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Figure 1: Our method takes as input a partial RGB-D scan and predicts a high-resolution 3D reconstruction while predicting

unseen, missing geometry. Key to our approach is its self-supervised formulation, enabling training solely on real-world,

incomplete scans. This not only obviates the need for synthetic ground truth, but is also capable of generating more complete

scenes than any single target scene seen during training. To achieve high-quality surfaces, we further propose a new sparse

generative neural network, capable of generating large-scale scenes at much higher resolution than existing techniques.

Abstract

We present a novel approach that converts partial and

noisy RGB-D scans into high-quality 3D scene reconstruc-

tions by inferring unobserved scene geometry. Our ap-

proach is fully self-supervised and can hence be trained

solely on real-world, incomplete scans. To achieve self-

supervision, we remove frames from a given (incomplete)

3D scan in order to make it even more incomplete; self-

supervision is then formulated by correlating the two levels

of partialness of the same scan while masking out regions

that have never been observed. Through generalization

across a large training set, we can then predict 3D scene

completion without ever seeing any 3D scan of entirely com-

plete geometry. Combined with a new 3D sparse genera-

tive neural network architecture, our method is able to pre-

dict highly-detailed surfaces in a coarse-to-fine hierarchi-

cal fashion, generating 3D scenes at 2cm resolution, more

than twice the resolution of existing state-of-the-art meth-

ods as well as outperforming them by a significant margin

in reconstruction quality.1

1Source code available here.

1. Introduction

In recent years, we have seen incredible progress on

RGB-D reconstruction of indoor environments using com-

modity RGB-D sensors such as the Microsoft Kinect,

Google Tango, or Intel RealSense [22, 16, 23, 36, 5,

10]. However, despite remarkable achievements in RGB-

D tracking and reconstruction quality, a fundamental chal-

lenge still remains – the incomplete nature of resulting 3D

scans caused by inherent occlusions due to the physical lim-

itations of the scanning process; i.e., even in a careful scan-

ning session it is inevitable that some regions of a 3D scene

remain unobserved. This unfortunately renders the resulting

reconstructions unsuitable for many applications, not only

those that require quality 3D content, such as video games

or AR/VR, but also robotics where a completed 3D map sig-

nificantly facilitates tasks such as grasping or querying 3D

objects in a 3D environment.

In order to overcome the incomplete and partial nature

of 3D reconstructions, various geometric inpainting tech-

niques have been proposed, for instance, surface interpola-

tion based on the Poisson equation [17, 18] or CAD shape-

fitting techniques [1, 2, 8]. A very recent direction leverages
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generative deep neural networks, often focusing volumet-

ric representations for shapes [11] or entire scenes [31, 12].

These techniques show great promise since they can learn

generalized patterns in a large variety of environments;

however, existing data-driven scene completion methods

rely on supervised training, requiring fully complete ground

truth 3D models, thus depending on large-scale synthetic

datasets such as ShapeNet [4] or SUNCG [31]. As a re-

sult, although we have seen impressive results from these

approaches on synthetic test sets, domain transfer and ap-

plication to real-world 3D scans remains a major limitation.

In order to address the shortcomings of supervised learn-

ing techniques for scan completion, we propose a new self-

supervised completion formulation that can be trained only

on (partial) real-world data. Our main idea is to learn to gen-

erate more complete 3D models from less complete data,

while masking out any unknown regions; that is, from an

existing RGB-D scan, we use the scan as the target and re-

move frames to obtain a more incomplete input. In the loss

function, we can now correlate the difference in partialness

between the two scans, and constrain the network to predict

the delta while masking out unobserved areas. Although

there is no single training sample which contains a fully-

complete 3D reconstruction, we show that our network can

nonetheless generalize to predict high levels of complete-

ness through a combined aggregation of patterns across the

entire training set. This way, our approach can be trained

without requiring any fully-complete ground truth counter-

parts that would make generalization through a synthetic-

to-real domain gap challenging.

Furthermore, we propose a new sparse generative neural

network architecture that can predict high-resolution geom-

etry in a fully-convolutional fashion. For training, we pro-

pose a progressively growing network architecture trained

in coarse-to-fine fashion; i.e., we first predict the 3D scene

at a low resolution, and then continue increasing the surface

resolution through the training process. We show that our

self-supervised, sparse generative approach can outperform

state-of-the-art fully-supervised methods, despite their ac-

cess to much larger quantities of synthetic 3D data.

