Introduction

Humans spend a large part of their lives resting. While

resting, humans select poses that can be sustained with little

physical exertion. Our primary insight is that human bodies

at rest can be modeled sufficiently well to generate synthetic

data for machine learning. The lack of physical exertion

and absence of motion makes this class of human activities

amenable to relatively simple biomechanical models similar

to the ragdoll models used in video games [35].

We apply this insight to the problem of using a pressure

image to estimate the 3D human pose and shape of a per-

son resting in bed. This capability would be useful for a

variety of healthcare applications such as bed sore manage-

ment [17], tomographic patient imaging [18], sleep studies

[9], patient monitoring [10], and assistive robotics [13]. To

this end, we present the PressurePose dataset, a large-scale

synthetic dataset consisting of 3D human body poses and

shapes with pressure images (Fig. 1, left). We also present

PressureNet, a deep learning model that estimates 3D hu-

man body pose and shape from a low-resolution pressure

image (Fig. 1, right).

Prior work on the problem of human pose estimation

from pressure images [9, 13, 18, 22, 29] has primarily used

real data that is challenging to collect. Our PressurePose

dataset has an unprecedented diversity of body shapes, joint

angles, and postures with more thorough and precise anno-

tations than previous datasets (Table 2). While recent prior

work has estimated 3D human pose from pressure images,

[9, 13], to the best of our knowledge PressureNet is the first

system to also estimate 3D body shape.

Our synthetic data generation method first generates di-

verse samples from an 85 dimensional human pose and
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shape space. After rejecting samples based on self-

collisions and Cartesian constraints, our method uses each

remaining sample to define the initial conditions for a series

of two physics simulations. The first finds a body pose that

is at rest on a simulated bed. Given this pose, the second

physics simulation generates a synthetic pressure image.

Our method uses SMPL [32] to generate human mesh

models and a capsulized approximation of SMPL [4] to

generate articulated rigid-body models. The first physics

simulation drops a capsulized articulated rigid-body model

with low-stiffness, damped joints on a soft-body model of

a bed and pressure-sensing mat. Once the articulated body

has settled into a statically stable configuration, our method

converts the settled capsulized model into a particle-based

soft body without articulation. This soft body model rep-

resents the shape of the body, which is important for pres-

sure image synthesis. The second physics simulation drops

this soft-body model from a small height onto the soft-body

bed and sensor model. Once settled, the simulated sensor

produces a pressure image, which is stored along with the

settled body parameters.

Our deep learning model, PressureNet, uses a series of

two networks modules. Each consists of a convolutional

neural network (CNN) based on [13], a kinematic embed-

ding model from [27] that produces a SMPL mesh [32], and

a pressure map reconstruction (PMR) network. The PMR

network serves as a model of pressure image generation. It

is a novel component that encourages consistency between

the mesh model and the pressure image input. Without it,

we found that our deep learning models would often make

mistakes that neglected the role of contact between the body

and the bed, such as placing the heel of a foot at a location

some distance away from an isolated high pressure region.

When given a mesh model of the human body, the PMR

network outputs an approximate pressure image that the

network can more directly compare to the pressure image

input. These approximate pressure images are used in the

loss function and as input to a second residual network

trained after the first network to correct these types of er-

rors and generally improve performance.

In our evaluation, we used a commercially available

pressure sensing mat (BodiTrak BT-3510 [34]) placed un-

der the fitted sheet of an Invacare Homecare Bed [26]. This

sensing method has potential advantages to line-of-sight

sensors due to occlusion of the body from bedding and other

sources, such as medical equipment. However, the mat we

used provides low-resolution pressure images (64×27) with

limited sensitivity and dynamic range that make the estima-

tion problem more challenging.

We only trained PressureNet using synthetic data, yet it

performed well in our evaluation with real data from 20 peo-

ple, including successfully estimating poses that have not

previously been reported in the literature, such as supine
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[22] R P Y M SP+, K 18 1 ?

