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Abstract

3D human motion prediction, i.e., forecasting future se-

quences from given historical poses, is a fundamental task

for action analysis, human-computer interaction, machine

intelligence. Recently, the state-of-the-art method assumes

that the whole human motion sequence involves a fully-

connected graph formed by links between each joint pair.

Although encouraging performance has been made, due to

the neglect of the inherent and meaningful characteristics of

the natural connectivity of human joints, unexpected results

may be produced. Moreover, such a complicated topology

greatly increases the training difficulty. To tackle these is-

sues, we propose a deep generative model based on graph

networks and adversarial learning. Specifically, the skele-

ton pose is represented as a novel dynamic graph, in which

natural connectivities of the joint pairs are exploited explic-

itly, and the links of geometrically separated joints can also

be learned implicitly. Notably, in the proposed model, the

natural connection strength is adaptively learned, whereas,

in previous schemes, it was constant. Our approach is eval-

uated on two representations (i.e., angle-based, position-

based) from various large-scale 3D skeleton benchmarks

(e.g., H3.6M, CMU, 3DPW MoCap). Extensive experiments

demonstrate that our approach achieves significant im-

provements against existing baselines in accuracy and visu-

alization. Code will be available at https://github.

com/cuiqiongjie/LDRGCN .

1. Introduction

Human motion prediction based on 3D skeleton data is

committed to predicting future sequences from historical

poses [24, 15]. Because of the potential in machine in-

telligence, autonomous vehicle, human-computer interac-

tion, especially applications that require interaction with hu-

mans, it has been widely investigated and attracted consid-

erable attention [14, 7, 24, 25, 21].

Traditional approaches have typically resorted to RNNs

to model the human motion sequence [11, 18, 10]. How-
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Figure 1. Example result. From top to bottom, we show the

ground truth, the results of ConvSeqSeq, FC-GCN, FC-GCN 3D,

Ours and Ours 3D. The red rectangle refers to a set of contrast-

ing poses. The predictions of ours approach are indistinguishable

from the ground truth in short-term prediction, and even for longer

range prediction, the result are still semantically equivalent.

ever, RNN calculates the temporal context frame by frame,

which may lead to the gradient vanishing or exploding,

bringing their well-known training difficulty. Correspond-

ingly, as described in the previous work [21, 14], recurrent

models inevitably involve error accumulation and conver-

gence to the mean pose. On the other hand, CNNs are

also introduced to further extract multi-scale spatial cor-

relations and have achieved remarkable performance [21].

Yet, skeleton sequence is essentially a non-euclidean data,

while CNNs are theoretically only applicable standard 2D

grid representation.
Recently, Graph Convolutional Networks (GCNs), a

general form of conventional CNNs, with improved gen-

eralization and high interpretability, have received increas-

ing attention and widely applied in many applications [6,

20, 33]. Researchers have also attempted to utilize GCNs

to efficiently extract contextual information for forecasting

human motion [23]. They suggest that the whole skeleton

sequence serves as an implicit and unrestricted graph, and

employs GCNs to learn these links between all joint pairs of

the sequence. Although this fully-connected graph model

(FC-GCN) has delivered impressive results, it cannot ex-
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plicitly exploit the human skeleton structure. The hierarchi-

cal structure of the human body represents the topological

relationship and indicates the inherent characteristics and

strong dependencies of human joints. Ignoring such mean-

ingful connectivities is equivalent to roughly viewing 3D

skeleton data as a general format, thus generating unrealis-

tic predictions.

To handle these aforementioned challenges, we propose

a novel graph generative model to efficiently predict future

poses from given historical movements. Specifically, we

construct two parameterized graphs to learn the dynamic

relationships among joints in 3D skeleton sequences: One

is the connective graph that explicitly leverages the natural

kinematic links of the human skeleton. Due to the heteroge-

neous information of human joints, in contrast to the fixed

strengths in previous work, we innovatively parameterize

the adjacent matrix Ap to learn these diverse patterns. Note

that, for Ap, only the relationship between physically con-

nected parts is learnable, while the weights of other sep-

arated joints are always fixed; Another one is the global

graph Q. Except for natural connections, geometrically

nonadjacent joints may potentially be interrelated. For ex-

ample, during running, the movement of the left hand al-

ways shows a strong correlation with the right hand, rather

than the left shoulder joint, which is connected to it. We

solve this problem by a learnable global graph to learn these

implicit connectivities along with the optimization process.

Then, partially constrained Ap helps the flexible Q stabilize

the training process, and Q assists Ap in capturing implicit

relationships. Besides, inspired by [14], we further intro-

duce a graph discriminator to distinguish the long sequence

that spliced by input sequence and prediction or original fu-

ture poses. Experiments empirically demonstrate that the

adversarial regularization is indeed preserving the detail in-

formation and facilitating prediction visualizations.

The major contributions of this paper are summarized

as: (1) We parameterize the adjacent matrix as the connec-

tive graph to learn the weights of natural connections in-

stead of fixed ones, and propose a learnable global graph to

capture implicit relationships, as shown in Figure 2. This

data-driven method increases the flexibility of graph con-

struction, making it more specific and applicable to the hu-

man kinetic structure. (2) Graph adversarial discriminator

is introduced to further enhance the visualization of predic-

tion. (3) On two skeleton representations of various large-

scale benchmarks (i.e., H3.6M [17], CMU [1], and 3DPW

[28] MoCap datasets), extensive experiments show that our

model surpasses the state-of-the-art methods in terms of vi-

sualization and precision in almost all scenarios.

2. Related Work

Human Motion Prediction. Typical methods formu-

late human motion prediction as a sequence-to-sequence

Figure 2. Left: human skeleton. Middle: connective graph where

blue lines indicate the learnable strengths of natural connectivities.

Right: global graph, and the grey line is the implicit relationships

for right knee joint.