We present the following main contributions:

• A self-supervised approach for scene completion, en-

abling training solely on incomplete, real-world scan

data while predicting geometry more complete than

any seen during training, by leveraging common pat-

terns in the deltas of incompleteness.

• A generative formulation for sparse convolutions to

produce a sparse truncated signed distance function

representation at high resolution: we formulate this

hierarchically to progressively generate a 3D scene in

end-to-end fashion

2. Related Work

RGB-D Reconstruction Scanning and reconstructing 3D

surfaces has a long history across several research com-

munities. With the increase in availability of commod-

ity range sensors, capturing and reconstructing 3D scenes

has become a vital area of research. One seminal tech-

nique is the volumetric fusion approach of Curless and

Levoy [7], operating on truncated signed distance fields

to produce a surface reconstruction. It has been adopted

by many state-of-the-art real-time reconstruction methods,

from KinectFusion [22, 16] to VoxelHashing [23] and

BundleFusion [10], as well as state-of-the-art offline recon-

struction approaches [5].

These methods have produced impressive results in

tracking and scalability of 3D reconstruction from com-

modity range sensors. However, a significant limitation that

still remains is the partial nature of 3D scanning; i.e., a per-

fect scan is usually not possible due to occlusions and un-

observed regions and thus, the resulting 3D representation

cannot reach the quality of manually created 3D assets.

Deep Learning on 3D Scans With recent advances in

deep learning and the improved availability of large-scale

3D scan datasets such as ScanNet [9] or Matterport [3],

learned approaches on 3D data can be used for a variety

of tasks like classification, segmentation, or completion.

Many current methods make use of convolutional op-

erators that have been shown to work well on 2D data.

When extended into 3D, they operate on regular grid rep-

resentations such as distance fields [11] or occupancy grids

[20]. Since dense volumetric grids can come with high

computational and memory costs, several recent approaches

have leveraged the sparsity of the 3D data for discrim-

inative 3D tasks. PointNet [26, 27] introduced a deep

network architecture for learning on point cloud data for

semantic segmentation and classification tasks. Octree-

based approaches have also been developed [29, 33, 34]

that have been shown to be very memory efficient; how-

ever, generative tasks involving large, varying-sized envi-

ronments seems challenging and octree generation has only

been shown for single ShapeNet-style objects [28, 32]. An-

other option leveraging the sparsity of 3D geometric data

is through sparse convolutions [14, 13, 6], which have seen

success in discriminative tasks such as semantic segmenta-

tion, but not in the context of generative 3D modeling tasks,

where the overall structure of the scene is unknown.

Shape and Scene Completion Completing 3D scans has

been well-studied in geometry processing. Traditional

methods, such as Poisson Surface Reconstruction [17, 18],

locally optimize for a surface to fit to observed points, and

work well for small missing regions. Recently, various
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deep learning-based approaches have been developed with

greater capacity for learning global structures of shapes, en-

abling compelling completion of larger missing regions in

scans of objects [37, 11, 15, 35, 24]. Larger-scale com-

pletion of scans has been seen with SSCNet [31], operat-

ing on a depth image of a scene, and ScanComplete [12],

which demonstrated scene completion on room- and build-

ing floor-scale scans. However, both these approaches op-

erate on dense volumetric grids, significantly limiting their

output resolutions. Moreover, these approaches are fully

supervised with complete 3D scene data, requiring training

on synthetic 3D scene data (where complete ground truth is

known), in order to complete real-world scans.

An alternative approach for shape completion could

through leveraging a single implicit latent space, as in

DeepSDF [24] or Occupancy Networks [21]; however, it

still remains a challenge as to how to scale a single latent

space to represent large, varying-sized environments.

3. Method Overview

From an RGB-D scan of a 3D scene, our method learns

to generate a high-quality reconstruction of the complete 3D

scene, in a self-supervised fashion. The input RGB-D scan

is represented as a truncated signed distance field (TSDF),

as a sparse set of voxel locations within truncation and their

corresponding distance values. The output complete 3D

model of the scene is also generated as a sparse TSDF (simi-

larly, a set of locations and per-voxel distances), from which

a mesh can be extracted by Marching Cubes [19].

