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Abstract

We introduce a new local sparse attention layer that pre-

serves two-dimensional geometry and locality. We show

that by just replacing the dense attention layer of SAGAN

with our construction, we obtain very significant FID, In-

ception score and pure visual improvements. FID score

is improved from 18.65 to 15.94 on ImageNet, keeping all

other parameters the same. The sparse attention patterns

that we propose for our new layer are designed using a

novel information theoretic criterion that uses information

flow graphs.

We also present a novel way to invert Generative Adver-

sarial Networks with attention. Our method uses the atten-

tion layer of the discriminator to create an innovative loss

function. This allows us to visualize the newly introduced

attention heads and show that they indeed capture interest-

ing aspects of two-dimensional geometry of real images.

1. Introduction

Generative Adversarial Networks [10] are making sig-

nificant progress on modeling and generating natural im-

ages [25, 3]. Transposed convolutional layers are a fundma-

mental architectural component since they capture spatial

invariance, a key property of natural images [18, 15, 26].

The central limitation (e.g. as argued in [25]) is that convo-

lutions fail to model complex geometries and long-distance

dependencies – the canonical example is generating dogs

with fewer or more than four legs.

To compensate for this limitation, attention layers [24]

have been introduced in deep generative models [25, 3].

Attention enables the modeling of long range spatial de-

pendencies in a single layer which automatically finds cor-

related parts of the image even if they are far apart. First

introduced in SAGAN [25] and further improved in Big-

GAN [3], attention layers have led to some of the best

known GANs currently available.

Attention layers have a few limitations. The first is that

they are computationally inefficient: Standard dense at-

tention requires memory and time complexity that scales

quadratically in the size of the input. Second, dense atten-

tion layers are statistically inefficient: A significant number

of training samples is required to train attention layers, a

problem that becomes more pronounced when multiple at-

tention heads or layers are introduced [5]. Statistical inef-

ficiency also stems from the fact that dense attention does

not benefit from locality, since most dependencies in images

relate to nearby neighborhoods of pixels. Recent work indi-

cates that most attention layer heads learn to attend mainly

to local neighborhoods [23].

To mitigate these limitations, sparse attention layers

were recently introduced in Sparse Transformers [5]. In that

paper, different types of sparse attention kernels were intro-

duced and used to obtain excellent results for images, text

and audio data. They key observation we make is that the

patterns that were introduced in Sparse Transformers are

actually designed for one-dimensional data, such as text-

sequences. Sparse Transformers [5] were applied to im-

ages by reshaping tensors in a way that significantly dis-

torts distances of the two-dimensional grid of image pix-

els. Therefore, local sparse attention kernels introduced in

Sparse Transformers fail to capture image locality.

Our Contributions:

• We introduce a new local sparse attention layer that

preserves two-dimensional image locality and can sup-

port good information flow through attention steps.

• To design our attention patterns we use the information

theoretic framework of Information Flow 3 Graphs [8].

This quantifies how information can flow through mul-
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Figure 1: Samples generated by our model YLG-SAGAN after training on ImageNet. The images are visually significantly

better compared to the SAGAN baseline, as also supported by FID and Inception score metrics.

tiple steps and preserve two-dimensional locality. We

visualize learned attention maps and show that differ-

ent heads indeed learn different aspects of the geome-

try of generated images.

• We modify SAGAN [25] using our new two-

dimensional sparse attention layers to introduce Your

Local GAN (YLG) - SAGAN. We empirically show

that this change yields significant benefits. We train on

ImageNet-128 and we achieve 14.53% improvement

to the FID score of SAGAN and 8.95% improvement

in Inception score, by only changing the attention layer

while maintaining all other parameters of the architec-

ture. Our ablation study shows that indeed the bene-

fits come from two dimensional inductive bias and not

from introducing multiple heads. Furthermore, YLG-

SAGAN achieves this performance in 800k training

steps as opposed to 1300k for SAGAN and hence re-

duces the training time by approximately 40%.

• To visualize our attention maps on natural images,

we came across the problem of inverting a generator:

given an image x, how to find a latent code z so that

G(z) is as close as possible to x. The natural inver-

sion process of performing gradient descent on this

loss works in small GANs [2, 20, 19, 14] but has been

notoriously failing in bigger models with attention like

SAGAN1. We present a solution to the GAN inversion

problem: We use the attention layer of the discrimina-

tor to obtain a weighting on the loss function that sub-

sequently we use to invert with gradient descent. We

empirically show excellent inversion results for cases

where standard gradient descent inversion fails.

