
High-Performance Long-Term Tracking with Meta-Updater

Kenan Dai1, Yunhua Zhang2, Dong Wang1
∗

, Jianhua Li1, Huchuan Lu1,4, Xiaoyun Yang3

1School of Information and Communication Engineering, Dalian University of Technology, China
2University of Amsterdam 3China Science IntelliCloud Technology Co., Ltd 4Peng Cheng Laboratory

dkn2014@mail.dlut.edu.cn, y.zhang9@uva.nl, wdice@dlut.edu.cn

jianhual@dlut.edu.cn, lhchuan@dlut.edu.cn, xiaoyun.yang@intellicloud.ai

Abstract

Long-term visual tracking has drawn increasing atten-

tion because it is much closer to practical applications

than short-term tracking. Most top-ranked long-term track-

ers adopt the offline-trained Siamese architectures, thus,

they cannot benefit from great progress of short-term track-

ers with online update. However, it is quite risky to s-

traightforwardly introduce online-update-based trackers to

solve the long-term problem, due to long-term uncertain

and noisy observations. In this work, we propose a nov-

el offline-trained Meta-Updater to address an importan-

t but unsolved problem: Is the tracker ready for updating

in the current frame? The proposed meta-updater can ef-

fectively integrate geometric, discriminative, and appear-

ance cues in a sequential manner, and then mine the se-

quential information with a designed cascaded LSTM mod-

ule. Our meta-updater learns a binary output to guide the

tracker’s update and can be easily embedded into differ-

ent trackers. This work also introduces a long-term track-

ing framework consisting of an online local tracker, an on-

line verifier, a SiamRPN-based re-detector, and our meta-

updater. Numerous experimental results on the VOT2018LT,

VOT2019LT, OxUvALT, TLP, and LaSOT benchmarks show

that our tracker performs remarkably better than other com-

peting algorithms. Our project is available on the website:

https://github.com/Daikenan/LTMU .

1. Introduction

The study of visual tracking has begun to shift from

short-term tracking to large-scale long-term tracking,

roughly due to two reasons. First, long-term tracking is

much closer to practical applications than short-term track-

ing. The average length of sequences in short-term track-

ing benchmarks (OTB [46], VOT2018 [23], TC128 [31], to

name a few) is often at the second level, whereas the av-

∗Corresponding Author: Dr. Dong Wang, wdice@dlut.edu.cn

Ours ATOM*_LT ATOM*

ATOM* ATOM* LT Ours CLGS SiamDW LT

F-score 0.527 0.651 0.697 0.674 0.665

Pr 0.589 0.685 0.721 0.739 0.697

Re 0.477 0.621 0.674 0.619 0.636

Figure 1. Visualization and comparisons of representative long-

term tracking results on VOT2019LT. “ATOM*” is our local track-

er based on ATOM [9], “Ours” denotes our long-term tracker with

meta-update. “ATOM* LT” means “Ours” without meta-updater.

“CLGS” and “SiamDW LT” are the second and third best trackers

on VOT2019LT. Please see Sections 3 and 4 for more details.

erage frame length in long-term tracking datasets (such as

VOT2018LT [23], VOT2019LT [24], and OxUvALT [42])

is at least at the minute level. Second, the long-term track-

ing task additionally requires the tracker having the capabil-

ity to handle frequent disappearance and reappearance (i.e.,

having a strong re-detection capability)1.

Deep-learning-based methods have dominated the short-

term tracking field [30, 47, 35], from the perspective of

either one-shot learning [41, 2, 15, 28, 26, 12, 53, 29] or

online learning [37, 10, 8, 21, 40, 7, 49, 50, 9]. Usual-

ly, the latter methods (e.g., ECO [8], ATOM [9]) are more

accurate (with less training data) but slower than the for-

mer ones (e.g., SiamFC [2], SiamRPN [28]). A curious

phenomenon is that few leading long-term trackers exploit

online-updated short-term trackers to conduct local track-

1More resources about long-term tracking can be found in https://

github.com/wangdongdut/Long-term-Visual-Tracking.

6298



ing. MBMD [51], the winner of VOT2018LT, exploits an

offline-trained regression network to directly regress the tar-

get’s bounding box in a local region, and uses an online-

learned verifier to make the tracker switch between local

tracking and global re-detection. The recent SPLT [48]

method utilizes the same SiamRPN model in [51] for lo-

cal tracking. SiamFC+R [42], the best method in the OxU-

vALT report, equips the original SiamFC [2] with a simple

re-detection scheme. An important reason is that online up-

date is a double-edged sword for tracking. Online update

captures appearance variations from both target and back-

ground, but inevitably pollutes the model with noisy sam-

ples. The risk of online update is amplified for long-term

tracking, due to long-term uncertain observations.

Motivated by the aforementioned analysis, this work at-

tempts to improve the long-term tracking performance from

two aspects. First, we design a long-term tracking frame-

work that exploits an online-updated tracker for local track-

ing. As seen in Figure 1, the tracking performance is re-

markably improved by extending ATOM* to a long-term

tracker (ATOM* LT), but it remains worse than the CLGS

and SiamDW LT methods. Second, we propose a novel

meta-updater to effectively guide the tracker’s update. Fig-

ure 1 shows that after adding our meta-updater, the pro-

posed tracker achieves very promising tracking results.

Our main contributions can be summarized as follows.
• A novel offline-trained meta-updater is proposed to ad-

dress an important but unsolved problem: Is the track-

er ready for updating in the current frame? The pro-

posed meta-updater effectively guide the update of the

online tracker, not only facilitating the proposed track-

er but also having good generalization ability.

• A long-term tracking framework is introduced on the

basis of a SiamRPN-based re-detector, an online veri-

fier, and an online local tracker with our meta-updater.

Compared with other methods, our long-term track-

ing framework can benefit from the strength of online-

updated short-term tracker at low risk.

• Numerous experimental results on the VOT2018LT,

VOT2019LT, OxUvALT, TLP and LaSOT long-term

benchmarks show that the proposed method outper-

forms the state-of-the-art trackers by a large margin.