[18] R D, P N S SP, L, P 10 16 1.1 K

[29] R P N S SP, L 8* 12 1.4 K

[1] R D Y S I/O, SP, L 14 10 180 K

[10] R RGB N S SP, UNK 7 3 13 K

[13] R P Y S SP, ST, K 14 17 28 K

[9] R P Y S SP+, L+, 14 6 60

ST

[31] R IRS N S SP+, L+ 14 2 419

[30] R T N S SP+, L+ 14 109 14 K

Ours S/ P Y M SP+, L+, 24 200K/ 200K/

R P+, K, CL 20 1K

HBH, PHU

posture key: SP - supine. L - lateral. P - prone. K - knee raised. I/O - getting in/out

of bed. ST - sitting. CL - crossed legs. HBH - hands behind head. PHU - prone

hands up. + indicates a continuum between postures. * indicates limbs.

Table 1. Comparison of Literature: Human Pose in Bed.

poses with hands behind the head. To improve the perfor-

mance of the model with real data, we used custom cali-

bration objects and an optimization procedure to match the

physics simulation to the real world prior to synthesizing

the training data. We also created a noise model in order to

apply noise to the synthetic pressure images when training

PressureNet.

Our contributions include the following:

• A physics-based method to generate simulated human

bodies at rest and produce synthetic pressure images.

• The PressurePose dataset, which consists of (1) 206K

synthetic pressure images (184K train / 22K test) with

associated 3D human poses and shapes 1 and (2) 1,051

real pressure images and RGB-D images from 20 hu-

man participants 2.

• PressureNet 3, a deep learning model trained on syn-

thetic data that estimates 3D human pose and shape

given a pressure image and gender.

2. Related work

Human pose estimation. There is long history of hu-

man pose estimation from camera images [2, 29, 37, 45, 46]

and the more recent use of CNNs [48, 49]. The field has

been moving rapidly with the estimation of 3D skeleton

models [40, 53], and human pose and shape estimation

as a 3D mesh [4, 27, 39] using human body models such

as SCAPE [3] and SMPL [32]. These latter methods en-

force physical constraints to provide kinematically feasible

pose estimates, some via optimization [4] and others using

learned embedded kinematics models [13, 27, 53]. Our ap-

1Synthetic dataset: doi.org/10.7910/DVN/IAPI0X
2Real dataset: doi.org/10.7910/DVN/KOA4ML
3Code: github.com/Healthcare-Robotics/bodies-at-rest
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Figure 2. We generate the initial pose from scratch, using random sampling of the body shape, joint angles, and global transform on the

bed. We use rejection sampling to distribute the poses and remove self-collisions. Then, we rest a dynamic capsulized human model onto

a soft bed using DartFleX, a fusion of DART and FleX simulators, to get an updated resting pose. Because this model is a rather rough

approximation of human shape, we then use FleX to particlize a finer body representation to get the pressure image.

proach builds on these works both directly through the use

of available neural networks (e.g, SMPL embedding) and

conceptually.

While pressure image formation differs from conven-

tional cameras, the images are visually interpretable and

methods developed in the vision community are well suited

to pressure imagery [8, 27, 49]. PressureNet’s model of

pressure image generation relates to recent work on phys-

ical contact between people and objects [6, 23, 24]. It also

relates to approaches that fine-tune estimates based on spa-

tial differences between maps at distinct stages of estima-

tion [7, 8, 36, 49].

Human pose at rest. Human pose estimation has tended

to focus on active poses. Poses in bed have attracted spe-

cial attention due to their relevance to healthcare. Table 2

provides an overview of work on the estimation of human

pose for people in bed. These efforts have used a variety of

sensors including RGB cameras [10], infrared lighting and

cameras for darkened rooms [31], depth cameras to estimate

pose underneath a blanket profile [1], thermal cameras to

see through a blanket [30], and pressure mats underneath a

person [9, 13, 14, 18, 22, 29].