We open-source our code and pre-trained mod-

els to encourage further research in this area:

https://github.com/giannisdaras/ylg2.

1This fact is folklore, known among researchers who try to solve in-

verse problems with GANs. There are numerous other ways to invert (i.e.

training an encoder) but also show poor results on modern attention GANs.
2Code based on tensorflow-gan library.

2. Background

Dense Attention Given matrices X ∈ R
NX×EX , Y ∈

R
NY ×EY , attention of X to Y , updates the vector represen-

tation of X by integrating the vector representation of Y .

In this paper, X,Y are intermediate image representations.

More specifically, attention of X to Y associates the follow-

ing matrices with the inputs: The key matrix YK = Y ·WK ,

the query matrix XQ = X ·WQ and the value matrix YV =
Y · WV where WK ∈ R

EY ×E ,WQ ∈ R
EX×E ,WV ∈

R
EY ×EV are learnable weight matrices. Intuitively, queries

are compared with keys and values translate the result of

this comparison to a new vector representation of X that in-

tegrates information from Y . Mathematically, the output of

the attention is the matrix: O = σ
(

XQ · Y T
K

)

· YV .

Sparsified Attention. The quadratic complexity of at-

tention to the size of the input is due to the calculation of the

matrix AX,Y = XQ · Y T
K ,∈ R

NX×NY . Instead of perform-

ing this calculation jointly, we can split attention in multiple

steps. At each step i, we attend to a subset of input po-

sitions, specified by a binary mask Mi ∈ {0, 1}NX×NY .

Mathematically, at step i we calculate matrix Ai
X,Y ,

where: Ai
X,Y [a, b] =

{

AX,Y [a, b], M i[a, b] = 1

−∞, M i[a, b] = 0
.

In this expression, −∞ means that after the softmax, this

position will be zeroed and thus not contribute to the calcu-

lation of the output matrix. The design of the masks {M i}
is key in reducing the number of positions attended.

There are several ways to perform multi-step atten-

tion [5] in practice. The simplest is to have separate

heads [24] calculating matrices {Ai
X,Y } in parallel and then

concatenate along the feature dimension. We follow this ap-

proach (more details included in the Supplementary Mate-

rial).
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3. Your Local GAN

3.1. Full Information Attention Sparsification

As explained, an attention sparsification in p steps is de-

scribed by binary masks {M1, ...,Mp}. The question is

how to design a good set of masks for these steps. We in-

troduce a tool from information theory to guide this design.

Information Flow Graphs are directed acyclic graphs in-

troduced in [8] to model distributed storage systems through

network information flow [1]. For our problem, this graph

models how information flows across attention steps. For a

given set of masks {M1, ...,Mp}, we create a multi-partite

graph G(V = {V 0, V 1, ..., V p}, E) where directed con-

nections between V i, V i+1 are determined by mask M i.

Each group of vertices in partition V i corresponds to at-

tention tokens of step i.

We say that an attention sparsification has Full Informa-

tion if its corresponding Information Flow Graph has a di-

rected path from every node a ∈ V 0 to every node b ∈ V p.

Please note that the Fixed pattern [5] shown in sub-figure 2a

does not have Full Information: there is no path from node

2 of V 0 to node 1 of V 2.

Sparse attention is usually considered as a way to reduce

the computational overhead of dense attention at a hope-

fully small performance loss. However, we show that at-

tention masks chosen with a bias toward two-dimensional

locality, can surprisingly outperform dense attention layers

(compare the second and the third row of Table 1). This

is an example of what we call the statistical inefficiency of

dense attention. Sparse attention layers with locality create

better inductive bias and hence can perform better in the fi-

nite sample regime. In the limit of infinite data, dense atten-

tion can always simulate sparse attention or perform better,

in the same way that a fully connected layer can simulate a

convolutional layer for a possible selection of weights.