(seq2seq) learning problem [11, 24, 27]. Specifically, RNNs

are proposed to capture the temporal information of human

motion, achieving encouraging results [4, 25]. Fragkiadaki

et al. [11] present two solutions: 3-layer long short-term

memory (LSTM) network (i.e., LSTM-3LR) and Encoder-

Recurrent-Decoder (i.e., ERD), where LSTM is utilized to

extract long-term dependencies. Meanwhile, a structural

RNN [18] is developed to semantically model the spatio-

temporal structure of 3D skeleton sequence. The above

two methods are action-specific models, and significant dis-

continuities between the predicted first frame and the last

frame of the input sequence are often observed. Martinez

et al. [24] introduce residual learning to recurrent model

to produce a smooth prediction. Tang et al. [27] suggest

using attention mechanism to capture the long-term tempo-

ral dependency to efficiently model human motion. How-

ever. RNN-based models often fall into the criticized prob-

lem of convergence to the static mean pose. Recently, re-

searchers have proposed various variants of RNN, e.g., hi-

erarchical motion recurrent model [22], Verso-Time Label

Noise-RNN [12], and triangular-prism RNN [8]. Unfortu-

nately, since RNN calculates the temporal context step by

step, it still inevitably causes error accumulation.

Currently, generative adversarial networks (GANs) have

shown impressive performance [2, 13, 21, 30]. Li et al. [21]

propose a convolutional discriminator to model human mo-

tion sequences and generate realistic predicted poses. Gui

et al. [14] present a novel framework, called adversar-

ial geometry aware encoder-decoder (AGED), in which the

discriminator distinguishes the concatenations of observed

frames and prediction or ground truth.

Graph Convolutional Networks. As a generalization

of CNNs, GCN is naturally suitable for data with specific

graph structure, e.g., point cloud [30], social network [32],

and 3D skeleton data [26, 23, 12]. Yan et al. [31] construct

a spatial-temporal graph defined on the essential skeleton

and the temporally consecutive poses for action recogni-

tion. This strategy leverages the strong natural dependen-

cies among human joints; however, it reduces flexibility.

Shi et al. [26] address this limitation by parameterizing an
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Figure 3. Illustration of the proposed model. Each GCN layer is followed by a temporal convolution to form GCN blocks to extract the

spatial-temporal correlation hierarchically. In each block, solid lines and dashed lines respectively represent learnable natural connections

and implicit relationships, wherein different gray depths indicate differential weights. The final model consists of 9 residual GCN blocks

to learn the dynamic relationship of 3D skeleton sequences. Then, an observation of historical poses is fed into the network to predict the

future sequence with an end-to-end manner. Note that the symbol +© is residual learning or skip connections.

unrestricted matrix to adaptively learn the implicit connec-

tions, except for natural connections. For human motion

prediction, Mao et al. [23] suggest that the whole motion se-

quence serves as an unconstrained topology, presenting im-

pressive results. However, such construction is equivalent

to treating the motion sequence cursorily as general data

without meaningful natural connections of human joints,

and unconstrained learning may lead to unstable training.

Instead of the above solutions, we set the adjacency matrix

as the model parameter, where the weights of the naturally

connected parts are learnable in the full training, while the

others are fixed at 0. The partially constrained adjacency

matrix ensures flexibility and sufficient utilizing of inher-

ent relationships of the human skeleton. Moreover, inspired

by [26], in addition to natural connections, we also param-

eterize a global graph to learn the implicit connectivities of

joints. With the above graph construction, our model can

learn the dynamic relationship of the 3D skeleton sequence,

so as to produce a high-fidelity prediction.

3. The Proposed Method

Following the previous works [14, 21, 9], in this paper,

the 3D skeleton samples are obtained from motion cap-

ture (MoCap) technologies. A motion sequence consists

of a series of consecutive frames (poses), wherein each

frame records the angle or position information of each

joint. Suppose an observed motion sequence is formu-

lated as X1:T = {x1, x2, ..., xt, ..., xT } with 1 ≤ t ≤ T ,

and each xt ∈ R3N from X represents a pose at time

step t where N is joints number. Then, we denote Ỹ =
{ỹT+1, ỹT+2, ..., ỹT+∆t} be the prediction with ∆t frames,

and Y = {y+1, yT+2, ..., yT+∆t} be the corresponding

ground truth of future motion. Our goal is to learning an op-

timal generator P∗ that accurately map historical poses X to

future sequence Y. To this end, we propose to learn the dy-

namic relationships of skeleton sequences to minimize the

difference between the prediction and ground truth.

3.1. Learning Dynamic Relationships

3D skeleton data, recording movement information of

specific joint frame by frame from MoCap devices, which

is essentially a sequential data and naturally suitable for re-

current neural networks (RNNs). However, due to limited

abilities to extract spatial information and the inevitable er-

ror accumulation, RNN variants often produce unrealistic

predictions. Additionally, conventional CNNs are also ig-

noring the kinematic dependencies of human joints.
Convolution on Graphs. Therefore, in this work, a

novel dynamic GCN model is proposed to automatically
learn the spatio-temporal relationships in MoCap sequence
in order to efficiently predict future poses. Specifically,
we present a skeleton-based pose as a undirected graph
G = (V, E), in which V is vertex set, i.e., joints set of hu-
man body. E = {eij > 0 | i, j ∈ 1, 2, ..., N} is edge set that
vi and vj are naturally connected. Then, a motion sequence
is formulated as M = {G1,G2, ...,GT } with T frames. The
typical operation of GCNs is formally expressed as:

F
(l+1) = g(F(l)

, A) = σ[ÂF
(l)

W
(l)], Â = D̃

−
1
2 ÃD̃

1
2 , (1)

where F(l) ∈ RN,Sl and F(l+1) ∈ RN,Sl+1 are input and

output tensor at l-th layer, respectively. W ∈ RSl,Sl+1

is learnable weight matrix, σ is activation function (e.g.,

ReLU). D̃ ∈ RN,N is diagonal degree matrix where D̃i,i =∑
j Ãi,j . Ã = A+I where A is the adjacency matrix and I is

identity matrix. Note that in the previous work [20, 31, 12],

the weight of the adjacency matrix is consistently fixed with

optimization process, i.e., A ∈ {ei,j = 1}. With the deep-

ening of the network hierarchy, this constant representation

may also partially model high-level features. However, this

strategy is not an optimal expression. Intuitively, all the

joints that connected with the vertex vi contribute unequally

to the movement pattern for vi. For example, during walk-

ing, the shoulder joint is more dependent on the trunk than
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the elbow joint.