Researchers have investigated posture classification for

people in bed [17, 18, 38]. There has been a lack of con-

sensus on body poses to consider, as illustrated by Table

2. Some works focus on task-related poses, such as eating

[1], and stretching [9]. Poses can increase ambiguity for

particular modalities, such as lack of contact on a pressure

mat (e.g. knee in the air) [13, 21] or overlapping body parts

facing a thermal camera [30].

Large datasets would be valuable for deep learning and

evaluation. While some bed pose work has used thousands

of images they have either had few participants [10] or poses

highly concentrated in some areas due to many frames being

captured when there is little motion [1, 9, 13]. An exception

is recent work by Liu et al. [30], which has 109 participants.

Generating data in simulation. Approaches for gen-

erating synthetic data that model humans in the context

of deep learning include physics-based simulators such as

DART [28] and PyBullet [16] and position-based dynamics

simulators such as PhysX [15] and FleX [33]. Some have

used these tools to simulate deformable objects like cloth

[12, 15]. For vision, creating synthetic depth images is rela-

tively straightforward (e.g. [1]) while RGB image synthesis

relies on more complex graphics approaches [11, 51, 52].

Some past works have simulated pressure sensors. One

approach is to model the array as a deformable volume that

penetrates the sensed object, where force is a function of

distance penetrated [42]. Others model pressure sensing

skin as a mass-spring-damper array [19, 25]; the former

considers separate layers for the skin and the sensor, a key

attribute of pressure arrays covering deformable objects.

3. PressurePose Dataset Generation

Our data generation process consists of three main

stages, as depicted in Fig. 2: sampling of the body pose

and shape; a physics simulation to find a body pose at rest;

and a physics simulation to generate a pressure image. We

use two simulation tools, FleX (Section 3.1) for simulating

soft body dynamics, and DART (Section 3.2) for articulated

rigid body dynamics.

Sample initial pose and shape. We sample initial pose

(i.e. joint angles) and body shape parameters from the

SMPL human model [32]. The pose consists of 69 joint

angles, Θ ∈ ❘69, which we sample from a uniform distri-

bution, U , bounded by joint angle limits defined for the hips,

knees, shoulders, and elbows in [5, 44, 47]. We initialize

the human body above the bed with a uniformly sampled

roll θr,1, yaw θr,3, and 2D translation {sr,1, sr,2} across

the surface of the bed. The pitch θr,2 is set to 0 and the

distance normal to the bed sr,3 is based on the position of

the lowest initial joint position. This determines the global

transform, {θr, sr} ∈ ❘6. The shape of a SMPL human

is determined from a set of 10 PCA parameters, β ∈ ❘10,

which we also sample uniformly, bounded by [−3, 3] fol-

lowing [43]. We use rejection sampling in three ways for

generating initial poses: to more uniformly distribute over-

all pose about the Cartesian space (rather than the uniformly
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Figure 3. Physics simulation #2 output: PressurePose synthetic dataset examples.

sampled joint space), to create a variety of data partitions

representing specific common postures (e.g. hands behind

the head), and to reject pose samples when there are self-

collisions. See Appendix A.1. This step outputs pose and

shape parameters {β,ΘC ,θr, sr}, where ΘC is a set of

joint angles conditioned on β that has passed these criteria.

Physics Simulation #1: Resting Pose. We use FleX

[33] to simulate a human model resting on a soft bed, which

includes a mattress and a synthetic pressure mat on the sur-

face of the mattress (Fig 2). The human is modelled as an

articulated rigid body system made with capsule primitives,

which is a dynamic variant of the SMPL model. Once the

simulation nears static equilibrium, we record the resting

pose {Θ̃C , θ̃r, s̃r}.