We design the sparse patterns of YLG as the natural ex-

tensions of the patterns of [5] while ensuring that the cor-

responding Information Flow Graph supports Full Informa-

tion. The first pattern, which we call Left to Right (LTR),

extends the pattern of [5] to a bi-directional context. The

second pattern, which we call Right to Left (RTL), is a

transposed version of LTR. The corresponding 9× 9 masks

and associated Information Flow Graphs are presented in

sub-figures 2b, 2e (LTR) and 2c, 2f (RTL). These patterns

allow attention only to n
√
n positions, significantly reduc-

ing the quadratic complexity of dense attention. It is possi-

ble to create very sparse Full Information graphs using mul-

tiple attention steps, but designing them and training them

remains open for future work; in this paper we focus on

two-step factorizations. We include more details about in-

formation flow graphs in Supplementary Material.

3.2. Two­Dimensional Locality

The factorization patterns of Sparse Transformers [5]

and their Full Information extensions illustrated in Figure

2 are fundamentally matched to one-dimensional data, such

as text-sequences.

The standard way to apply these layers on images is to

reshape the three dimensional image tensors (having three

color channels) to a two-dimensional tensor X ∈ RN×C

that enters attention. This corresponds to N tokens, each

containing a C-dimensional representation of a region of

the input image. This reshape arranges these N tokens lin-

early, significantly distorting which parts of the image are

nearby in two dimensions. This behavior is illustrated in

the sub-figure at the left of Figure 3.

We argue that this is the reason that one-dimensional

sparsifications are not ideal for images. In fact, the authors

of [5] mention that the Fixed Pattern (Figure 2a) was de-

signed for text-sequences and not for images. Our central

finding is that these patterns can work very well for images,

if their two dimensional structure is considered. The ques-

tion is therefore how to take two-dimensional locality into

account. We could create two-dimensional patterns directly

on a grid but this would have significant computational

overhead and also prevent us from extending one dimen-

sional sparsifications that are known to work well [12, 5].

Instead, we modify one dimensional sparsifications to be-

come aware of two-dimensional locality with the follow-

ing trick: (i) we enumerate pixels of the image based on

their Manhattan distance from location (0, 0) (breaking ties

using row priority), (ii) shift the indices of any given one-

dimensional sparsification to match the Manhattan distance

enumeration instead of the reshape enumeration, and (iii)

apply this new one dimensional sparsification pattern, that

respects two-dimensional locality, to the one-dimensional

reshaped version of the image. We call this procedure ESA

(Enumerate, Shift, Apply) and illustrate it in Figure 3.

The ESA trick introduces some distortion compared to a

true two-dimensional distance. We found however that this

was not too limiting, at least for 128×128 resolution. Also,

ESA offers an important implementation advantage: it the-

oretically allows the use of one-dimensional block-sparse

kernels [11]. Currently these kernels exist only for GPUs,

but making them work for TPUs is still under development.

4. Experimental Validation

We conduct experiments on the ImageNet [21] dataset.

We choose SAGAN [25] as the baseline for our models be-

cause, unlike BigGAN [3] it has official open-source Ten-

sorflow code. BigGAN is not open-source and therefore

training or modifying this architecture was not possible3.

3There is an ‘unofficial’ PyTorch BigGAN implementation. However,

it uses gradient checkpointing and requires 8 V100 GPUS for 15 days to
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(a) Attention masks for Fixed Pattern [5].
(b) Attention masks for Left To Right (LTR) pat-

tern.

(c) Attention masks for Right To Left (RTL) pat-

tern.

(d) Information Flow Graph associated with

Fixed Pattern. This pattern does not have Full

Information, i.e. there are dependencies between

nodes that the attention layer cannot model. For

example, there is no path from node 2 of V 0 to

node 1 of V 2.

(e) Information Flow Graph associated with

LTR. This pattern has Full Information, i.e.

there is a path between any node of V 0 and any

node of V 2. Note that the number of edges is

only increased by a constant compared to the

Fixed Attention Pattern [5], illustrated in 2d.

(f) Information Flow Graph associated with

RTL. This pattern also has Full Information.

RTL is a ”transposed” version of LTR, so that

local context at the right of each node is attended

at the first step.

Figure 2: This Figure illustrates the different 2-step sparsifications of the attention layer we examine in this paper. First row demonstrates

the different boolean masks that we apply to each of the two steps. Color of cell [i. j] indicates whether node i can attend to node j. With

dark blue we indicate the attended positions in both steps. With light blue the positions of the first mask and with green the positions of the

second mask. The yellow cells correspond to positions that we do not attend to any step (sparsity). The second row illustrates Information

Flow Graph associated with the aforementioned attention masks. An Information Flow Graph visualizes how information ”flows” in the

attention layer. Intuitively, it visualizes how our model can use the 2-step factorization to find dependencies between image pixels. At each

multipartite graph, the nodes of the first vertex set correspond to the image pixels, just before the attention. An edge from a node of the

first vertex set, V 0, to a node of the second vertex set, V 1, means that the node of V 0 can attend to node of V 1 at the first attention step.