Connective Graph. To solve this problem, we innova-

tively develop a connective graph parameterized by the ad-

jacency matrix, formally as Ap ∈ RN,N , which represents

the learnable connection strength of the natural links for the

human skeleton. Instead of the fixed weight of the adja-

cency matrix in prior work [31, 12], we suggest that the in-

terdependencies of natural connection in human skeletons

are trainable rather than constant, and then we learn the

weights of such natural relationships adaptively. With the

optimization process, the A(l)
p ∈ RN,N at l-th layer gradu-

ally reach the optimal solution, and the relative importance

between physically connected joint pairs can be automati-

cally obtained, The operation can be simplified as:

F(l+1) = g(F(l)) = σ[(A(l)
p ◦ M)F(l)W(l)], (2)

where Ap is N × N learnable connective matrix, and

F(l+1) ∈ RN×Sl+1 and F(l) ∈ RN×Sl are input and out-

put at l-th layer. M ∈ RN,N is a fixed mask matrix, and

the symbol ◦ indicates element-wise product. With the bi-

nary M, for partially constrained Ap = {eij}, throughout

training, only the weights of the interconnected vertexes

are optimized, while the separate parts are fixed at 0. In

other words, Ap is introduced to learn the natural connection

strength of the human skeleton. Unlike constant adjacency

matrix, parameterized Ap can adaptively treat the connec-

tive relationships between joints, as shown in the middle of

Figure 2. Besides, the fact that learnable Ap with a fixed

topology means regularizing the proposed model based on

prior knowledge, which can help the model converge to the

global minimum faster. Note that, the trainable Ap is still

initialized by the original adjacency matrix A.

Global Graph. Up to now, the constructed graph is still

manually designed from the kinematic structure of the hu-

man body. Even though the weights of natural connections

are adaptively calculated, this configuration may fail in ad-

equately modeling the spatial characteristics of the human

skeleton. For instance, in the running, the left and the right

leg always support each other, but there are no physical con-

nectivities between them. Due to the separation of node

relationships, Ap has a low ability to model such valuable

information. To tackle the challenges, we further present a

global graph to capture implicit but critical structural fea-

tures that transcend natural connections. Particularly, we

parameterize a matrix Q ∈ RN,N initialized from the zeros

matrix with the same size of Ap to adaptively learn the un-

derlying relationships among all human joints. In contrast

to Ap, Q is flexible without any constrains, which means

that it gradually achieves optimum along with the training

process. Besides natural relations, the global Q can learn

useful and implicit connection weights distributed in train-

ing samples. Finally, the updating formulation of the pro-

posed model is expressed as:

F(l+1) = g(F(l)) = σ[(A(l)
p ◦ M + Q(l))F(l)W(l)], (3)

where A(l)
p ,Q(l) ∈ RN×N is optimal matrix at l-th layer

with training process to jointly learn dynamic relationships

of skeleton sequence. Such a construction brings several

significant benefits:

(1) Learnable Ap adaptively extract the heterogeneous

information of natural connections of human joints;

(2) Unconstrained Q improves flexibility;

(3) Partially restricted Ap ensures stable training for Q;

(4) Q as a supplementary of Ap to learn the underlying

topology;

(5) Ap and Q cooperate to learn dynamic relationships of

skeleton sequences effectively.

Temporal modeling using convolutions The typical meth-

ods [24, 4, 27] are to use RNN to model the temporal in-

formation of human motion. However, RNN-based models

inevitably accumulate errors and increases computational

complexity. In contrast to RNN, TCN (i.e., 1D convolution)

is a feed-forward operation, demonstrating advantages in

parameter number, parallelism, accuracy, and model com-

plexity for modeling temporal patterns [3, 31]. Conse-

quently, we employ TCN along the time dimension of hu-

man motion to extract temporal correlations.

3.2. Optimization

Due to the different characteristics of the position-based

and angle-based skeleton sequence, we introduce the fol-

lowing loss functions to obtain better visualization and ac-

curacy of predicted poses.
Content loss, to ensure that the predicted sequence is con-
sistent with the global information of the experimental sam-
ples as much as possible, i.e.,

Lcon =
1

∆t

∑T+∆t

i=T+1

∑d

j=1

∥

∥yi,j − ỹi,j

∥

∥

2
, (4)

where yi,j and ỹi,j is the j-th joint of i-th frame for ground

turth and the prediction, respectively. d, N are number of

human joints and prediction length. Note that, for the two

representations of 3D skeleton sequence, yi,j and ỹi,j is an-

gle or position information, respectively.
Gram matrix loss, is also introduced to preserve the con-
sistency between prediction patterns and the original pose,
and avoid convergence to mean pose, i.e.,

Lgram =
1

∆t

∑T+∆t−1

i=T+1t

∥

∥

∥
H(ỹi

, ỹ
i+1)−H(yi

, y
i+1)