FleX is a position-based dynamics simulator with a uni-

fied particle representation that can efficiently simulate rigid

and deformable objects. However, FleX does not currently

provide a way for particles to influence the motions of rigid

capsules. To overcome this limitation, we use DART [28]

to model the rigid body dynamics of the capsulized human

model. We combine FleX and DART through the following

loop: 1) DART moves the capsulized articulated rigid body

based on applied forces and moments. 2) FleX moves the

soft body particles in response to the motions of the rigid

body. 3) We compute new forces and moments to apply

in DART based on the state of the FleX particles and the

capsulized articulated rigid body. 4) Repeat. We call the

combination of the two simulators DartFleX and Section

3.2 provides further details.

Physics Simulation #2: Pressure Image. The settled,

capsulized body is insufficient for producing a realistic pres-

sure image: it approximates the human shape too roughly.

Instead, we create a weighted, particlized, soft human body

in FleX (Figs. 2 and 3) from the SMPL [32] mesh using

body shape and resting pose {β, Θ̃C , θ̃r}. We initialize the

particlized human with 2D translation over the surface of

the mattress {s̃r,1, s̃r,2} ∈ s̃r. We set sr,3, the position nor-

mal to gravity, so the body is just above the surface of the

bed. We then start the simulation, resting the particlized

body on the soft bed, and record the pressure image P once

the simulation has neared static equilibrium. We note that

this particlized representation has no kinematics and cannot

be used to adjust a body to a resting configuration; thus our

use of two separate dynamic simulations.

3.1. Soft Body Simulation with FleX.

We simulate the sensing array by connecting FleX parti-

cles in a way that mimics real pressure sensing fabric, and

Figure 4. (a) Synthetic pressure mat structure. Pressure is a func-

tion of the penetration of the top layer array particle into the four

underlying particles. (b) DartFleX collision between a capsulized

limb and the simulated bed and pressure-sensing mat.

model the mattress with a soft FleX object.

Soft Mattress and Pressure Sensing Mat. Here we de-

scribe the soft mattress and pressure sensing array within

the FleX environment, as shown in Fig. 4 and further de-

scribed in Appendix A.3. The mattress is created in a com-

mon twin XL size with clusters of particles defined by their

spacing, DM , radius, RM , stiffness, KM , and particle mass,

mM , parameters. We then create a simulated pressure sens-

ing mat on top of the mattress that is used to both gener-

ate pressure images and to help the human model reach a

resting pose by computing the force vectors applied to the

various segments of the human body. The mat consists of

two layers of staggered quad FleX cloth meshes in a square

pyramid structure, where each layer is defined by its stretch-

ing, Kσ , bending, KB , and shear, Kτ , stiffnesses, which are

spring constraints on particles that hold the mat together.

A compression stiffness, KC , determines the bond strength

between the two layers, and its mass is defined by mL.

We model force applied to the mat as a function of the

particle penetration vector xi based on the pyramid struc-

ture in Fig. 4 (a). Force increases as the ith particle on the

top layer, pi, moves closer to the four particles underneath.

xi =
(
d0 − d(H,pi)

)
ni (1)

where d is the distance between particle pi and an approx-

imate underlying plane H, d0 is the initial distance at rest

prior to contact, and ni is the normal vector of the approxi-

mate underlying plane.

Sensor Model. The BodiTrak pressure-sensing mat has

an array of pressure-sensing taxels (tactile pixels). The four

particles at the base of the pyramid structure in Fig. 4 (a)

model the 1” square geometry of a single pressure-sensing

taxel. We model the pressure output, ui, of a single taxel, i,

using a quadratic function of the magnitude of the penetra-

tion vector xi.
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ui =
(
C2|xi|

2 + C1|xi|+ C0

)
(2)

where C2, C1, and C0 are constants optimized to fit calibra-

tion data, as described in Section 3.3.