We design the 3D scene completion as a self-supervised

process, enabling training purely on real-world scan data

without requiring any fully-complete ground truth scenes.

Since real-world scans are always incomplete due to occlu-

sions and physical sensor limitations, this is essential for

generating high-quality, complete models from real-world

scan data. To achieve self-supervision, our main idea is to

formulate the training from incomplete scan data to less in-

complete scan data; that is, from an existing RGB-D scan

we can remove frames in order to create a more partial ob-

servation of the scene. This enables learning to complete in

regions where scan geometry is known while ignoring re-

gions of unobserved space. Crucially, our generative model

can then learn to generate more complete models than seen

in a specific sample of the target data.

To obtain an output high-resolution 3D model of a scene,

we propose Sparse Generative Neural Networks (SG-NN), a

generative model to produce a sparse surface representation

of a scene. We build upon sparse convolutions [14, 13, 6],

which have been shown to produce compelling semantic

segmentation results on 3D scenes by operating only on

surface geometry. In contrast to these discriminative tasks

where the geometric structure is given as input, we de-

velop our SG-NN to generate new, unseen 3D geometry

suitable for generative 3D modeling tasks. This is designed

in coarse-to-fine fashion, with a progressively growing net-

work architecture which predicts each next higher resolu-

tion, finally predicting a high-resolution surface as a sparse

TSDF. Since our sparse generative network operates in a

fully-convolutional fashion, we can operate on 3D scans of

varying spatial sizes.

4. Self-Supervised Completion

Our approach for self-supervision of scene completion of

RGB-D scans is based on learning how to complete scan ge-

ometry in regions that have been seen, while ignoring unob-

served regions. To this end, we can generate input and target

TSDFs with similar scanning patterns as real-world scans;

from an input scan composed of RGB-D frames {f0, ...fn},

we can generate the target TSDF Starget through volumet-

ric fusion [7] of {f0, ...fn}, and the input TSDF Sinput

through volumetric fusion of a subset of the original frames

{fk} ⊂ {f0, ...fn}.

Figure 2: Our self-supervision approach for scan completion learns through deltas in partialness of RGB-D scans. From a

given (incomplete) RGB-D scan, on the left, we produce a more incomplete version of the scan by removing some of its depth

frames (middle). We can then train to complete the more incomplete scan (middle) using the original scan as a target (left),

while masking out unobserved regions in the target scene (in orange). This enables our prediction to produce scenes that are

more complete than the target scenes seen during training, as the training process effectively masks out incompleteness.
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This produces input incomplete scans that maintain

scanned data characteristics, as well as a correspondence

between Sinput and Starget going from a more incomplete

scan to a less incomplete scan. Since Starget remains

nonetheless incomplete, we do not wish to use all of its data

as the complete target for supervision, as this could result

in contradictory signals in the training set (e.g., table legs

have been seen in one scan but not in another, then it be-

comes unclear whether to generate table legs).

Thus, to effectively learn to generate a complete 3D

model beyond even the completeness of the target training

data, we formulate the completion loss only on observed

regions in the target scan. That is, the loss is only con-

sidered in regions where Starget(v) > −τ , for a voxel v

with τ indicating the voxel size. Figure 2 shows an exam-

ple Sinput, Starget, and prediction, with this self-supervision

setup, we can learn to predict geometry that was unobserved

in Starget, e.g., occluded regions behind objects.

4.1. Data Generation

As input we consider an RGB-D scan comprising a set

of depth images and their 6-DoF camera poses. For real-

world scan data we use the Matterport3D [3] dataset, which

contains a variety of RGB-D scans taken with a Matterport

tripod setup. Note that for Matterport3D, we train and eval-

uate on the annotated room regions, whereas the raw RGB-

D data is a sequence covering many different rooms, so we

perform an approximate frame-to-room association by tak-

ing frames whose camera locations lie within the room.

From a given RGB-D scan, we construct the target scan

Starget using volumetric fusion [7] with 2cm voxels and

truncation of 3 voxels. A subset of the frames is taken by

randomly removing ≈ 50% of the frames (see Section 6

for more analysis of varying degrees of incompleteness in

Sinput, Starget). We can then again use volumetric fusion to

generate a more incomplete version of the scan Sinput.