∥

∥

∥

2
, (5)

where the gram matrix is defined as H(α, β) =

[α : β] [α : β]
T

, and [:] indicates concatenation.
Bone length loss, enforces the bone length of each gener-
ated pose to approach the ground truth. Moreover, for 3D
coordinates of skeleton sequence, a fixed bone length can
force the predicted joint position to lie on a sphere with its
parent joint as the origin and the bone length as the radius.
This dramatically reduces the search space for joint move-
ment and is conducive to the faster convergence of the net-
work. For bone length li,j of j-th joint in i-th pose and the
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Figure 4. Qualitative comparison. The short-term predictions (400 ms) are shown in (a) walking dog, (b) greeting, and long-term predic-

tion (1000 ms) in (c) smoking. In each sub-figure, the first row is ground truth; the second, third and fifth are the result of ConvSeq2Seq

[21], FC-GCN [23], and our model based on angles; and the fourth and the bottom are the prediction of FC-GCN and our model based on

3D coordinate. In each row, the first 3 animations are observed poses, and the remainders are predicted frames, where the interval of each

animation is 40 ms. The red rectangles refer to contrasting frames, and the circles are unreasonable parts. From the result, we observe that

the proposed model produces more realistic visualization in all scenarios.

corresponding predicted part, this loss is denoted as:

Lbone =
1

∆t

∑T+N

i=T+∆t

∑d

j=1

∥

∥

∥
li,j − l̃i,j

∥

∥

∥

2
. (6)

Recently, GANs [13, 2] have introduced into the vari-

ation of GCNs and achieved remarkable performance in

many applications [30, 5, 32]. Motivation from these works,

we develop adversarial learning for our generator P to fur-

ther enhance the prediction visualization. In particular, fol-

lowing the formalism of WGAN-GP [16, 4], we design a

graph discriminator D with gradient penalty, which shares

the generator architecture but has fewer layers. Then, the

adversarial loss can be expressed as:

LD = D([X : P(X)])−D([X : Y ]) + λ(‖∇x̂D(x̂)‖2 − 1)2, (7)

LP = −D([X : P(X)]), (8)

where (‖∇x̂D(x̂)‖2 − 1)2 is the gradient penalty term, and

x̂ = ǫ([X : Y ]) + (1− ǫ)([X : P(X)]) is a random sample

with uniform distribution. Inspired by [14], the discrimi-

nator is introduced to distinguish the long sequence that is

concatenated from the historical sequence and the predic-

tion or ground truth, achieving better results. In all of our

experiments, we set λ = 5.
In this paper, we exploit two final loss functions for both

angle-based and position-based representations of human

motion respectively:

Final loss for angle-based skeleton sequence. The fol-
lowing loss is used to optimize the proposed model based
on joint angle representation, that is,

P
∗ = argmin

P
max
D∈D

λconLcon +λgramLgram +LP +LD, (9)

where λcon = 0.01, λgram = 0.001 are hyperparameters to

balance the importance of each loss term;
Final loss for position-based skeleton sequence. With op-
timum λcon = 0.01, λbone = 0.0005, we present the final
loss function for 3D coordinate skeleton sequence, i.e.,

P
∗ = argmin

P
max
D∈D

λconLcon + λboneLbone + LP + LD (10)

3.3. Implementation

As a primary component, each block consists of a pro-

posed GCN layer and a TCN layer, with dropout rate of

0.3. Besides, each layer is followed by a batch normaliza-

tion (BN) and ReLU activation function, as shown in Figure

3. We also add a residual connection in each block to sta-

bilize the training process. Then, the final model consists

of 9 residual dynamic GCN blocks. Due to more abstract

representations for deeper layers, we gradually increase the

number of output channels in the GCN layer, i.e., 64, 64, 64,

128, 128, 128, 256, 256, 256. Skip connection is added to

the input and output layers. We implement TCN with k ∗ 1
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Walking Eating Smoking Discussion Directions

millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Residual sup.[24] 0.28 0.49 0.72 0.81 1.14 0.23 0.39 0.62 0.76 1.34 0.33 0.61 1.05 1.15 1.83 0.31 0.68 1.01 1.09 1.79 0.26 0.47 0.72 0.84 1.46

ConvSeqSeq[21] 0.33 0.54 0.68 0.73 0.92 0.22 0.36 0.58 0.71 1.24 0.26 0.49 0.96 0.92 1.62 0.32 0.67 0.94 1.01 1.86 0.39 0.60 0.80 0.91 1.45

AGED w/o adv [14] 0.28 0.42 0.66 0.73 0.73 0.22 0.35 0.61 0.74 0.74 0.30 0.55 0.98 0.98 0.99 0.30 0.63 0.97 1.06 1.06 0.26 0.46 0.71 0.81 1.32

AGED w/ adv [14] 0.22 0.36 0.55 0.67 0.91 0.17 0.28 0.51 0.64 0.93 0.27 0.43 0.82 0.84 1.21 0.27 0.56 0.76 0.83 1.30 0.23 0.39 0.63 0.69 1.21

FC-GCN [23] 0.18 0.31 0.49 0.56 0.79 0.16 0.29 0.50 0.62 1.05 0.22 0.41 0.86 0.80 1.13 0.20 0.51 0.77 0.85 0.85 0.26 0.45 0.71 0.79 1.07

Ours 0.16 0.29 0.46 0.57 0.71 0.16 0.27 0.49 0.64 0.97 0.20 0.38 0.79 0.82 1.08 0.19 0.45 0.72 0.81 0.84 0.29 0.43 0.59 0.68 0.95

Greeting Phoning Posing Purchase Sitting

millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Residual sup.[24] 0.75 1.17 1.74 1.83 1.93 0.23 0.43 0.69 0.82 1.73 0.36 0.71 1.22 1.48 2.43 0.51 0.97 1.07 1.16 2.30 0.41 1.05 1.49 1.63 2.14