3.2. DartFleX: Resting a Dynamic Ragdoll Body

The purpose of DartFleX is to allow rigid body kine-

matic chains to interact with soft objects by coupling the

rigid body dynamics solver in DART to the unified particle

solver in FleX as shown in Fig. 4 (b).

Dynamic rigid body chain. Our rigid human body

model relies on a capsulized approximation to the SMPL

model, following [4]. To use this model in a dynamics con-

text, we calculate the per-capsule mass based on volume

ratios from a person with average body shape β̄ = 0, aver-

age body mass, and mass percentage distributions between

body parts as defined by Tozeren [50]. For joint stiffnesses

kθ ∈ ❘69, we tune parameters to achieve the low stiffness

characteristics of a ragdoll model that can settle into a rest-

ing pose on a bed due to gravity. We set torso and head

stiffness high so that they are effectively immobile, and joint

damping bθ = 15kθ to reduce jitter.

DartFleX Physics. We initialize the same capsulized

model in both DART and FleX. We apply gravity in DART,

and take a step in the DART simulator. We get a set of up-

dated dynamic capsule positions and orientations, and move

the static geometry counterparts in FleX accordingly. In or-

der to transfer force data from FleX to DART, we first check

if any top layer pressure mat particles are in contact. Each

particle i in contact has a penetration vector xi(t) (see equa-

tion 1) at time t, which we convert to normal force vector

fN,i ∈ ❘
3 using a mass-spring-damper model [41]:

fN,i = kxi(t) + bẋi(t), (3)

where k is a spring constant, b is a damping constant, and

fN,i ⊥ H. We then assign each force to its nearest corre-

sponding capsule j. Given the velocity, vj , of capsule j and

a friction coefficient, µk, we compute the frictional force

fT,i for the ith particle in contact:

fT,i = −µk|fN,i|
vj − projf

N,i
vj

|vj − projf
N,i

vj |
(4)

where proj is an operator that projects vj orthogonally onto

a straight line parallel to fN,i . In our simulation, we set

b = 4k and uk = 0.5, and we find k through a calibration

sequence described in Section 3.3. We can then compute

the total particle force, fi:

fi = fN,i + fT,i (5)

We then compute a resultant force Fj in FleX for the jth

body capsule, based on the sum of forces from P particles

in contact with the capsule plus gravity, Fg:

Figure 5. (a) Rigid calibration capsules with quarters (U.S. coins)

shown for size. (b) Simulated capsules. (right) Real and simulated

pressure images prior to calibration.

Fj =

P∑

i=1

fi + Fg (6)

Moment Mj is computed on each capsule j from P par-

ticles in contact, where ri is the moment arm between a

particle and the capsule center of mass:

Mj =

P∑

i=1

ri × fi (7)

The resultant forces and moments are applied in DART, a

step is taken with the forces and gravity applied to each

body part, and the DartFleX cycle repeats. We continue un-

til the capsulized model settles and then record resting pose

Θ̃C , root position s̃r, and root orientation θ̃r.

3.3. Calibration

We calibrated our simulation using the rigid capsule

shapes in Fig. 5 (a). We placed varying weights on them on

the real pressure-sensing mat and recorded data, and then

created matching shapes in simulation. We first calibrated

the FleX environment using the particlized capsules shown

in Fig. 5 (b) using the covariance matrix adaptation evo-

lution strategy (CMA-ES) [20] to match synthetic pressure

images and real pressures images of the calibrated objects

by optimizing DM , RM , KM , mM , d0, Kσ , KB , Kτ , KC ,

mL, C2, C1, and C0.

We also measure how much the real capsules sink within

the mattress. We use these measurements to calibrate the

mass-spring-damper model in equation 3. We fit the simu-

lated capsule displacement to the real capsule displacement

to solve for the spring constant k and then set b = 4k and

µk = 0.5. See Appendix A.4 and A.5 for details.

4. PressureNet

Given a pressure image of a person resting in bed and

a gender, PressureNet produces a posed 3D body model.