At train time, we consider cropped views of these scans

for efficiency, using random crops of size 64×64×128 vox-

els. The fully-convolutional nature of our approach enables

testing on full scenes of varying sizes at inference time.

5. Generating a Sparse 3D Scene Representa-

tion

The geometry of a 3D scene occupies a very sparse set

of the total 3D extent of the scene, so we aim to generate a

3D representation of a scene in a similarly sparse fashion.

Thus we propose Sparse Generative Neural Networks (SG-

NN) to hierarchically generate a sparse, truncated signed

distance field representation of a 3D scene, from which we

can extract the isosurface as the final output mesh.

An overview of our network architecture for the scene

completion task is shown in Figure 3. The model is de-

signed in encoder-decoder fashion, with an input partial

scan first encoded to representative features at low spatial

resolution, before generating the final TSDF output.

A partial scan, represented as a TSDF, is encoded with

a series of 3D sparse convolutions [14, 13] which operate

only on the locations where the TSDF is within trunca-

tion distance and using the distance values as input features.

Each set of convolutions spatially compresses the scene by

a factor of two. Our generative model takes the encoding of

the scene and converts the features into a (low-resolution)

dense 3D grid. The dense representation enables prediction

of the full scene geometry at very coarse resolution; here,

we use a series of dense 3D convolutions to produce a fea-

ture map F0 from which we also predict coarse occupancy

O0 and TSDF S0 representations of the complete scene.

We then construct a sparse representation of the predicted

scene based on O0: the features input to the next level are

Figure 3: Our Sparse Generative Neural Network architecture for the task of scan completion. An input scan is encoded

using a series of sparse convolutions, each set reducing the spatial dimensions by a factor of two. To generate high-resolution

scene geometry, the coarse encoding is converted to a dense representation for a coarse prediction of the complete geometry.

The predicted coarse geometry is converted to a sparse representation and input to our sparse, coarse-to-fine hierarchy, where

each level of the hierarchy predicts the geometry of the next resolution (losses indicated in orange). The final output is a

TSDF represented by sparse set of voxel locations and their corresponding distance values.
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composed as concat(Fk, Ok, Sk) ∀ sigmoid(Ok(v)) > 0.5.

This can then be processed with sparse convolutions, then

upsampled by a factor of two to predict the scene geome-

try at the next higher resolution. This enables generative,

sparse predictions in a hierarchical fashion. To generate the

final surface geometry, the last hierarchy level of our SG-

NN outputs sparse On, Sn, and Fn, which are then input to

a final set of sparse convolutions to refine and predict the

output signed distance field values.

Sparse skip connections. For scene completion, we also

leverage skip connections between the encoder and decoder

parts of the network architecture, connecting feature maps

of same spatial resolution. This is in the same spirit as U-

Net [30], but in our case the encoder and decoder features

maps are both sparse and typically do not contain the same

set of sparse locations. Thus we concatenate features from

the set of source locations which are shared with the desti-

nation locations, and use zero feature vectors for the desti-

nation locations which do not exist in the source.

Progressive Generation. In order to encourage more effi-

cient and stable training, we train our generative model pro-

gressively, starting with the lowest resolution, and introduc-

ing each successive hierarchy level after Nlevel iterations.

Each hierarchy level predicts the occupancy and TSDF of

the next level, enabling successive refinement from coarse

predictions, as shown in Figure 4.

Loss. We formulate the loss for the generated scene ge-

ometry on the final predicted TSDF locations and values,

using an ℓ1 loss with the target TSDF values at those loca-

tions. Following [11], we log-transform the TSDF values of

the predictions and the targets before applying the ℓ1 loss,

in order to encourage more accurate prediction near the sur-

face geometry. We additionally employ proxy losses at each

hierarchy level for outputs Ok and Sk, using binary cross

entropy with target occupancies and ℓ1 with target TSDF

values, respectively. This helps avoid a trivial solution of

zero loss for the final surface with no predicted geometry.

Note that for our self-supervised completion, we compute

these losses only in regions of observed target values, as

described in Section 4.

Figure 4: Progressive generation of a 3D scene using our

SG-NN which formulates a generative model to predict a

sparse TSDF as output.

5.1. Training

We train our SG-NN on a single NVIDIA GeForce RTX

2080, using the Adam optimizer with a learning rate of

0.001 and batch size of 8. We use Nlevel = 2000 iterations

for progressive introduction of each higher resolution out-

put, and train our model for ≈ 40 hours until convergence.