2. Related Work
2.1. Long-term Visual Tracking

Although large-scale long-term tracking benchmark-

s [23, 42] began to emerge since 2018, researchers have at-

tached importance to the long-term tracking task for a long

time (such as keypoint-based [17], proposal-based [54],

detector-based [22, 32], and other methods). A clas-

sical algorithm is the tracking-learning-detection (TLD)

method [22], which addresses long-term tracking as a com-

bination of a local tracker (with forward-backward optical

flow) and a global re-detector (with an ensemble of weak

classifiers). Following this idea, many researchers [34, 32,

42] attempt to handle the long-term tracking problem with

different local trackers and different global re-detectors. A-

mong them, the local tracker and global re-detectors can

also adopt the same powerful model [32, 26, 51, 48], being

equipped with a re-detection scheme (e.g., random search

and sliding window). A crucial problem of these track-

ers is how to switch the tracker between the local tracker

and the global re-detector. Usually, they use the outputs of

local trackers to conduct self-evaluation, i.e., to determine

whether the tracker losses the target or not. This manner has

a high risk since the outputs of local trackers are not always

reliable and unexpectedly mislead the switcher sometimes.

The MBMD method [51], the winner of VOT2018LT, con-

ducts local and global switching with an additional online-

updated deep classifier. This tracker exploits a SiamPRN-

based network to regress the target in a local search region

or every sliding window when re-detection. The recent S-

PLT method [48] utilizes the same SiamPRN in [51] for

tracking and re-detection, replaces the online verifier in [51]

with an offline trained matching network, and speeds up the

tracker by using their proposed skimming module. A curi-

ous phenomenon is that most top-ranked long-term trackers

(such as MBMD [51], SPLT [48], and SiamRPN++ [26]),

have not adopted excellent online-updated trackers (e.g., E-

CO [8], ATOM [9]) to conduct local tracking. One of the

underlying reasons is that the risk of online update is ampli-

fied for long-term tracking, caused by long-term uncertain

observations. In this work, we attempt to address this dilem-

ma by designing a high-performance long-term tracker with

a meta-updater.

2.2. Online Update for Visual Tracking

For visual tracking, online update acts as a vital role

to capture appearance variations from both target and its

surrounding background during the tracking process. Nu-

merous schemes have been designed to achieve this goal

by using template update [6, 55, 29], incremental subspace

learning [39, 43], online learning classifiers [16, 37, 8, 9],

to name a few. However, online update is a double-edged

sword in balancing the dynamical information description

and unexpected noise introduction. Accumulating errors

over a long time, collecting inappropriate samples or over-

fitting to available data when the target disappears can eas-

ily degrade the tracker and lead to tracking drift, especially

for long-term tracking. To deal with this dilemma, many

efforts have been done at least from two aspects. The first

one aims to distill the online collected samples by recov-

ering or clustering noisy observations [43, 8]. Another ef-

fective attempt is to design some criteria for evaluating the

reliability of the current tracking result, to remove the un-

reliable samples or reject the inappropriate update. These

criteria include the confidence score [37], the maximum

(MAX) response [9], peak-to-sidelobe rate (PSR) [9], av-

6299



erage peak-to-correlation energy [44], and MAX-PSR [32].

These methods usually utilize the tracker’s output to self-

evaluate this reliability. But the self-evaluation of the track-

ers’ reliability with its outputs has inevitable risks, espe-

cially when the tracker experiences the long-term uncertain

and noisy observations. In this work, we propose a nov-

el offline-trained meta-updater to integrate multiple cues in

a sequential manner. The meta-updater outputs a binary s-

core to indicate whether the tracker should be updated or not

in the current frame, which not only remarkably improves

the performance of our long-term tracker but also is easy to

be embedded into other online-updated trackers. Recently,

some meta-learning-based methods [25, 38, 27, 18, 5, 29]

have been presented. All these methods focus on addressing

the “how to update” problem (i.e., efficiently and/or effec-

tively updating the trackers’ appearance models). By con-

trast, our meta-updater is designed to deal with the “when to

update” problem, and it can be combined with many “how

to update” algorithms to further improve the tracking per-

formance.

Local 

tracker
Verifier

Confidence

score

Meta-

Updater
update?

reset

SiamRPN
Candidate

boxes
Verifier

target box Global search

Switching

Local tracking
search region

find

result
next frame

update?

global

detection

Figure 2. Proposed long-term tracking framework. Better viewed

in color with zoom-in.

3. Long-term Tracking with Meta-Updater
3.1. Long-term Tracking Framework

The overall framework is presented in Figure 2. In each

frame, the local tracker takes the local search region as in-

put, and outputs the bounding box of the tracked object.

Then, the verifier evaluates the correctness of the current

tracking result. If the output verification score is larger than

a predefined threshold, the tracker will continue to conduc-

t local tracking in the next frame. If the score is smaller

than the threshold, we use the faster R-CNN detector [4]

to detect all possible candidates in the next frame and crop

the local search region regarding each candidate. Then, a

SiamPRN model [51] takes each region as input and out-

puts corresponding candidate boxes. These bounding boxes

are sent to the verifier for identifying whether there exists

the target or not. When the verifier finds the target, the local

tracker will be reset to adapt to the current target appear-

ance. Before entering into the next frame, all historic infor-

mation is collected and sent into the proposed meta-updater.

Finally, the meta-updater guides the online trackers’ update.

In this work, we implement an improved ATOM tracker

(denoted as ATOM∗) as our local tracker, which applies the

classification branch of the ATOM method [9] for localiza-

tion and exploits the SiamMask method [45] for scale esti-

mation2. We use the RTMDNet method [21] as our verifier,

and its verification threshold is set to 0.

Strength and Imperfection. Compared with recent top-

ranked long-term trackers (such as MBMD [51] and S-

PLT [48]), the major strength of our framework lies in em-

bedding an online-updated local tracker into the long-term

tracking framework. This idea makes the long-term track-

ing solution benefit from the progress of short-term trackers,

and unifies the short-term and long-term tracking problems

as much as possible. One imperfection is that the risk of

online update is amplified due to the long-term uncertain

observations (since the results of any frame except for the

first one have no absolute accuracy during tracking). Thus,

we propose a novel Meta-Updater to handle this problem

and obtain more robust tracking performance.