PressureNet (Fig. 6 (a)) consists of two network modules

trained in sequence (“Mod1” and “Mod2”). Each takes as

input a tensor consisting of three channels: pressure, edges,
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Figure 6. (a) PressureNet: We combine two network modules (“Mod1” and “Mod2”) in series. Mod1 learns a coarse estimate and Mod2

fine-tunes, by learning a residual that takes as input the two maps reconstructed by Mod1 combined with the input to Mod1. (b) Detailed

description of a single PressureNet module showing the novel PMR network that reconstructs pressure and contact maps.

and contact {P, E , CI} ∈ R
128×54×3, which are shown in

Fig. 6 (b), as well as a binary flag for gender. P is the pres-

sure image from a pressure sensing mat, E results from an

edge detection channel consisting of a sobel filter applied

to P , and CI is a binary contact map calculated from all

non-zero elements of P . Given this input, each module out-

puts both an SMPL mesh body and two reconstructed maps

produced by the PMR network, {Q̂, ĈO}, that estimate the

pressure image that would be generated by the mesh body.

Mod2 has the same structure as Mod1, except that it takes

in two additional channels: the maps produced by PMR in

Mod1 {Q̂1, ĈO,1}. We train PressureNet by training Mod1

to produce a coarse estimate, freezing the learned model

weights, and then training Mod2 to fine-tune the estimate.

CNN. The first component of each network module is

a CNN with an architecture similar to the one proposed

by Clever et al [13]. Notably, we tripled the number

of channels in each convolutional layer. See Appendix

B.1 for details. During training, only the weights of the

CNNs are allowed to change. All other parts of the net-

works are held constant. The convolutional model out-

puts the estimated body shape, pose, and global transform,

Ψ̂ = {Θ̂, β̂, ŝr, x̂r, ŷr}, with the estimated joint angles

Θ̂ ∈ ❘69, body shape parameters β̂ ∈ ❘10, global trans-

lation of the root joint with respect to the bed ŝr ∈ ❘
3,

and parameters x̂r, ŷr which define a continuous orienta-

tion for the root joint of the body with {xu, xv, xw} ∈ xr,

{yu, yv, yw} ∈ yr for 3 DOF, i.e. θr,u = atan2(yu, xu)
and {θr,u, θr,v, θr,w} ∈ θr ∈ ❘3.

SMPL kinematic embedding. Ψ̂ feeds into a kinematic

embedding layer (see Fig. 6), which uses the SMPL differ-

entiable kinematics model from [27] to learn to estimate the

shape, pose, and global transform. This embedding outputs

joint positions for the human body, Ŝ, and a SMPL mesh

consisting of vertices V̂ ; and relies on forward kinematics

to ensure body proportions and joint angles match real hu-

mans.

PMR. The final component of each module, the PMR

network, reconstructs two maps based on the relationship

between the SMPL mesh V̂ and the surface of the bed. The

reconstructed pressure map (Q̂) corresponds with the input

pressure image, P , and is computed for each pressure image

taxel based on the distance that the human mesh sinks into

the bed. The reconstructed contact map (ĈO) corresponds

with the input contact map, ĈI , and is a binary contact map

of Q̂. See Appendix B for details.

Loss function. We train Mod1 in PressureNet with the

following loss function, given N = 24 Cartesian joint posi-

tions and S = 10 body parameters:

▲1 =
1

Nσs

N∑

j=1

∣∣∣∣sj − ŝj,1
∣∣∣∣
2
+

1

Sσβ

∣∣∣∣β − β̂1

∣∣∣∣
1

(8)

where sj ∈ S represents the 3D position of a single joint,

and σs and σβ are standard deviations computed over the

whole dataset to normalize the terms.

In our evaluations (Section 6), sequentially training two

separate network modules improved model performance

and the resulting human mesh and pose predictions. For a

pressure array of T taxels, we compute a loss for Mod2 by

adding the error between the reconstructed pressure maps

and the ground truth maps from simulation.