Edges between V 1, V 2 illustrate the second attention step.

In all our experiments, we change only the attention

layer of SAGAN, keeping all the other hyper-parameters

unchanged (the number of parameters is not affected). We

trained all models for up to 1,500,000 steps on on individ-

ual Cloud TPU v3 devices (v3-8)4, using a 1e−4 learning

rate for generator and 4e−4 for the discriminator. For all

train. We simply did not have such computing resources. We believe, how-

ever, that YLG can be easily combined with BigGAN (by simply replacing

its dense attention layer) and will yield an even better model.
4This research has been supported by NSF Grants 1618689, DMS

1723052, CCF 1763702, AF 1901292 and research gifts by Google, West-

ern Digital and NVIDIA. The TPUs were offered by the TFRC program.

the models we report the best performance obtained, even if

it was obtained at an earlier point during training.

Attention Mechanism We start with the Fixed Pattern

(Figure 2a) and modify it: First, we create Full Informa-

tion extensions (Section 3.1), yielding the patterns Left-To-

Right (LTR) and Right-To-Left (RTL) (Figures 2b and 2c

respectively). We implement multi-step attention in paral-

lel using different heads. Since each pattern is a two-step

sparsification, this yields 4 attention heads. To encourage

diversity of learned patterns, we use each pattern twice, so
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Figure 3: Reshape and ESA enumerations of the cells of an image grid

that show how image grid is projected into a line. (Left) Enumeration

of pixels of an 8 × 8 image using a standard reshape. This projection

maintains locality only in rows. (Right) Enumeration of pixels of an 8× 8
image, using the ESA framework. We use the Manhattan distance from

the start (0, 0) as a criterion for enumeration. Although there is some

distortion due to the projection into 1-D, locality is mostly maintained.

the total number of heads in our new attention layer is 8.

We use our ESA procedure (Section 3.2) to render these

patterns aware of two dimensional geometry.

Non-Square Attention In SAGAN, the query image and

the key image in the attention layer have different dimen-

sions. This complicates things, because the sparsification

patterns we discuss are designed for self-attention, where

the number of query and key nodes is the same. Specifi-

cally, for SAGAN the query image is 32 × 32 and the key

image is 16× 16. We deal with this in the simplest possible

way: we create masks for the 16 × 16 image and we shift

these masks to cover the area of the 32 × 32 image. Thus

every 16×16 block of the 32×32 query image attends with

full information to the 16× 16 key image.

# Heads FID Inception

SAGAN 1 18.65 52.52

SAGAN 8 20.09 46.01

YLG-SAGAN 8 15.94 57.22

YLG - No ESA 8 17.47 51.09

YLG - Strided 8 16.64 55.21

Table 1: Table of results after training SAGAN and YLG-SAGAN on

ImageNet. Table also includes Ablation Studies (SAGAN 8 heads, YLG

- No ESA, YLG - Strided). Our best model, YLG, achieves 15.94 FID

and 57.22 Inception score. Our scores correspond to 14.53% and 8.95%

improvement to FID and Inception respectively. We emphasize that these

benefits are obtained by only one layer change to SAGAN, replacing dense

attention with the local sparse attention layer that we introduce.

Results: As shown in Table 1, YLG-SAGAN (3rd row) out-

performs SAGAN by a large margin measured by both FID

and Inception score. Specifically, YLG-SAGAN increases

Inception score to 57.22 (8.95% improvement) and im-

proves FID to 15.94 (14.53% improvement). Qualitatively,

we observe really good-looking samples for categories with

simple geometries and homogeneity. Intuitively, a two-

dimensional locality can benefit importantly categories such

as valleys or mountains, because usually the image transi-

tions for these categories are smoother compared to others

and thus the dependencies are mostly local.