ConvSeqSeq[21] 0.51 0.82 1.21 1.38 1.72 0.59 1.13 1.51 1.65 1.81 0.29 0.60 1.12 1.37 2.65 0.63 0.91 1.19 1.29 2.52 0.39 0.61 1.02 1.18 2.67

AGED w/o adv [14] 0.61 0.95 1.44 1.61 1.81 0.23 0.42 0.61 0.79 1.77 0.34 0.70 1.19 1.40 2.01 0.46 0.89 1.06 1.11 1.89 0.46 0.87 1.23 1.51 2.11

AGED w/ adv [14] 0.56 0.81 1.30 1.46 2.12 0.19 0.34 0.50 0.68 1.41 0.31 0.58 1.12 1.34 1.78 0.46 0.78 1.01 1.07 1.77 0.41 0.76 1.05 1.19 1.72

FC-GCN [23] 0.36 0.60 0.95 1.13 1.43 0.53 1.02 1.35 1.48 2.08 0.19 0.44 1.01 1.24 1.54 0.43 0.65 1.05 1.13 1.73 0.29 0.45 0.80 0.97 1.47

Ours 0.35 0.56 0.87 0.98 1.33 0.43 0.54 0.63 0.78 1.33 0.15 0.44 0.91 1.07 1.34 0.43 0.57 0.88 1.08 1.49 0.27 0.43 0.69 1.01 1.38

Sitting down Taking photo Waiting Walking Dog Walking together

millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Residual sup.[24] 0.39 0.81 1.40 1.62 2.72 0.24 0.51 0.90 1.05 1.51 0.28 0.53 1.02 1.14 2.34 0.56 0.91 1.26 1.40 1.86 0.31 0.58 0.87 0.91 1.42

ConvSeqSeq[21] 0.41 0.78 1.16 1.31 2.06 0.23 0.49 0.88 1.06 1.40 0.30 0.62 1.09 1.30 2.50 0.59 1.00 1.32 1.44 1.92 0.27 0.52 0.71 0.74 1.28

AGED w/o adv [14] 0.38 0.77 1.18 1.41 1.88 0.24 0.52 0.92 1.01 1.22 0.31 0.64 1.08 1.12 1.91 0.51 0.87 1.21 1.33 1.51 0.29 0.51 0.72 0.75 1.08

AGED w/ adv [14] 0.33 0.62 0.98 1.10 1.98 0.23 0.48 0.81 0.95 1.65 0.24 0.50 1.02 1.13 1.65 0.50 0.81 1.15 1.27 1.61 0.23 0.41 0.56 0.62 1.47

FC-GCN [23] 0.30 0.61 0.90 1.00 1.45 0.14 0.34 0.58 0.70 1.35 0.23 0.50 0.91 1.14 1.23 0.46 0.79 1.12 1.29 1.31 0.15 0.34 0.52 0.57 1.41

Ours 0.29 0.62 0.87 0.93 1.42 0.13 0.33 0.54 0.71 1.20 0.21 0.48 0.84 1.15 1.21 0.45 0.68 0.93 1.14 1.38 0.15 0.33 0.49 0.54 1.38

Table 1. Comparisons of angle error for short-term and long-term prediction on H3.6M dataset. The best results are highlighted in bold,

and the second are underlined.

filter size, where the temporal dimension is k = 9. The dis-

criminator has a similar structure with six layers. The unit

number in the bottom layers of multi-layer perceptrons is

set as 512, 246, 64, 1. Note that, inspired by AGED [14],

our adversarial discriminator is introduced to distinguish the

long sequence which is concatenated from historical poses

and predictions or ground truth. The batch size is set to 32.

We utilize Adam [19] to train our model, and the learning

rate is initialized as 0.001 with a 0.98 decay per epoch.

4. Experiments

4.1. Datasets and Preprocessing

We use several action analysis benchmarks to verify the

effectiveness of the proposed model:

H3.6M [17], is considered to be the largest and challeng-

ing human motion analysis dataset currently. It involves 15

complex action scenarios, including periodic (e.g., walking)

or aperiodic (e.g., eating, smoking), performed by seven ac-

tors. Consistent with the solution of data preprocessing in

[21, 23], we have removed global translation and rotation,

and constant joints. Finally, each pose is represented as a

skeleton of 17 joints. During training, we down-sample all

sequences to 25 frames per second (fps) and re-expressed

it as exponential mapping. Besides, skeleton sequences

are normalized by subtracting the average pose of wholes

datasets and then dividing into the standard deviation. Fol-

lowing the previous works [18, 21, 14], we use the subject-5

(S5) to test our model, and S11 is the validation set, and the

remaining five subjects are training samples.

CMU MoCap [1]. We have also published experimental

results on CMU MoCap dataset. As previous literature [24,

21, 23], 8 actions are selected as our samples, e.g., walking,

running, wash window. We used the same training/test split

in their released code, the validation set is unavailable due

to data limitations. Other pre-processing strategies are the

same as those of H3.6M.

3DPW MoCap [29], is a recently released large-scale ac-

tion analysis dataset, which contains 51k indoor or outdoor

poses. In order to make a fair comparison, we adopt the par-

titioning solution of official training, testing and validation

set. The frame rate of all sequences is 30fps.

4.2. Evaluation Criteria and Baselines

Criteria: Following the previous standard evaluation met-
ric in [21, 24], we report the comparison results of the angle
error between the ground truth and the prediction, i.e.,

Eangle =
1

∆t

1

N

∑T+∆t

i=T+1

∑N

j=1

∣

∣yi,j − ỹi,j
∣

∣ , (11)

where ỹi,j is predicted angle in i-th frame of j-th joint,

and yi,j is the corresponding ground truth. Besides, we

also evaluate 3D errors using Mean Per Joint Position Er-
ror (MPJPE) [17, 23] in millimeter, that is,

E3D =

√

1

∆t

1

N

∑T+∆t

i=T+1

∑N

j=1

∥

∥pi,j − p̃i,j

∥

∥

2

2
, (12)

where pi,j and p̃i,j are the position of the ground truth and

the prediction, which can be measured either by converting

the predicted angles to 3D space, or directly train on 3D

coordinates of the skeleton sequence.