3.2. Meta-Updater

It is essential to update the tracker for capturing appear-

ance variations from both target and its surrounding back-

ground. However, the inappropriate update will inevitably

make the tracker degrade and cause tracking drift. To ad-

dress this dilemma, we attempt to answer an important but

unsolved question: Is the tracker ready for updating in

the current frame? To be specific, we propose a Meta-

Updater to determine whether the tracker should be updat-

ed or not in the present moment, by integrating historical

tracking results. These historical results include geometric,

discriminative, and appearance cues in a sequential man-

ner. We introduce our meta-updater on the basis of an on-

line tracker outputting a response map in each frame (e.g.,

ECO [8], ATOM [9]). It is easy to generalize our meta-

updater for other types of trackers (such as MDNet [37]).

3.2.1 Sequential Information for Meta-Updater

Given an online tracker T , in the t-th frame, we denote the

output response map as Rt, the output bounding box as bt,

and the result image (cropped according to bt) as It, re-

spectively. The target template in the first frame is denoted

as I0. An intuitive explanation is illustrated in Figure 3.

Target 

Template

Search Region

Frame t Result Image

Box 

Response Map 

Figure 3. Intuitive explanations of some notions in this work.

We develop our meta-updater by mining the sequential

2In the original ATOM method [9], the scale estimation is conducted vi-

a an offline trained instance-aware IoUNet [20]. In practice, we have found

the SiamMask method [45] can provide a more accurate scale estimation

partly due to the strong supervision of pixel-wise annotations.

6300



Figure 4. Illustration of varied confidence scores with representa-

tive frames. Better viewed in color with zoom-in.

information, integrating geometric, discriminative, and ap-

pearance cues within a given time slice.

Geometric Cue. In the t-th frame, the tracker output-

s a bounding box bt = [xt, yt, wt, ht] as the tracking s-

tate, where (x, y) denote the horizontal and vertical coor-

dinates of the up-left corner and (w, h) are the width and

height of the target. This bounding box itself merely reflect-

s the geometric shape of the tracked object in the current

frame. However, a series of bounding boxes from consec-

utive frames contain the important motion information re-

garding the target, such as velocity, acceleration, and scale

change.

Discriminative Cue. Visual tracking can be considered as

a classification task to distinguish the target from its sur-

rounding background, thus, an online tracker should have

good discriminative ability itself. We define a confidence s-

core sCt as the maximum value of the response map Rt (1).

For some trackers that do not output any response map (e.g.,

MDNet [37]), it is also not difficult to obtain this confidence

score based on the classification probability or margin.

sCt = max (Rt) . (1)

Figure 4 indicates that the confidence score is not stable

during the tracking process (see 89-and 261-th frames). In

this work, we also exploit a convolutional neural network

(CNN) to thoroughly mine the information within the re-

sponse map, and obtain a response vector vR
t as

vR
t = fR

(

Rt;W
R
)

, (2)

where fR (.; .) denotes the CNN model with the parameter

WR. The output vector vR
t implicitly encodes the reliabil-

ity information of the tracker in the current frame, and is

further processed by the subsequent model.

Appearance Cue. The self-evaluation of the trackers’ re-

liability with its outputs has inevitable risks, since online

updating with noisy samples often makes the response not

sensitive to appearance variations. Thus, we resort to a tem-

plate matching method as a vital supplement, and define an

appearance score as

sAt =
∥

∥fA
(

It,W
A
)

− fA
(

I0,W
A
)∥

∥

2
, (3)

…
…

…

…
…

…

…
… …

FC

Update?

LSTM LSTM LSTM

Figure 5. Proposed three-stage cascaded LSTM.

where fA
(

.,WA
)

is the embedding function to embed the

target and candidates into a discriminative Euclidean space,

WA stands for its offline trained network parameters. As

presented in [33], the network fA
(

.,WA
)

can be effective-

ly trained with the combination of triplet and classification

loss functions. The score sAt measures the distance between

the tracked result It and target template I0. This template

matching scheme is not affected by noisy observations.

Sequential Information. We integrate the aforementioned

geometric, discriminative and appearance cues into a se-

quential matrix as Xt = [xt−ts+1; ...;xt−1;xt] ∈ R
d×ts ,

where xt ∈ R
d×1 is a column vector concentrated by sCt ,

vR
t , sAt , and bt. d is the dimension of concentrated cues,

and ts is a time step to balance the historical experience and

current observation. This sequential information is further

mined with the following cascaded LSTM scheme.

3.2.2 Cascaded LSTM

LSTM. Here, we briefly introduce the basic ideas and

notions of LSTM [14] to make this paper self-contained.

Its mathematical descriptions are presented as follows.
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ft = σ (Wfxt +Ufht−1 + bf )
it = σ (Wixt +Uiht−1 + bi)
ot = σ (Woxt +Uoht−1 + bo)
ct = ft ⊙ ct−1 + it ⊙ tanh (Wcxt +Ucht−1 + bc)
ht = ot ⊙ tanh (ct)

,

where σ (.) denotes the element-wise sigmoid function,

tanh (.) stands for the element-wise tangent operation, and

⊙ is the element-wise multiplication. W, U, and b denote

the weight matrices and bias vector requiring to be learned.

The subscripts f , i, o, and c stand for the forget gate, input

gate, output gate, and memory cell, respectively. Other

variables are defined as follows. (a) xt: the input vector to

the LSTM unit; (b) ft: the forget gate’s activation vector;

(c) it: the input gate’s activation vector; (d) ot: the output

gate’s activation vector; (e) ht: the hidden state vector; and

(f) ht: the cell state vector.

Three-stage Cascaded LSTM. After obtaining the sequen-

tial features Xt, presented in Section 3.2.1, we feed it into a

three-stage cascaded LSTM model, shown in Figure 5. The

time steps of three LSTMs gradually decrease to distill the

sequential information and focus on the recent frames. The

input-output relations are presented in Table 1. The super-

script i denotes the i-th stage LSTM.

Finally, the output h3
t is processed by two fully connect-

6301



Table 1. Input-output relations of our cascaded LSTM model.