Additionally to the significantly improved scores, one

important benefit of using YLG sparse layer instead of a

dense attention layer, is that we observe significant reduc-

tion of the training time needed for the model to reach

it’s optimal performance. SAGAN reached it’s best FID

score after more that 1.3 million training steps while YLG-

SAGAN reaches its’ optimal score after only 865,000 steps

(≈ 40% reduction to the training time). Figure 4 illustrates

SAGAN and YLG-SAGAN FID and Inception score as a

function of the training time.

We create two collages to display samples from our YLG

version of SAGAN. At the Upper Panel of Figure 7, we

show dogs of different breeds generated by our YLG-SAN.

At the Lower Panel, we use YLG-SAGAN to generate sam-

ples from randomly chosen classes of the ImageNet dataset.

4.1. Ablation Studies

Number of Attention Heads The original SAGAN im-

plementation used a single-headed attention mechanism. In

YLG, we use multiple heads to perform parallel multi-step

sparse attention. Previous work has shown that multiple

heads increased performance for Natural Language Pro-

cessing tasks [24]. To understand how multiple heads af-

fect SAGAN performance, we train an 8 head version of

SAGAN. The results are reported in the second row of Ta-

ble 1. Multiple heads actually worsen significantly the per-

formance of the original SAGAN, reducing Inception score

from 52.52 to 46.01. We provide a post-hoc interpretation

of this result. The image embedding of the query vector of

SAGAN has only 32 vector positions. By using 8 heads,

each head gets only 4 positions for its’ vector representa-

tion. Our intuition is that a 4-positions vector represen-

tation is not sufficient for effective encoding of the image

information for a dense head and that accounts for the de-

crease in performance. It is important to note that YLG-

SAGAN does not suffer from this problem. The reason

is that each head is sparse, which means that only attends

to a percentage of the positions that dense head attends to.

Thus, a smaller vector representation does not worsen per-

formance. Having multiple divergent sparse heads allows

YLG layer to discover complex dependencies in the image

space throughout the multi-step attention.

Two-Dimensional Locality As described in Section 3.2

YLG uses the ESA procedure, to adapt 1-D sparse patterns

to data with 2-D structure. Our motivation was that grid-
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Figure 4: Training comparison for YLG-SAGAN and SAGAN. We plot every 200k steps the Inception score (a) and the FID (b) of both YLG-SAGAN

and SAGAN, up to 1M training steps on ImageNet. As it can be seen, YLG-SAGAN converges much faster compared to the baseline. Specifically, we

obtain our best FID at step 865k, while SAGAN requires over 1.3M steps to reach its FID performance peak. Comparing peak performance for both models,

we obtain an improvement from 18.65 to 15.94 FID, by only changing the attention layer.

locality could help our sparse attention layer to better model

local regions. In order to validate this experimentally, we

trained a version of YLG without the ESA procedure. We

call this model YLG - No ESA. The results are shown in

4th row of Table 1: without the ESA procedure, the perfor-

mance of YLG is about the same with the original SAGAN.

This experiment indicates that ESA trick is essential for us-

ing 1-D sparse patterns for grid-structured data. With ESA,

FID improves from 17.47 to 15.94 and Inception score from

51.09 to 57.22, without any other difference in the architec-

ture. Thus, ESA is a plug-and-play framework that achieves

great performance boosts to both FID and Inception score

metrics. ESA allows the utilization of fast sparse 1-D pat-

terns that were found to work well for text-sequences to be

adapted to images, with great performance benefits. In sec-

tion 5.1, we visualize attention maps to showcase how our

model utilizes ESA framework in practice.

Sparse Patterns Our YLG layer uses the LTR and RTL

patterns (Figures 2b and 2c respectively). Our intuition is

that using multiple patterns at the same time increases per-

formance because the model will be able to discover depen-

dencies using multiple different paths. To test this intuition,

we ran an experiment using the Full Information extension

of the Strided [5] pattern. We choose this pattern because

it was found to be effective for modeling images [5] due to

its’ periodic structure. As with LTR and RTL patterns, we

extend the Strided pattern so that it has Full Information.