▲2 = ▲1+
1

Tσ
Q

∣∣∣∣Q−Q̂2

∣∣∣∣2
2
+

1

Tσ
CO

∣∣∣∣CO −ĈO,2

∣∣∣∣
1

(9)

where L1 uses Mod2 estimates (i.e. Ŝ2, β̂2), Q and CO are

ground truth maps precomputed by setting Ψ̂ = Ψ, and σQ,

σCO
are computed over the dataset.

5. Evaluation

To evaluate our methods, we trained our CNN on syn-

thetic data and tested it on both synthetic and real data. We

generated 206K synthetic bodies at rest with correspond-

ing pressure images (184K train / 22K test), which we par-

titioned to represent both a uniformly sampled space and

common resting postures. By posture, we mean common

recognized categories of overall body pose, such as sitting,

prone, and supine. We tested 4 network types and 2 training

data sets of different size.
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5.1. PressurePose Data Partitions

We used the rejection sampling method described in Sec-

tion 3 and Appendix A.1 to generate initial poses and create

dataset partitions. Our main partition, the general partition,

consists of 116K image and label pairs. In it, we evenly dis-

tributed limb poses about the Cartesian space and randomly

sampled over body roll and yaw. This partition includes

supine, left/right lateral and prone postures, as well as pos-

tures in between, and has the greatest diversity of poses. We

also created a general supine partition (58K) featuring only

supine postures and evenly distributed limb poses. Finally,

we generated smaller partitions representing other common

postures: hands behind the head (5K), prone with hands up

(9K), supine crossed legs (9K), and supine straight limbs

(9K). See Appendix A.7 for details.

5.2. PressureNet Evaluation

We normalized all input data by a per-image sum of tax-

els. We blurred synthetic and real images with a Gaussian

of σ = 0.5. We trained for 100 epochs on Mod1 with

loss function ▲1. Then, we pre-computed the reconstruc-

tion maps {Q̂1, ĈO,1} from Mod1 for input to Mod2, and

trained Mod2 for 100 epochs using loss function ▲2. See

Appendix B.3 for training hyperparameters and details.

We investigated 5 variants of PressureNet, which are all

trained entirely with synthetic data in order to compare the

effect of (1) ablating PMR, (2) adding noise to the synthetic

training data, (3) ablating the contact and edge input ( CI
and E ), and (4) reducing the training data size. Ablating

PMR consists of removing the 2 reconstructed maps from

the input to Mod2 and using L1 for training both Mod1 and

Mod2. We compared the effect of adding noise to the train-

ing data to account for real-world variation, such as sensor

noise. Our noise model includes per-pixel white noise, ad-

ditive noise, multiplicative noise, and blur variation, all with

σ = 0.2. We compared networks trained on 46K vs. 184K

images.

5.3. Human Participant Study

We mounted a Microsoft Kinect 2 1.6m above our In-

vacare Homecare bed to capture RGB images and point

clouds synchronized with our pressure image data. See

details in Appendix A.6. We recruited 20 (10F/10M) hu-

man participants with approval from an Institutional Re-

view Board. We conducted the study in two parts to cap-

ture (1) participant-selected poses and (2) prescribed poses

from the synthetic test set. We began by capturing five

participant-selected poses. For the first pose, participants

were instructed to get into the bed and get comfortable. For

the remaining four, participants were told to get comfort-

able in supine, right lateral, left lateral, and prone postures.

Next, for the prescribed poses, we displayed a pose render-

ing on a monitor, and instructed the participants to get into

Figure 7. 3D error analysis between a human mesh (6,980 vertices)

and a point cloud (∼8,000 downsampled points).

the pose shown. We captured 48 prescribed poses per par-

ticipant, which were sampled without replacement from the

synthetic testing set: 24 general partition poses, 8 supine-

only poses, and 4 from each of the remaining partitions.