Baselines: To evaluate the effectiveness of the proposed

model, five latest methods are used as the competitive meth-

ods, including recurrent model (Residual sup.) [24], feed-

forward model (ConvSeqSeq) [21], GAN-based (AGED w/

or w/o adv) [14] and graph method (FC-GCN) [23]. In ad-

dition to evaluating the angle error, we also investigate the

3D error of the baseline methods exploiting strategy in [23]

to transform the predicted angle into 3D Cartesian space.

On the other hand, we take the position-based motion se-

quence as the input and output of baselines and our method,

to statistics the comparison results of 3D error.

4.3. Results

Following the previous work [24, 25, 4, 27], in this paper,

we focus on high-accuracy prediction in the next 400ms
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Walking Eating Smoking Discussion Directions

millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

ConvSeq2Seq [21] 21.8 37.5 55.9 63.0 92.1 13.3 24.5 48.6 60.0 87.7 15.4 25.5 39.3 44.5 67.5 23.6 43.6 68.4 74.9 134.4 26.7 43.3 59.0 72.4 132.2

ConvSeq2Seq 3D [21] 17.1 31.2 53.8 61.5 89.2 13.7 25.9 52.5 63.3 74.4 11.1 21.0 33.4 38.3 52.2 18.9 39.3 67.7 75.7 123.9 22.0 37.2 59.6 73.4 118.3

FC-GCN [23] 11.1 19.0 32.0 39.1 53.7 9.2 19.5 40.3 48.9 62.5 9.2 16.6 26.1 29.0 47.3 11.3 23.7 41.9 46.6 81.4 11.2 23.2 52.7 64.1 92.5

FC-GCN 3D [23] 8.9 15.7 29.2 33.4 50.9 8.8 18.9 39.4 47.2 57.1 7.8 14.9 25.3 28.7 44.3 9.8 22.1 39.6 44.1 78.5 12.6 24.4 48.2 58.4 89.1

Ours 9.7 17.7 28.3 32.2 51.3 10.2 17.4 38.7 49.3 56.6 8.9 14.1 25.9 26.7 41.4 7.6 23.4 36.6 39.9 69.5 10.4 24.1 44.7 51.3 78.8

Ours 3D 8.9 14.9 25.4 29.9 45.8 7.6 15.9 37.2 41.7 53.8 8.1 13.4 24.8 24.9 43.1 9.4 20.3 35.2 41.2 67.4 13.1 23.7 44.5 50.9 78.3

Greeting Phoning Posing Purchase Sitting

millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

ConvSeq2Seq [21] 30.4 58.6 110.0 122.8 198.9 22.4 38.4 65.0 75.4 133.2 22.4 42.1 87.3 106.1 187.3 28.4 53.8 82.1 93.1 142.4 24.7 50.0 88.6 100.4 182.3

ConvSeq2Seq 3D [21] 24.5 46.2 90.0 103.1 191.2 17.2 29.7 53.4 61.3 127.5 16.1 35.6 86.2 105.6 163.9 29.4 54.9 82.2 93.0 139.3 19.8 42.4 77.0 88.4 132.5

FC-GCN [23] 14.2 27.7 67.1 82.9 153.4 13.5 22.5 45.2 52.4 117.9 11.1 27.1 69.4 86.2 142.1 20.4 42.8 69.1 78.3 128.6 11.7 27.0 55.9 66.9 130.2

FC-GCN 3D [23] 14.5 30.5 74.2 89.0 148.4 11.5 20.2 37.9 43.2 94.3 9.4 23.9 66.2 82.9 143.5 19.6 38.5 64.4 72.2 127.2 10.7 24.6 50.6 62.0 119.8

Ours 13.4 31.2 69.3 86.1 133.2 11.7 18.3 32.8 44.1 87.9 8.6 19.2 59.4 84.2 141.7 18.2 39.1 63.2 75.2 121.4 9.8 25.2 48.9 59.4 104.9

Ours 3D 9.6 27.9 66.3 78.8 129.7 10.4 14.3 33.1 39.7 85.8 8.7 21.1 58.3 81.9 133.7 16.2 36.1 62.8 76.2 112.6 9.2 23.1 47.2 57.7 106.5

Sitting down Taking photo Waiting Walking dog Walking together

millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

ConvSeq2Seq [21] 23.9 39.9 74.6 89.8 189.3 18.4 32.1 60.3 72.5 156.4 24.9 50.2 101.6 120.0 221.5 56.4 94.9 136.1 156.3 234.1 21.1 38.5 61.0 70.4 156.3

ConvSeq2Seq 3D [21] 17.1 34.9 66.3 77.7 177.5 14.0 27.2 53.8 66.2 151.2 17.9 36.5 74.9 90.7 205.8 40.6 74.7 116.6 138.7 210.2 15.0 29.9 54.3 65.8 149.8

FC-GCN [23] 11.5 25.4 53.9 65.6 156.2 8.3 15.8 38.5 49.1 124.4 12.1 27.5 67.3 85.6 178.4 35.8 63.6 106.7 126.8 198.3 11.7 23.5 46.0 53.5 113.8

FC-GCN 3D [23] 11.4 27.6 56.4 67.6 163.9 6.8 15.2 38.2 49.6 125.7 9.5 22.0 57.5 73.9 157.2 32.2 58.0 102.2 122.7 185.4 8.9 18.4 35.3 44.3 102.4