We refer to the YLG model that instead of LTR and RTL

patterns, has 8 heads implementing the Strided pattern as

YLG - Strided. For our experiment, we use again the ESA

trick. We report the results on the 5th row of Table 1. YLG -

Strided importantly surpasses SAGAN both in FID and In-

ception score, however, it is still behind YLG. Although in

the Sparse Transformers [5] it has been claimed that strided

pattern is more suitable for images than the patterns we use

in YLG, this experiment strongly suggests that it is the grid-

locality which makes the difference, as both models are far

better than SAGAN. Also, this experiment indicates that

multiple sparse patterns can boost performance compared

to using a single sparse pattern. To be noted, using multiple

different patterns at the same attention layer requires scal-

ing the number of heads as well. Although YLG variations

of SAGAN were not impacted negatively by the increase of

attention heads, more severe up-scaling of the number of

heads could potentially harm performance, similarly to how

8 heads harmed performance of SAGAN.

5. Inverting Generative Models with Attention

We are interested in visualizing our sparse attention on

real images, not just generated ones. This leads naturally

to the problem of projecting an image on the range of a

generator, also called inversion. Given a real image x ∈ R
n

and a generator G(z), inversion corresponds to finding a

latent variable z∗ ∈ R
k, so that G(z∗) ∈ R

n approximates

the given image x as well as possible. One approach is to try

to solve the following non-convex optimization problem:

argmin
z∗

{‖G(z∗)− x‖2}. (1)

To solve this optimization problem, we can perform gra-

dient descent from a random initalization z0 to minimize

this projection distance in the latent space. This approach

was introduced independently in several papers [16, 2, 20]

and further generalized to solve inverse problems beyond

inversion [2, 20, 19, 14]. Recent research [13, 22] demon-

strated that for fully connected generators with random

weights and sufficient layer expansion, gradient descent

will provably converge to the correct optimal inversion.
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Unfortunately, this theory does not apply for genera-

tors that have attention layers. Even empirically, inversion

by gradient descent fails for bigger generative models like

SAGAN and YLG-SAGAN. As we show in our experi-

ments the optimizer gets trapped in local minimima pro-

ducing reconstructions that only vaguely resemble the tar-

get image. Other approaches for inversion have been tried in

the literature, like training jointly an encoder [9] but none

of these methods have been known to successfully invert

complex generative models with attention layers.

We propose a novel inversion method that uses the dis-

criminator to solve the minimization problem in an different

representation space. Interestingly, the discriminator yields

representations with a smoother loss landscape, especially

if we use the attention layer in a special way. In more detail:

We begin with a random latent variable z and a given real

image x. We denote with D0 the Discriminator network

up to, but not including, the attention layer and obtain the

representations D0(G(z)) and D0(x). We could perform

gradient descent to minimize the distance of these discrim-

inator representations:

‖D0(G(z))−D0(x)‖2.

We found, however, that we can use the attention map

of the real image to further enhance inversion. We will use

the example of the SAGAN architecture to illustrate this.

Inside the SAGAN Discriminator’s attention, a map M ∈
R

32×32×16×16 is calculated. For each pixel of the 32 × 32
image, this attention map is a distribution over the pixels

of the 16 × 16 image. We can use this attention map to

extract a saliency map. For each pixel of the 16×16 image,

we can average the probabilities from all the pixels of the

32× 32 image and create a distribution S of shape 16× 16.

Intuitively, this distribution represents how important each

pixel of the image is to the discriminator.

Our proposed inversion algorithm is to perform gradient

descent to minimize the discriminator embedding distance,

weighted by these saliency maps:

‖
(

D0(G(z))−D0(x)
)

· S′‖2, (2)

where S′ is a projected version of saliency map S to the

dimensions of D0(x). We actually calculate one saliency

map S′ per head and use their sum as the final loss function

that we optimize for inversion. More details are included in

the Supplementary Material.

5.1. Inversion as lens to attention

Given an arbitrary real image, we can now solve for a z

yielding a similar generated image from the generator, and

visualize the attention maps.

We explain our approach using an example of a real im-

age of a redshank (Figure 5a). Figure 5b shows how the

standard method for inverting generators [2] fails: the beak,

legs, and rocks are missing. Figure 5c shows the result of

our method. Using the z that we found using inversion, we

can project maps of the attention layer back to the original

image to get valuable insight into how the YLG layers work.

First, we analyze the differences between the YLG-

SAGAN attention heads. For each attention head of the gen-

erator, we create a saliency map as described above and use

these maps to analyze the attention mechanism. As shown

in Figure 5d, the head-7 in the generator is mostly ignoring

background focusing on the bird. Other heads function dif-

ferently: The saliency map of head-2 (Figure 5e) shows that

this head attends globally. We also find that there are heads

that that attend quite sparsely, for example, head-5 attends

only to 5-6 background pixels.