5.4. Data Analysis

We performed an error analysis as depicted in Fig. 7. For

this analysis, we compute the closest point cloud point to

each mesh vertex, and the closest mesh vertex to each point

cloud point. We introduce 3DVPE (3D vertex-point-error),

which is the average of these numbers. We downsample the

point cloud to a resolution of 1cm so the number of points is

roughly equal to the number of mesh vertices. We clip the

mesh vertices and the point cloud at the edges of the pres-

sure mat. The point cloud only contains information from

the top surface of the body facing the camera, so we clip the

mesh vertices that do not have at least one adjacent face fac-

ing the camera. Finally, we normalize the mesh by vertex

density: while the density of the point cloud is uniform from

downsampling, the mesh vertices are highly concentrated in

some areas like the face. We normalize each per-vertex er-

ror by the average of its adjacent face surface areas.

We evaluated PressureNet on the synthetic test set and

compared the results to the real test set. We clip the esti-

mated and ground truth mesh vertices and normalize per-

vertex error in the same way as the real data. Addition-

ally, we evaluated per-joint error (24 joints) using mean-per-

joint-position error (MPJPE), and per-vertex error (6890
vertices) using vertex-to-vertex error (v2v) for the synthetic

data. We evaluated the network’s ability to infer posture us-

ing the participant-selected pose dataset by manually label-

ing the inferred posture (4 labels: supine, prone, left/right

lateral). We also compared to a baseline human, BL, where

we put a body of mean shape in a supine position in the cen-

ter of the bed and compare it to all ground truth poses. We

positioned the legs and arms to be straight and aligned with

the length of the body.

6. Results and Discussion

Overall, we found that using more synthetic data resulted

in higher performance in all tests, as shown in Table 2. As

expected, ablating the PMR network and ablating noise re-

duced performance. Ablating contact and edge inputs also

reduced performance. We expect that comparable perfor-
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Figure 8. PressureNet results on real data with the best performing network (trained with 184K samples).
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Best 184K 11.18 13.50 3.94 4.99 4.76

Noise σ ablated 184K 11.18 13.52 3.97 5.05 4.79

Input E , CI ablated 184K 11.39 13.73 4.03 5.07 4.85

Best - small data 46K 12.65 15.28 4.35 5.17 4.89

PMR ablated 184K 12.28 14.65 4.38 5.33 4.94

Baseline - mean pose - 33.30 38.70 8.43 6.65 5.22

Table 2. Results comparing testing data and network type.

Figure 9. Some failure cases. (a) Real data. (b) Testing on syn-

thetic training data.

mance could be achieved without them, possibly by chang-

ing the details of the CNN. Fig. 8 shows results from the

best performing network with 184K training images, noise,

and the PMR network.

We compared the error on a set of 99 participant se-

lected poses, shown in Table 3, using the best performing

PressureNet. Results show a higher error for lateral pos-

tures where the body center of mass is further from the mat

posture partition test ct. 3DVPE (cm) posture match

no instruction 19 3.93 100%

supine 20 4.02 100%

right lateral 20 5.45 100%

left lateral 20 5.37 100%

prone 20 4.96 95%*

Table 3. Results - participant selected poses. *See Fig. 9-top left.

and limbs are more often resting on other limbs or the body

rather than the mat. Results on partitioned subsets of data

can be found in Appendix B.4. Fig. 9 shows four failure

cases.

7. Conclusion

With our physics-based simulation pipeline, we gener-

ated a dataset, PressurePose, consisting of 200K synthetic

pressure images with an unprecedented variety of body

shapes and poses. Then, we trained a deep learning model,

PressureNet, entirely on synthetic data. With our best per-

forming model, we achieve an average pose estimation error

of < 5 cm, as measured by 3DVPE, resulting in accurate

3D pose and body shape estimation with real people on a

pressure sensing bed.
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