Input xt−ts+1, ...,xt−t1+1, ...,xt−t2+1, ...,xt

LSTM1
→ LSTM2

h
1
t−t1+1, ...,h

1
t−t2+1, ...,h

1
t ; c

1
t

LSTM2
→ LSTM3

h
2
t−t2+1, ...,h

2
t ; c

2
t

Output h
3
t

ed layers to generate a binary classification score, indicating

whether the tracker should be updated or not.

3.2.3 Meta-Updater Training

Sample Collection. We run the local tracker on differ-

ent training video sequences3, and record the tracking re-

sults in all frames. Then, we divide these results into a

series of time slices, denoted as Y =
(

Yv
t |

tv
t=ts

)∣

∣

∣

V

v=1

.

v is the video index, V is the number of training se-

quences, and tv is the total frame length of the v-th video.

Yv
t =

{

yv
t−ts+1,y

v
t−ts+2, ...,y

v
t−1,y

v
t

}

, where ts denotes

the time step. Each time slice yv
t includes the bounding

box, response map, response score, and predicted target im-

age in the t-th frame, along with the corresponding target

template. See Section 3.2.1 for more detailed descriptions4.

Then, we determine the label of Yv
t as

l (Yv
t ) =

{

1, if IoU (bv
t ,g

v
t ) > 0.5

0, if IoU (bv
t ,g

v
t ) = 0

, (4)

where IoU stands for the Intersection-over-Union criterion.

The slices whose IoUs are between 0 and 0.5 have been not

adopted in the training phases to guarantee the training con-

vergence. bv
t is the output bounding box in the t-th frame

in video v, and gv
t is the corresponding groundtruth5. Equa-

tion (4) means that the label of a given time slice is deter-

mined based on whether the target is successfully located or

not in the current (i.e., t-th) frame. Figure 6 visualizes some

positive and negative samples for training our meta-updater.

Algorithm 1 Iterative Training Scheme

for k = 0; k < K; k ++ do

Run
{

T ,MUk (T )
}

, and record the tracking results

Collect training samples Yk with their labels Lk

Train the meta-updater MUk+1 (T )
end for

Model Training. In this study, the local tracker and its

meta-updater are tightly-coupled. The tracker affects the

sample collection process for training its meta-updater. The

meta-updater will change the tracker’s performance, and

further affect sample collection indirectly. Thus, we pro-

pose an iterative training algorithm, listed in Algorithm 1.

The symbol {T ,MU (T )} is used to denote a local tracker

3For each sequence, we initialize the target in the first frame with the

groundtruth, and then track it in the subsequent frames. This strictly fol-

lows the experiment setting of online single object tracking. The tracker is

online updated on its own manner.
4The meaning of yv

t
is slightly different with that of xt because the

parameters of CNN models are also required to be trained.
5The training sequences have annotated groundtruth in every frame.

equipped with its meta-updater MU (T ). MUk (T ) is the

learned meta-updater after the k-th iteration (k = 0 means

no meta-updater). K is set to 3 in this work.

3.2.4 Generalization ability

The aforementioned introduction is with respect to the

online-updated tracker outputting a response map. For the

trackers without the response map (e.g., MDNet [37], RT-

MDNet [21]), we can simply remove the subnetwork fR,

and train the meta-updater with the remaining information.

For some trackers those are online updated with accumulat-

ed samples over time (such as ECO [8]), our meta-updater

is able to purify the sample pool used for updating. For a

given frame, if the output of the meta-updater is 0, then the

current tracking results will not be added into the sample

pool (i.e., not used for updating). If an ensemble of multi-

ple online-updated trackers (such as our long-term trackers,

ATOM* for local tracking and RTMDNet for verification),

we can train only one meta-updater with the information

from all trackers as the input, and then use it to guide al-

l trackers’ update. Section 4.3 shows our meta-updater’s

generalization ability for different trackers.

3.3. Implementation Details

All networks below are trained using the stochastic gra-

dient decent optimizer, with the momentum of 0.9. The

training samples are all from the LaSOT [11] training set.

Matching Network fA. The matching network fA adopt-

s the ResNet-50 architecture and takes 107 × 107 image

patches as inputs. For each target, we randomly sample

bounding boxes around the groundtruth in each frame. We

choose the patches with IoU above 0.7 as the positive da-

ta, and use the boxes with high confidence scores from the

SiamRPN-based network [51] but not belonging to the tar-

get as the negative data. The batch size of the network fA is

16 and we train it for 60000 iterations. The initial learning

rate is 10−4 and divided by 10 every 200000 iterations. The

matching network is individually trained and fixed when

training the remaining networks of our meta-updater.

Subnetwork fR. The input response map is first resized to

50 × 50, processed by two convolutional layers, and then

followed by a global average pooling layer. The output is a

1×1×8 vector. This subnetwork is jointly trained with the

cascade LSTMs and the two fully connected layers.

LSTMs with fully connected layers. The three-stage cas-

caded LSTMs have 64 units in each LSTM cell. ts, t1 and

t2 are set to 20, 8 and 3, respectively. The forget bias is set

to 1.0. The outputs are finally sent into two fully connect-

ed layers with 64 hidden units to get the final binary value.

Each training stage of LSTM has a batch size of 16 and is

trained by 100, 000 iterations with the learning rate of 10−4.

4. Experiments

We implement our tracker using Tensorflow on a PC ma-

chine with an Intel-i9 CPU (64G RAM) and a NVIDIA

6302



Template

Template

Template

Template

Figure 6. Illustration of positive and negative samples for meta-updater training. The first two rows illustrate two positive examples, whereas

the last two rows display the negative ones. In fact, there is no interval among frames, the interval 5 is merely for clear visualization.

GTX2080Ti GPU (11G memory). The tracking speed is

approximatively 13 fps. We evaluate our tracker on five

benchmarks: VOT2018LT [23], VOT2019LT [24], OxU-

vALT [42], TLP [36], and LaSOT [11].

4.1. Quantitative Evaluation

Table 2. Comparisons of our tracker and 15 state-of-the-art meth-

ods on the VOT2018LT dataset [23]. The best three results are

shown in red, blue and green colors, respectively. The trackers

are ranked from top to bottom according to F-score.