We present a second inversion, this time an indigo bird

(Figure 6a). Figure 6b shows how the standard method [2]

for inverting fails: the head of the bird and the branch are

not reconstructed. We also illustrate where specific query

points attend to. We first illustrate that the the model ex-

ploited the local bias of ESA: We plot the attention map for

query point (0, 0) for generator-head-0. This point, indi-

cated with a blue dot, is part of the background. We clearly

see a local bias in the positions this point attends to. An-

other example of two-dimensional local attention is shown

in Figure 6e. This figure illustrates the attention map of

generator-head-4 for a query point on the body of the bird

(blue dot). This point attends to the edges of the bird body

and to the bird head.

Finally, Figure 6f shows that there are query points that

attend to long-distance, demonstrating that the attention

mechanism is capable of exploiting both locality and long-

distance relationships when these appear in the image.

6. Related Work

There has been a flourishing of novel ideas on making

attention mechanisms more efficient. Dai et al. [7] separate

inputs into chunks and associate a state vector with previ-

ous chunks of the input. Attention is performed per chunk,

but information exchange between chunks is possible via

the state vector. Guo et al. [12] show that a star-shaped

topology can reduce attention cost from O(n2) to O(n) in

text sequences. Interestingly, this topology does have full

information, under our framework. Sukhbaatar et al. [23]

introduced the idea of a learnable adaptive span for each at-

tention layer. The idea of learnable patters is also explored

by Correia et. al [6]. Calian et al. [4] proposed a fast ran-

domized algorithm that exploits spatial coherence and spar-

sity to design sparse approximations. We believe that all

these methods can be possibly combined with YLG, but so

far nothing has been demonstrated to improve generative

models in a plug-and-play way that this work shows.

There is also prior work on using attention mechanisms
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(a) (b) (c) (d) (e)

Figure 5: Inversion and Saliency maps for different heads of the Generator network. We emphasize that this image of a redshank bird was not in the

training set, it is rather obtained by a Google image search. Saliency is extracted by averaging the attention each pixel of the key image gets from the query

image. We use the same trick to enhance inversion. (a) A real image of a redshank. (b) A demonstration of how the standard inversion method [2] fails. (c)

The inverted image for this redshank, using our technique. (d) Saliency map for head 7. Attention is mostly applied to the bird body. (e) Saliency map for

head 2. This head attends almost everywhere in the image.

(a) (b) (c) (d) (e) (f)

Figure 6: Inverted image of an indigo bird and visualization of the attention maps for specific query points. (a) The original image. Again, this was

obtained with a Google image search and was not in the training set. (b) Shows how previous inversion methods fail to reconstruct the head of the bird and

the branch. (c) A successful inversion using our method. (d) Specifically, 6d shows how attention uses our ESA trick to model background, homogeneous

areas. (e) Attention applied to the bird. (f) Attention applied with a query on the branch. Notice how attention is non-local and captures the full branch.

to model images: One notable example is Zhang et al. [25],

which we have discussed extensively and which adds a self-

attention mechanism to GANs. See also Parmar et al. [17],

which uses local-attention that is not multi-step.

7. Conclusions and Future Work

We introduced a new type of local sparse attention layer

designed for two-dimensional data. We believe that our

layer will be widely applicable for any model with atten-

tion that works on two-dimensional data. An interesting

future direction is the design of attention layers, thought of

as multi-step networks with connections that can either be

manually chosen or learned. The two conflicting objectives

are to make these networks as sparse as possible (for com-

putational and statistical efficiency) but also support good

information flow. We introduced information flow graphs

as a mathematical abstraction and proposed full information

as a desired criterion for such networks.

Finally, we presented a novel way to solve the inversion

problem for GANs. Our technique uses the discriminator in

two ways: First, using its attention to obtain pixel impor-

tance and second, as a smoothing representation of the in-

version loss landscape. This new inversion method allowed

us to visualize our network on approximations of real im-

ages and also to test how good a generative model is in this

important coverage task. We believe that this is the first key

step towards using generative models for inverse problems.

Figure 7: Upper Panel: YLG conditional image generation on differ-

ent dog breeds from ImageNet dataset. From up to down: eskimo husky,

siberian husky, saint bernard, maltese. Lower Panel: Random generated

samples from YLG-SAGAN.
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