6. Results and Evaluation

We evaluate our sparse generative neural network on

scene completion for RGB-D scans on both real-world

scans where no fully complete ground truth is available [3],

as well as in a supervised setting on synthetic scans

which have complete ground truth information [31]. We

use the train/test splits provided by both datasets: 72/18

and 5519/155 trainval/test scenes comprising 1788/394 and

39600/1000 rooms, respectively. To measure completion

quality, we follow [12] and use an ℓ1 error metric between

predicted and target TSDFs, where unobserved regions in

the target are masked out. Note that unsigned distances are

used in the error computation to avoid sign ambiguities. We

measure the ℓ1 distance in voxel units of the entire volume

(entire volume), the unobserved region of the volume (unob-

served space), near the target surface (target), and near the

predicted surface (predicted), using a threshold of ≤ 1 to

determine nearby regions, and a global truncation of 3. For

all metrics, unobserved regions in the targets are ignored;

note that on synthetic data where complete ground truth is

available, we do not have any unobserved regions to ignore.

Comparison to state of the art. In Table 1, we compare

to several state-of-the-art approaches for scan completion

on real-world scans from the Matterport3D dataset [3]: the

shape completion approach 3D-EPN [11], and the scene

completion approach ScanComplete [12]. These methods

both require fully-complete ground truth data for supervi-

sion, which is not available for the real-world scenes, so

we train them on synthetic scans [31]. Since 3D-EPN and

ScanComplete use dense 3D convolutions, limiting voxel

resolution, we use 5cm resolution for training and evalua-

tion of all methods. Our self-supervised approach enables

training on incomplete real-world scan data, avoiding do-

main transfer while outperforming previous approaches that

leverage large amounts of synthetic 3D data. Qualitative

comparisons are shown in Figure 5.

To evaluate our SG-NN separate from its self-

supervision, we also evaluate synthetic scan completion

with full ground truth [31], in comparison to Poisson Sur-

face Reconstruction [17, 18], SSCNet[31], 3D-EPN [11],

and ScanComplete [12]. All data-driven approaches are

fully supervised, using input scans from [12]. Similar to the

real scan scenario, we train and evaluate at 5cm resolution

due to resolution limitations of the prior learned approaches.
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Figure 5: Comparison to state-of-the-art scan completion approaches on Matterport3D [3] data (5cm resolution), with input

scans generated from a subset of frames. In contrast to the fully-supervised 3D-EPN [11] and ScanComplete [12], our

self-supervised approach produces more accurate, complete scene geometry.

Method ℓ1 error ℓ1 error ℓ1 error ℓ1 error

entire volume unobserved space target predicted

3D-EPN (unet) [11] 0.31 0.28 0.45 1.12

ScanComplete [12] 0.20 0.15 0.51 0.74

Ours 0.17 0.14 0.35 0.67

Table 1: Quantitative scan completion results on real-world scan data [3], with ℓ1 distance measured in voxel units for 5cm

voxels. Since target scans are incomplete, unobserved space in the target is masked out for all metrics. 3D-EPN [11] and

ScanComplete [12] require full supervision, and so are trained on synthetic data [31]. Despite their access to large quantities

of synthetic 3D data, our self-supervised approach outperforms these methods while training solely on real-world data.

In Table 2, we see that our sparse generative approach out-

performs state of the art in a fully-supervised scenario.

Can self-supervision predict more complete geome-

try than seen during training? Our approach to self-

supervision is designed to enable prediction of scene ge-

ometry beyond the completeness of the target scan data, by

leveraging knowledge of observed and unobserved space in

RGB-D scans. To evaluate the completion quality of our

method against the completeness of the target scene data,

we perform a qualitative evaluation, as we lack fully com-

plete ground truth to for quantitative evaluation. In Figure 7,

we see that our completion quality can exceed the com-

pleteness of target scene data. We additionally evaluate our
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Method ℓ1 error ℓ1 error ℓ1 error ℓ1 error

entire volume unobserved space target predicted

Poisson Surface Reconstruction [17, 18] 0.53 0.51 1.70 1.18

SSCNet [31] 0.54 0.53 0.93 1.11

3D-EPN (unet) [11] 0.25 0.30 0.65 0.47

ScanComplete [12] 0.18 0.23 0.53 0.42

Ours 0.15 0.16 0.50 0.28

Table 2: Quantitative scan completion results on synthetic scan data [31], where complete ground truth is available to super-

vise all data-driven approaches. ℓ1 distance is measured in voxel units for 5cm voxels.