Tracker F-score Pr Re

LTMU(Ours) 0.690 0.710 0.672

SiamRPN++ 0.629 0.649 0.609

SPLT 0.616 0.633 0.600

MBMD 0.610 0.634 0.588

DaSiam LT 0.607 0.627 0.588

MMLT 0.546 0.574 0.521

LTSINT 0.536 0.566 0.510

SYT 0.509 0.520 0.499

PTAVplus 0.481 0.595 0.404

FuCoLoT 0.480 0.539 0.432

SiamVGG 0.459 0.552 0.393

SLT 0.456 0.502 0.417

SiamFC 0.433 0.636 0.328

SiamFCDet 0.401 0.488 0.341

HMMTxD 0.335 0.330 0.339

SAPKLTF 0.323 0.348 0.300

ASMS 0.306 0.373 0.259

VOT2018LT. We first compare our tracker with other

state-of-the-art algorithms on the VOT2018LT dataset [23],

which contains 35 challenging sequences of diverse object-

s (e.g., persons, cars, motorcycles, bicycles and animals)

with the total length of 146817 frames. Each sequence con-

tains on average 12 long-term target disappearances, each

lasting on average 40 frames. The accuracy evaluation of

the VOT2018LT dataset [23] mainly includes tracking pre-

cision (Pr), tracking recall (Re) and tracking F-score. Dif-

ferent trackers are ranked according to the tracking F-score.

The detailed definitions of Pr, Re and F-score can be found

in the VOT2018 challenge official report [23].

We compare our tracker with the VOT2018 official track-

ers and three recent methods (i.e., MBMD [51], SiamRP-

N++ [26], and SPLT [48]) and report the evaluation results

in Table 2. The results show that the proposed tracker out-

performs all other trackers by a very large margin.

VOT2019LT. The VOT2019LT [24] dataset, containing 50
videos with 215294 frames in total, is the most recent long-

term tracking dataset. Each sequence contains on average

10 long-term target disappearances, each lasting on average

52 frames. Compared with VOT2018LT [23], VOT2019LT

poses more challenges since it introduces 15 more difficult

videos and some uncommon targets (e.g., boat, bull, and

parachute). Its evaluation protocol is the same as that in

VOT2018LT. Table 3 shows that our trackers achieves the

first place on the VOT2019LT challenge.

Table 3. Performance evaluation of our tracker and eight compet-

ing algorithms on the VOT2019LT dataset. The best three results

are shown in red , blue and green colors, respectively. The track-

ers are ranked from top to bottom using the F-score measure.

Tracker F-score Pr Re

LTMU(Ours) 0.697 0.721 0.674

CLGS 0.674 0.739 0.619

SiamDW LT 0.665 0.697 0.636

mbdet 0.567 0.609 0.530

SiamRPNsLT 0.556 0.749 0.443

Siamfcos-LT 0.520 0.493 0.549

CooSiam 0.508 0.482 0.537

ASINT 0.505 0.517 0.494

FuCoLoT 0.411 0.507 0.346

OxUvALT. The OxUvA long-term (denoted as OxUvALT)

dataset [42] contains 366 object tracks in 337 videos, which

are selected from YTBB. Each video in this dataset lasts for

6303



average 2.4 minutes, which is much longer than other com-

monly used short-term datasets (such as OTB2015 [46]).

The targets are sparsely labeled at a frequency of 1 Hz. The

dataset was divided into two disjoint subsets, dev and test.

In this work, we follow the open challenge in OxUvALT,

which means that trackers can use any dataset except for

the YTBB validation set for training and use the OxUvALT

test subset for testing. In the OxUvALT dataset, three

criteria are adopted to evaluate different trackers, including

true positive rate (TPR), true negative rate (TNR) and

maximum geometric mean (MaxGM). TPR measures the

fraction of present objects that are reported present as well

as the location accuracy, and TNR gives the fraction of

absent frames that are reported as absent. MaxGM makes

a trade-off between TPR and TNR (i.e., MaxGM =
max0≤p≤1

√

((1− p) ·TPR)((1− p) ·TNR+ p)),
which is used to rank different trackers. We compare

our tracker with three recent algorithms (MBMD [51],

SPLT [48] and GlobalTrack [19]) and ten algorithms

reported in [42] (such as LCT [34], EBT [54], TLD [22],

ECO-HC [8], BACF [13], Staple [1], MDNet [37], SIN-

T [41], SiamFC [2], and SiamFC+R [42]). Table 4 shows

that our tracker performs best in terms of MaxGM and

TPR while maintaining a very competitive TNR value.

Table 4. Performance evaluation of our tracker and 13 competing

algorithms on the OxUvALT dataset. The best three results are

shown in red, blue and green colors, respectively. The trackers

are ranked from top to bottom according to the MaxGM values.

Tracker MaxGM TPR TNR

LTMU(Ours) 0.751 0.749 0.754

SPLT 0.622 0.498 0.776

GlobalTrack 0.603 0.574 0.633

MBMD 0.544 0.609 0.485

SiamFC+R 0.454 0.427 0.481

TLD 0.431 0.208 0.895

LCT 0.396 0.292 0.537

MDNet 0.343 0.472 0

SINT 0.326 0.426 0

ECO-HC 0.314 0.395 0

SiamFC 0.313 0.391 0

EBT 0.283 0.321 0

BACF 0.281 0.316 0

Staple 0.261 0.273 0

LaSOT. The LaSOT dataset [11] is one of the most recent

large-scale datasets with high-quality annotations. It con-

tains 1400 challenging sequences (1120 for training and

280 for testing) with 70 tracking categories, with an aver-

age of 2500 frames per sequence. In this work, we follow

the one-pass evaluation (success and precision) to evaluate

different trackers on the test set of LaSOT. Figure 7 illus-

trates both success and precision plots of our tracker and

ten state-of-the-art algorithms, including Dimp50 [3], Dim-

p18 [3], GlobalTrack [19], SPLT [48], ATOM [9], SiamRP-

N++ [26], ECO(python) [8], StructSiam [52], DSiam [55],

and MDNet [37]. Figure 7 shows that our tracker achieves

the best results among all competing methods.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE on LaSOT Testing Set

[0.572] LTMU(Ours)