Ours 10.8 24.2 49.7 61.4 146.1 6.5 14.3 32.3 46.7 117.9 9.1 21.5 50.9 68.7 144.2 26.5 54.3 94.7 119.2 168.3 10.3 20.6 34.9 45.3 98.7

Ours 3D 9.3 21.4 46.3 59.3 144.6 7.1 13.8 29.6 44.2 116.4 9.2 17.6 47.2 71.6 127.3 25.3 56.6 87.9 99.4 143.2 8.2 18.1 31.2 39.4 79.2

Table 2. Comparisons of 3D error on H3.6M dataset. For each method, we use two evaluation strategies: 1) train / test on angle-based

samples, and then transfer the predicted angles to 3D position; 2) directly train / test on 3D coordinate sequence.

for short-term prediction (i.e., 10 frames), and 1000ms for

long-term prediction (i.e., 25 frames). We evaluate the an-

gle error and the 3D error on three benchmarks.
H3.6M: We first present qualitative comparison results

on H3.6M dataset, as shown in Figure 4. For each subfig-

ure, from the top to the bottom, we show the ground truth,

and the prediction of ConvSeqSeq, FC-GCN, FC-GCN 3D,

Ours, and Ours 3D. Note that FC-GCN 3D and Ours 3D are

trained on 3D position-based skeleton sequences, while the

others are based on angles. The Figure 4 (a) and (b) show

the visualization of short-term prediction in ”walking the

dog” and ”greeting” activities, and the Figure 4 (c) provides

the long-term prediction results of ”smoking” activity. The

red rectangular indicates animations with distinct contrasts

between the result of different methods, and the red circle

or ellipse refer to unreasonable parts with ground truth. We

observe that our method outperforms the competitive meth-

ods in both long-term and short-term prediction. Further-

more, the prediction of our method is closer to the ground

truth than the baselines in almost all scenarios. This result

evidences the superiority of our method.
We also further evaluate the angle error between the pre-

diction and ground truth. The Table 1 shows a quantitative

comparison for long-term and short-term prediction. We

observe that the angle err or obtained by our method is

smaller than that of the baseline methods in almost all cases.

Such small errors are difficult to be detected by human eyes

in human character animation. On the other hand, RNN-

based Residual sup. and AGED gradually obtain larger

errors due to the inevitable error accumulation problem

and the extension of the prediction horizon. ConvSeq2Seq

based on adversarial learning has achieved slightly better

performance, but 2D convolution is not suitable for the 3D

skeleton of non-euclidean human motion in essence. FC-

GCN and our method are feedforward and can capture the

connective relationship of skeleton sequence However, FC-

GCN ignores the meaningful natural connection and regards

human motion as a general data. Our method can not only

explicitly learn the weights of natural connections, but also

dynamically capture the implicit dependencies of skeleton

sequences, thus achieving slightly better performance.

Angle-based representation is ambiguous, because poses

with the same angle error may bring about differential dis-

tribution in 3D space. Moreover, the Euler angle cannot

avoid the problem of gimbal lock. Therefore, to compre-

hensive verify our model, we also present the predicted 3D

error using the following strategies: First, the predicted an-

gles are converted into 3D position-based representation;

Second, we directly train and test on 3D skeleton sequences.

For example, in Table 2, we convert the predicted angle

of FC-GCN into 3D space and then report the 3D error,

while FC-GCN 3D directly takes the 3D coordinates of se-

quence, instead of the angles, as the input and output of

the network. We observe that our method consistently sur-

passes the baselines (i.e., ConvSeq2Seq, FC-GCN) under

the conversion from predicted angles to the corresponding

position-based result. When the 3D skeleton sequence is

directly used to train and test for the competitive methods

(i.e., ConvSeq2Seq 3D, FC-GCN 3D) and Ours 3D, the pro-

posed model also obtains realistic generalizations.

CMU and 3DPW MoCap: Similar to the above exper-

imental strategy, we also investigate our method on CMU

and 3DPW datasets with angles and 3D position as train-

ing samples respectively, as shown in Table 3, Table 4, and

Table 5. The experimental results show that the proposed

model substantially exceeds the baselines in both short-term

and long-term prediction. These results once again confirm

the effectiveness of our model for human motion prediction.
Comparison of training details with the state-of-the-

art [23]. Previously, FC-GCN achieved the state-of-the-art

results. However, FC-GCN is subject to a huge and uncon-

strained topology, which ignores the natural and meaning-
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Basketball Basketball signal Directing traffic Jumping

millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

ConvSeq2Seq [21] 0.37 0.62 1.07 1.18 1.95 0.32 0.59 1.04 1.24 1.96 0.25 0.56 0.89 1.00 2.04 0.39 0.60 1.36 1.56 2.01

FC-GCN [23] 0.33 0.52 0.89 1.06 1.71 0.11 0.20 0.41 0.53 1.00 0.15 0.32 0.52 0.60 2.00 0.31 0.49 1.23 1.39 1.80

Ours 0.28 0.43 0.76 0.89 1.52 0.12 0.16 0.39 0.51 0.89 0.14 0.30 0.45 0.58 1.79 0.29 0.41 0.91 1.17 1.77

Running Soccer Walking Wash window

millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

ConvSeq2Seq [21] 0.28 0.41 0.52 0.57 0.67 0.26 0.44 0.75 0.87 1.56 0.35 0.44 0.45 0.50 0.78 0.30 0.47 0.80 1.01 1.39

FC-GCN [23] 0.33 0.55 0.73 0.74 0.95 0.18 0.29 0.61 0.71 1.40 0.33 0.45 0.49 0.53 0.61 0.22 0.33 0.57 0.75 1.20

Ours 0.31 0.39 0.51 0.68 0.87 0.17 0.25 0.53 0.66 1.29 0.29 0.41 0.54 0.61 0.64 0.20 0.31 0.54 0.68 1.04

Table 3. Quantitative comparisons of angle error for short-term and long-term prediction on 8 activities of the CMU MoCap dataset.