approach with and without our self-supervision masking in

Figure 7, where w/o self-supervision masking is trained us-

ing the same set of less-incomplete/more-incomplete scans

but without the loss masking. This can perform effective

completion in regions commonly observed in target scans,

but often fails to complete regions that are commonly oc-

cluded. In contrast, our formulation for self-supervision us-

ing masking of unobserved regions enables predicting scene

geometry even where the target scan remains incomplete.

Comparison of our self-supervision approach to mask-

ing out by random crops. In Table 3, we evaluate against

another possible self-supervision approach: randomly crop-

ping out target geometry to be used as incomplete inputs

(using crops for self-supervision), similar to [25]. This sce-

nario does not reflect the data characteristics of real-world

scan partialness (e.g., from occlusions and lack of visibil-

ity), resulting in poor completion performance.

What’s the impact of the input/output representation?

In Table 3, we evaluate the effect of a point cloud input

(vs. TSDF input), as well as occupancy output (vs. TSDF

output). We find that the TSDF representation has more

potential descriptiveness in characterizing a surface (and its

neighboring regions), resulting in improved performance in

both input and output representation.

What’s the impact of the degree of completeness of the

target data during training? In Figure 6, we evaluate the

effect of the amount of completeness of the target data avail-

able for training. We create several incomplete versions of

Figure 6: Evaluating varying target data completeness

available for training. We generate various incom-

plete versions of the Matterport3D [3] scans using ≈
30%, 40%, 50%, 60%, and 100% (all) of the frames associ-

ated with each room scene, and evaluate on the 50% incom-

plete scans. Our self-supervised approach remains robust to

the level of completeness of the target training data.

the Matterport3D [3] scans using varying amounts of the

frames available: ≈ 30%, 40%, 50%, 60%, and 100% (all)

of the frames associated with each room scene. We train

our approach using three different versions of input-target

completeness: 50% − all (our default), 40% − 60%, and

30% − 50%. Even as the completeness of the target data

decreases, our approach maintains robustness in predicting

complete scene geometry.

Limitations Our SG-NN approach for self-supervised

scan completion enables high-resolution geometric predic-

tion of complete geometry from real-world scans. How-

ever, to generate the full appearance of a 3D scene, gen-

eration and inpainting of color is also required. Currently,

Method ℓ1 error ℓ1 error ℓ1 error ℓ1 error

entire volume unobserved space target predicted

Using crops for self-supervision 0.13 0.09 1.25 0.68

Point cloud input 0.15 0.09 1.82 0.92

Occupancy output 0.13 0.10 0.89 0.86

2 hierarchy levels 0.10 0.08 0.74 0.68

Ours 0.09 0.07 0.71 0.60

Table 3: Ablation study of our self-supervision and generative model design choices on real-world scan data [3], with ℓ1
distance measured in voxel units for 2cm voxels.
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our method also does not consider or predict the semantic

object decomposition of a scene; however, we believe this

would be an interesting direction, specifically in the context

for enabling interaction with a 3D environment (e.g., inte-

rior redesign or robotic understanding).

7. Conclusion

In this paper, we presented a self-supervised approach

for completion of RGB-D scan geometry that enables train-

ing solely on incomplete, real-world scans while learning

a generative geometric completion process capable of pre-

dicting 3D scene geometry more complete than any single

target scene seen during training. Our sparse generative ap-

proach to generating a sparse TSDF representation of a sur-

face enables much higher output geometric resolution than

previous on large-scale 3D scenes. Self-supervision allow-

ing training only on real-world scan data for scan comple-

tion opens up new possibilities for various generative 3D

modeling based only on real-world observations, perhaps

mitigating the need for extensive synthetic data generation

or domain transfer, and we believe this is a promising av-

enue for future research.
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Figure 7: Scan completion results on Matterport3D [3] data (2cm resolution), with input scans generated from a subset of

frames. Our self-supervision approach using loss masking enables more complete scene prediction than direct supervision

using the target RGB-D scan, particularly in regions where occlusions commonly occur.
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