[0.568] Dimp50

[0.534] Dimp18

[0.517] GlobalTrack

[0.501] ATOM

[0.496] SiamRPN++

[0.426] SPLT

[0.397] MDNet

[0.390] VITAL

[0.368] ECO(python)

[0.335] StructSiam

[0.333] DSiam

[0.325] RTMDNet

[0.324] ECO

[0.259] BACF

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

c
is

io
n

Precision plots of OPE on LaSOT Testing Set

[0.572] LTMU(Ours)

[0.564] Dimp50

[0.533] Dimp18

[0.528] GlobalTrack

[0.500] ATOM

[0.491] SiamRPN++

[0.396] SPLT

[0.373] MDNet

[0.363] ECO(python)

[0.360] VITAL

[0.333] StructSiam

[0.322] DSiam

[0.319] RTMDNet

[0.301] ECO

[0.239] BACF

Figure 7. One-pass evaluation of different trackers using LaSOT.

Better viewed in color with zoom-in.
TLP. The TLP dataset [36] contains 50 HD videos from

real-world scenarios, with an average of 13500 frames per

sequence. We follow the one-pass evaluation (success and

precision) to evaluate different trackers on the TLP dataset.

As shown in Figure 8, our tracker achieves the best results

among all competing methods.

Figure 8. One-pass evaluation of different trackers using TLP. Bet-

ter viewed in color with zoom-in.

4.2. Ablation Study
In this subsection, we conduct ablation analysis of our

meta-updater using the LaSOT dataset [11].

Different time steps of meta-updater. First, we investigate

the effects of different time steps. An appropriate time step

could achieve a good trade-off between historical informa-

tion and current observations. Table 5 shows that the best

performance is obtained when the time step is set to 20.
Table 5. Effects of different time steps for our meta-updater.

time step 5 10 20 30 50

Success 0.553 0.564 0.572 0.570 0.567

Precision 0.548 0.561 0.572 0.569 0.565

Different inputs for our meta-updater. For our long-term

trackers, the inputs of the meta-updater include bounding

box (B), confidence score (C), response map (R), and ap-

pearance score (A). We verify their contributions by sepa-

rately removing them from our meta-update. Detailed re-

sults are reported in Table 6, showing that each input con-

tributes to our meta-updater (w/o means ‘without’).

Table 6. Effectiveness of different inputs of our meta-updater.

different input w/o C w/o R w/o B w/o A Ours

Success 0.561 0.568 0.563 0.549 0.572

Precision 0.558 0.566 0.562 0.540 0.572

Evaluation of iterative steps. Table 7 shows that the per-

formance is gradually improved with the increase of k.

6304



Table 7. Evaluation of iterative steps for our cascaded LSTM.

k 0 1 2 3

Success 0.539 0.562 0.568 0.572

Precision 0.535 0.558 0.566 0.572

4.3. Discussions

Generalization ability and speed analysis. We note that

our meta-updater is easy to be embedded into other track-

ers with online learning. To show this good generaliza-

tion ability, we introduce our meta-updater into four track-

ing algorithms, including ATOM, ECO (the official python

implementation), RTMDNet and our base tracker (using a

threshold to control update). Figure 9 shows the tracking

performance of different trackers without and with meta-

updater on the LaSOT dataset, and it demonstrates that the

proposed meta-updater can consistently improve the track-

ing accuracy of different trackers. Table 8 reports the run-

ning speeds of those trackers without and with the proposed

meta-updater, which demonstrates that the tracking speeds

decrease slightly with an additional meta-updater scheme.

Thus, we can conclude that our meta-updater has a good

generalization ability, which can consistently improve the

tracking accuracy almost without sacrificing the efficiency.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE on LaSOT Testing Set

[0.572] Ours

[0.539] Ours-MU

[0.524] ATOM+MU

[0.501] ATOM

[0.388] ECO(python)+MU

[0.368] ECO(python)

[0.366] RTMDNet+MU

[0.325] RTMDNet

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

c
is

io
n

Precision plots of OPE on LaSOT Testing Set

[0.572] Ours

[0.535] Ours-MU

[0.512] ATOM+MU

[0.500] ATOM

[0.363] ECO(python)+MU

[0.363] ECO(python)

[0.353] RTMDNet+MU

[0.319] RTMDNet

Figure 9. Generalization ability of our meta-updater (MU). Differ-

ent trackers without and with meta-updater are evaluated using the

LaSOT test dataset. Better viewed in color with zoom-in.

Table 8. Speed comparisons of different trackers without and with

meta-updater (MU).
Trackers ATOM ECO RTMDNet Ours-MU

FPS 40 49 41 15

Trackers ATOM+MU ECO+MU RTMDNet+MU Ours

FPS 32 38 32 13

Why our meta-updater works? We run a tracker without

and with its meta-updater, and record the trackers’ update

state (u = 0, 1) paired with its ground truth in each frame

(l = 0, 1). u = 1 means that the tracker has been updated;

otherwise, has not been updated. l = 1 means that the track-

er can be updated; otherwise, cannot be updated. The defi-

nition of ground truth l is the same as equation (4). We have

the following concepts: (1) true positive (TP): l = 1, u = 1;

(2) false positive (FP): l = 0, u = 1; (3) true negative (TN):

l = 0, u = 0; and (4) false negative (FN): l = 1, u = 0.

Then, we can obtain the update precision (Pr), and update

recall (Re) as Pr = TP/(TP+FP), and Re = TP/(TP+FN), re-

spectively. A higher precision means that the tracker has

been updated with less wrong observations. A higher recal-

l means that the tracker more likely accepts to be updated

with correct observations. We also define a true negative

rate (TNR) to pay much attention to wrong observations

as TNR = TN/(TN+FP). A higher TNR value means that

the tracker rejects to be updated with wrong observations

more strongly. Table 9 shows the statistic results of different

trackers with and without their meta-updater modules. The

usage of meta-updater slightly sacrifices the update recal-

l, which means that a portion of correct observations have

not been used to update the tracker in comparison with that

without meta-updater. This phenomenon affects little on the

trackers’ performance because correct observations are al-

l for the same target and have a large amount of redundant

information. In contrast, the usage of meta-updater signifi-

cantly improves the Pr and TNR values, indicating that the

tracker is much less polluted by wrong observations. Thus,

the risk of online update will be significantly decreased.