Basketball Basketball signal Directing traffic Jumping

millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

ConvSeq2Seq 3D [21] 16.7 30.5 53.8 64.3 91.5 8.4 16.2 30.8 37.8 76.5 10.6 20.3 38.7 48.4 115.5 22.4 44.0 87.5 106.3 162.6

FC-GCN 3D [23] 14.0 25.4 49.6 61.4 106.1 3.5 6.1 11.7 15.2 53.9 7.4 15.1 31.7 42.2 152.4 16.9 34.4 76.3 96.8 164.6

Ours 3D 13.1 22.0 37.2 55.8 97.7 3.4 6.2 11.2 13.8 47.3 6.8 16.3 27.9 38.9 131.8 13.2 32.7 65.1 91.3 153.5

Running Soccer Walking Wash window

millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

ConvSeq2Seq 3D [21] 14.3 16.3 18.0 20.2 27.5 12.1 21.8 41.9 52.9 94.6 7.6 12.5 23.0 27.5 49.8 8.2 15.9 32.1 39.9 58.9

FC-GCN 3D [23] 25.5 36.7 39.3 39.9 58.2 11.3 21.5 44.2 55.8 117.5 7.7 11.8 19.4 23.1 40.2 5.9 11.9 30.3 40.0 79.3

Ours 3D 15.2 19.7 23.3 35.8 47.4 10.3 21.1 42.7 50.9 91.4 7.1 10.4 17.8 20.7 37.5 5.8 12.3 27.8 38.2 56.6

Table 4. Quantitative comparisons of 3D error for short-term and long-term prediction on CMU MoCap dataset. In this case, the network

directly take 3D-position based sequence as the input and output.

millisecond (ms) 200 400 600 800 1000

ConvSeq2Seq [21] 1.24 1.85 2.13 2.23 2.26

FC-GCN [23] 0.64 0.95 1.12 1.22 1.27

Ours 0.57 0.72 1.07 1.18 1.25

ConvSeq2Seq 3D [21] 71.6 124.9 155.4 174.7 187.5

FC-GCN 3D [23] 35.6 67.8 90.6 106.9 117.8

Ours 3D 33.9 57.4 84.6 95.2 109.1

Table 5. Quantitative comparisons of mean angle error and mean

3D error on whole testing set of 3DPW MoCap dataset.

parameters
training time

(minute / epoch)
testing time

(millisecond / 25 frames)

FC-GCN [23] ≈ 2.6M ≈ 4.1min ≈ 2.9ms

Ours ≈ 2.1 M ≈ 3.5 min ≈ 2.4 ms

Table 6. Training details comparison with the state-of-the-art.

ful dependencies between human joints. Moreover, such

a complicated graph structure also increase the model size.

Therefore, we compare the training details (parameter num-

ber, training time, and testing time) between FC-GCN and

our method with angle-based H3.6M dataset on NVIDIA

1070TI GPU. Our method converges at around 40 epoch,

while FC-GCN is 50. Other results are shown in Table 6.

4.4. Ablation Analysis

We have run various ablation studies on H3.6M dataset

to further explore the impact of the proposed modules.

Specifically, we report the impact of (1) residual connection

and (2) adverarial discriminator. In this paper, we propose

the connective graph Ap and global graph Q to learn the

dynamic relationships of skeleton sequence. Therefore, we

also investigate using only (3) Ap, Q or their combination

respectively. The above results are shown in Table 7.

Our discriminator distinguishes the long sequence that

concatenates the input sequence and the prediction or

ground truth, as shown in Table 8. Therefore, we also an-

alyze the influence of (4) different inputs of discriminator:

(a) short sequence (25 frames): prediction and ground truth;

(b) long sequence (50 frames): concatenation of input se-

quence and predicted or ground truth. The ablation studies

evidence that the proposed components indeed benefit to the

mean angle error mean 3D error

resi adv 80 160 320 400 1000 80 160 320 400 1000

yes 0.27 0.39 0.49 0.53 0.92 11.4 24.9 57.2 71.2 87.9

yes 0.35 0.64 0.69 0.98 1.45 14.2 35.3 76.2 81.3 132.1

yes yes 0.24 0.37 0.45 0.52 0.89 10.4 22.2 56.7 64.2 81.3

connective
graph - Ap

global
graph - Q

yes 0.31 0.43 0.57 0.64 0.96 14.2 29.4 67.8 71.2 83.8

yes 0.28 0.41 0.53 0.62 0.83 12.3 24.2 59.3 67.3 85.9

yes yes 0.24 0.37 0.45 0.52 0.89 10.4 22.2 56.7 64.2 81.3

Table 7. Top: Impact of residual connection and adversarial lean-

ing; Bottom:. Results on different graph construction.

mean angle error mean 3D error

80 160 320 400 1000 80 160 320 400 1000

(a) short sequence 0.50 0.64 0.71 0.82 0.99 11.2 24.1 57.8 68.7 89.3

(b) long sequence 0.24 0.37 0.45 0.52 0.89 10.4 22.2 56.7 64.2 81.3

Table 8. Influence of the different input of our discriminator.

network to obtain more accurate predictions.

5. Conclusion

In this paper, we have proposed a novel GCN approach

to effectively forecast the future poses from given historical

sequence. We parameterize the human structure through the

learnable adjacency matrix and global graph. With the opti-

mization process, the proposed model can not only capture

the strength of the natural connection, but also adaptively

extract the connectivities of geometrically separated joints.

This data-driven method improves the flexibility of graph

construction and ensures stable training, which is more suit-

able for human motion modeling. The final model exceeds

current state-of-the-art performance on several large-scale

human motion prediction benchmarks. In our future work,

we will consider further exploration of combining bones

and joints information.
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