Table 9. Effectiveness of our meta-updater for different trackers.

Tracker Pr Re TNR

RTMDNet 0.599 0.993 0.402

RTMDNet+MU 0.909 0.902 0.898

ECO 0.583 1.000 0.000

ECO+MU 0.852 0.895 0.803

ATOM 0.765 0.997 0.310

ATOM+MU 0.931 0.886 0.845

Ours-MU 0.867 0.994 0.479

Ours 0.952 0.874 0.862

5. Conclusions
This work presents a novel long-term tracking frame-

work with the proposed meta-updater. Combined with oth-

er top-ranked trackers, our framework exploits an online-

update-based tracker to conduct local tracking, which

makes the long-term tracking performance benefit from the

excellent short-term trackers with online update (such as

ATOM). More importantly, a novel meta-updater is pro-

posed by integrating geometric, discriminative, and appear-

ance cues in a sequential manner to determine whether the

tracker should be updated or not at the present moment.

This method substantially reduces the risk of online up-

date for long-term tracking, and effectively yet efficiently

guides the tracker’s update. Numerous experimental results

on five recent long-term benchmarks demonstrate that our

long-term tracker achieves significantly better performance

than other state-of-the-art methods. The results also indi-

cate that our meta-updater has good generalization ability.

Acknowledgement. The paper is supported in part by Na-

tional Natural Science Foundation of China under Grant

No. 61872056, 61771088, 61725202, U1903215, in part

by the National Key RD Program of China under Grant

No. 2018AAA0102001, and in part by the Fundamental Re-

search Funds for the Central Universities under Grant No.

DUT19GJ201.

6305



References

[1] Luca Bertinetto, Jack Valmadre, Stuart Golodetz, On-

drej Miksik, and Philip H. S. Torr. Staple: Comple-

mentary learners for real-time tracking. In CVPR,

2016.

[2] Luca Bertinetto, Jack Valmadre, Joo F. Henriques,

Andrea Vedaldi, and Philip H. S. Torr. Fully-

convolutional siamese networks for object tracking. In

ECCV Workshop, 2016.

[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and

Radu Timofte. Learning discriminative model predic-

tion for tracking. In ICCV, 2019.

[4] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao,

Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng,

Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng,

Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu

Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong

Wang, Jianping Shi, Wanli Ouyang, Chen Change

Loy, and Dahua Lin. MMDetection: Open mmlab de-

tection toolbox and benchmark. arXiv preprint arX-

iv:1906.07155, 2019.

[5] Janghoon Choi, Junseok Kwon, and Kyoung Mu Lee.

Deep meta learning for real-time target-aware visual

tracking. In ICCV, 2019.

[6] Dorin Comaniciu, Visvanathan Ramesh, and Peter

Meer. Kernel-based object tracking. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,

25(5):564–577, 2003.

[7] Kenan Dai, Dong Wang, Huchuan Lu, Chong Sun,

and Jianhua Li. Visual tracking via adaptive spatially-

regularized correlation filters. In CVPR, 2019.

[8] Martin Danelljan, Goutam Bhat, Fahad Shahbaz

Khan, and Michael Felsberg. ECO: Efficient convo-

lution operators for tracking. In CVPR, 2017.

[9] Martin Danelljan, Goutam Bhat, Fahad Shahbaz

Khan, and Michael Felsberg. ATOM: Accurate track-

ing by overlap maximization. In CVPR, 2019.

[10] Martin Danelljan, Andreas Robinson, Fahad Shahbaz

Khan, and Michael Felsberg. Beyond correlation fil-

ters: Learning continuous convolution operators for

visual tracking. In ECCV, 2016.

[11] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng,

Sijia Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and

Haibin Ling. LaSOT: A high-quality benchmark for

large-scale single object tracking. In CVPR, 2019.

[12] Heng Fan and Haibin Ling. Siamese cascaded region

proposal networks for real-time visual tracking. In

CVPR, 2019.

[13] Hamed Kiani Galoogahi, Ashton Fagg, and Simon

Lucey. Learning background-aware correlation filters

for visual tracking. In ICCV, 2017.

[14] Alex Graves. Supervised Sequence Labelling with Re-

current Neural Networks, volume 385 of Studies in

Computational Intelligence. Springer, 2012.

[15] Anfeng He, Chong Luo, Xinmei Tian, and Wenjun

Zeng. A twofold siamese network for real-time ob-

ject tracking. In CVPR, 2018.

[16] Joo F Henriques, Rui Caseiro, Pedro Martins, and

Jorge Batista. High-speed tracking with kernelized

correlation filters. In ICVS, 2008.

[17] Zhibin Hong, Zhe Chen, Chaohui Wang, Xue Mei,

Danil Prokhorov, and Dacheng Tao. MUlti-Store

Tracker (MUSTer): A cognitive psychology inspired

approach to object tracking. In CVPR, 2015.

[18] Jianglei Huang and Wengang Zhou. Re2EMA: Reg-

ularized and reinitialized exponential moving average

for target model update in object tracking. In AAAI,

2019.

[19] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Glob-

alTrack: A simple and strong baseline for long-term

tracking. In AAAI, 2020.

[20] Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao,

and Yuning Jiang. Acquisition of localization confi-

dence for accurate object detection. In ECCV, 2018.

[21] Ilchae Jung, Jeany Son, Mooyeol Baek, and Bohyung

Han. Real-time MDNet. In ECCV, 2018.

[22] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.

Tracking-learning-detection. IEEE Transaction-

s on Pattern Analysis and Machine Intelligence,

34(7):1409–1422, 2012.

[23] Matej Kristan, Ales Leonardis, Jiri Matas, Michael

Felsberg, Roman Pfugfelder, Luka Cehovin Zajc,

Tomas Vojir, Goutam Bhat, Alan Lukezic, Abdelrah-

man Eldesokey, Gustavo Fernandez, and et al. The

sixth visual object tracking VOT2018 challenge re-

sults. In ECCVW, 2018.

[24] Matej Kristan, Jiri Matas, Ales Leonardis, Michael

Felsberg, Roman Pflugfelder, Joni-Kristian Kama-

rainen, Luka Čehovin Zajc, Ondrej Drbohlav, Alan

Lukežič, Amanda Berg, Abdelrahman Eldesokey, Jani

Kapyla, and Gustavo Fernandez. The seventh visu-

al object tracking VOT2019 challenge results. In IC-

CVW, 2019.

[25] Hankyeol Lee, Seokeon Choi, and Changick Kim.

A memory model based on the siamese network for

long-term tracking. In ECCVW, 2018.

[26] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang

Xing, and Junjie Yan. SiamRPN++: Evolution of

siamese visual tracking with very deep networks. In

CVPR, 2019.

6306



[27] Bi Li, Wenxuan Xie, Wenjun Zeng, and Wenyu Liu.

Learning to update for object tracking with recurrent

meta-learner. IEEE Transcations on Image Process-

ing, 28(7):3624–3635, 2019.

[28] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin

Hu. High performance visual tracking with siamese

region proposal network. In CVPR, 2018.

[29] Peixia Li, Boyu Chen, Wanli Ouyang, Dong Wang,

Xiaoyun Yang, and Huchuan Lu. GradNet: Gradient-

guided network for visual object tracking. In ICCV,

2019.

[30] Peixia Li, Dong Wang, Lijun Wang, and Huchuan Lu.

Deep visual tracking: Review and experimental com-

parison. Pattern Recognition, 76:323–338, 2018.

[31] Pengpeng Liang, Erik Blasch, and Haibin Ling. En-

coding color information for visual tracking: Algo-

rithms and benchmark. IEEE Transcations on Image

Processing, 24(12):5630–5644, 2015.

[32] Alan Lukei, Luka ehovin Zajc, Tom Voj, Ji Matas, and

Matej Kristan. FCLT - A fully-correlational long-term

tracker. In ACCV, 2018.

[33] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and

Wei Jiang. Bag of tricks and a strong baseline for deep

person re-identification. In CVPR, 2019.

[34] Chao Ma, Xiaokang Yang, Chongyang Zhang, and

Ming Hsuan Yang. Long-term correlation tracking.

In CVPR, 2015.

[35] Seyed Mojtaba Marvasti-Zadeh, Li Cheng, Hossein

Ghanei-Yakhdan, and Shohreh Kasaei. Deep learning

for visual tracking: A comprehensive survey. CoRR,

abs/1912.00535, 2019.

[36] Abhinav Moudgil and Vineet Gandhi. Long-term vi-

sual object tracking benchmark. In ACCV, 2018.

[37] Hyeonseob Nam and Bohyung Han. Learning multi–

domain convolutional neural networks for visual

tracking. In CVPR, 2016.

[38] Eunbyung Park and Alexander C. Berg. Meta-tracker:

Fast and robust online adaptation for visual objec-

t trackers. In ECCV, 2018.

[39] David A. Ross, Jongwoo Lim, Ruei-Sung Lin, and

Ming-Hsuan Yang. Incremental learning for robust vi-

sual tracking. International Journal of Computer Vi-

sion, 77(1-3):125–141, 2008.

[40] Chong Sun, Dong Wang, Huchuan Lu, and Ming-

Hsuan Yang. Correlation tracking via joint discrim-

ination and reliability learning. In CVPR, 2018.

[41] Ran Tao, Efstratios Gavves, and Arnold W. M. Smeul-

ders. Siamese instance search for tracking. In CVPR,

2016.

[42] Jack Valmadre, Luca Bertinetto, Joao F. Henriques,

Ran Tao, Andrea Vedaldi, Arnold W.M. Smeulders,

Philip H.S. Torr, and Efstratios Gavves. Long-term

tracking in the wild: a benchmark. In ECCV, 2018.

[43] Dong Wang, Huchuan Lu, and Ming-Hsuan Yang. On-

line object tracking with sparse prototypes. IEEE

Transcations on Image Processing, 22(1):314–325,

2013.

[44] Mengmeng Wang, Yong Liu, and Zeyi Huang. Large

margin object tracking with circulant feature maps. In

CVPR, pages 4800–4808, 2017.

[45] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu,

and Philip H. S. Torr. Fast online object tracking and

segmentation: A unifying approach. In CVPR, 2019.

[46] Yi Wu, Jongwoo Lim, and Ming Hsuan Yang. Object

tracking benchmark. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 37(9):1834–1848,

2015.

[47] Bin Yan, Dong Wang, Huchuan Lu, and Xiaoyun

Yang. Cooling-Shrinking Attack: Blinding the tracker

with imperceptible noises. In CVPR, 2020.

[48] Bin Yan, Haojie Zhao, Dong Wang, Huchuan Lu, and

Xiaoyun Yang. Skimming-Perusal Tracking: A frame-

work for real-time and robust long-term tracking. In

ICCV, 2019.

[49] Tianzhu Zhang, Si Liu, Changsheng Xu, Bin Liu, and

Ming-Hsuan Yang. Correlation particle filter for visu-

al tracking. IEEE Transactions on Image Processing,

27(6):2676–2687, 2018.

[50] Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan

Yang. Learning multi-task correlation particle filter-

s for visual tracking. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 41(2):365–378,

2019.

[51] Yunhua Zhang, Dong Wang, Lijun Wang, Jinqing Qi,

and Huchuan Lu. Learning regression and verifica-

tion networks for long-term visual tracking. CoRR,

abs/1809.04320, 2018.

[52] Yunhua Zhang, Lijun Wang, Jinqing Qi, Dong Wang,

Mengyang Feng, and Huchuan Lu. Structured siamese

network for real-time visual tracking. In ECCV, pages

355–370, 2018.

[53] Zhipeng Zhang and Houwen Peng. Deeper and wider

siamese networks for real-time visual tracking. In

CVPR, 2019.

[54] Gao Zhu, Fatih Porikli, and Hongdong Li. Be-

yond local search: Tracking objects everywhere with

instance-specific proposals. In CVPR, 2016.

[55] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan,

and Weiming Hu. Distractor-aware siamese networks

for visual object tracking. In ECCV, 2018.

6307


