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Abstract

Any solid object can be decomposed into a collection of

convex polytopes (in short, convexes). When a small num-

ber of convexes are used, such a decomposition can be

thought of as a piece-wise approximation of the geometry.

This decomposition is fundamental in computer graphics,

where it provides one of the most common ways to approx-

imate geometry, for example, in real-time physics simula-

tion. A convex object also has the property of being si-

multaneously an explicit and implicit representation: one

can interpret it explicitly as a mesh derived by computing

the vertices of a convex hull, or implicitly as the collec-

tion of half-space constraints or support functions. Their

implicit representation makes them particularly well suited

for neural network training, as they abstract away from the

topology of the geometry they need to represent. However,

at testing time, convexes can also generate explicit repre-

sentations – polygonal meshes – which can then be used in

any downstream application. We introduce a network archi-

tecture to represent a low dimensional family of convexes.

This family is automatically derived via an auto-encoding

process. We investigate the applications of this architecture

including automatic convex decomposition, image to 3D re-

construction, and part-based shape retrieval.

1. Introduction

While images admit a standard representation in the form

of a scalar function uniformly discretized on a grid, the

curse of dimensionality has prevented the effective usage of

analogous representations for learning 3D geometry. Voxel

representations have shown some promise at low resolution

[10, 20, 35, 57, 62, 69, 74], while hierarchical represen-

tations have attempted to reduce the memory footprint re-

quired for training [58, 64, 73], but at the significant cost

of complex implementations. Rather than representing the

volume occupied by a 3D object, one can resort to mod-

Figure 1. Our method reconstruct a 3D object from an input image

as a collection of convex hulls, and we visualize the explode of

these convexes. Notably, CvxNet outputs polygonal mesh repre-

sentations of convex polytopes without requiring the execution of

computationally expensive iso-surfacing (e.g. Marching Cubes).

This means the representation outputted by CvxNet can then be

readily used for physics simulation [17], as well as many other

downstream applications that consume polygonal meshes.

eling its surface via a collection of points [1, 19], poly-

gons [31, 56, 71], or surface patches [26]. Alternatively, one

might follow Cezanne’s advice and “treat nature by means

of the cylinder, the sphere, the cone, everything brought into

proper perspective”, and think to approximate 3D geom-

etry as geons [4] – collections of simple to interpret geo-

metric primitives [68, 77], and their composition [60, 21].

Hence, one might rightfully start wondering “why so many

representations of 3D data exist, and why would one be

more advantageous than the other?” One observation is

that multiple equivalent representations of 3D geometry ex-

ist because real-world applications need to perform differ-

ent operations and queries on this data ( [9, Ch.1]). For

example, in computer graphics, points and polygons allow

for very efficient rendering on GPUs, while volumes allow

artists to sculpt geometry without having to worry about tes-
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sellation [51] or assembling geometry by smooth composi-

tion [2], while primitives enable highly efficient collision

detection [66] and resolution [67]. In computer vision and

robotics, analogous trade-offs exist: surface models are es-

sential for the construction of low-dimensional parametric

templates essential for tracking [6, 8], volumetric represen-

tations are key to capturing 3D data whose topology is un-

known [48, 47], while part-based models provide a natural

decomposition of an object into its semantic components.

Part-based models create a representation useful to reason

about extent, mass, contact, ... quantities that are key to

describing the scene, and planning motions [29, 28].

Contributions. In this paper, we propose a novel represen-

tation for geometry based on primitive decomposition. The

representation is parsimonious, as we approximate geome-

try via a small number of convex elements, while we seek

to allow low-dimensional representation to be automati-

cally inferred from data – without any human supervision.

More specifically, inspired by recent works [68, 21, 44] we

train our pipeline in an unsupervised manner: predicting

the primitive configuration as well as their parameters by

checking whether the reconstructed geometry matches the

geometry of the target. We note how we inherit a number of

interesting properties from several of the aforementioned

representations. As it is part-based it is naturally locally

supported, and by training on a shape collection, parts have

a semantic association (i.e. the same element is used to rep-

resent the backs of chairs). Although part-based, each of

them is not restricted to belong to the class of boxes [68], el-

lipsoids [21], or sphere-meshes [67], but to the more general

class of convexes. As a convex is defined by a collection

of half-space constraints, it can be simultaneously decoded

into an explicit (polygonal mesh), as well as implicit (in-

dicator function) representation. Because our encoder de-

composes geometry into convexes, it is immediately usable

in any application requiring real-time physics simulation, as

collision resolution between convexes is efficiently decided

by GJK [23] (Figure 1). Finally, parts can interact via struc-

turing [21] to generate smooth blending between parts.

2. Related works

One of the simplest high-dimensional representations is

voxels, and they are the most commonly used representation

for discriminative [43, 54, 61] models, due to their similar-

ity to image based convolutions. Voxels have also been used

successfully for generative models [75, 16, 24, 57, 62, 74].

However, the memory requirements of voxels makes them

unsuitable for resolutions larger than 643. One can reduce

the memory consumption significantly by using octrees that

take advantage of the sparsity of voxels [58, 72, 73, 64].

This can extend the resolution to 5123, for instance, but

comes at the cost of more complicated implementation.

Surfaces. In computer graphics, polygonal meshes are the

standard representation of 3D objects. Meshes have also

been considered for discriminative classification by apply-

ing graph convolutions to the mesh [42, 11, 27, 46]. Re-

cently, meshes have also been considered as the output of

a network [26, 32, 71]. A key weakness of these models is

the fact that they may produce self-intersecting meshes. An-

other natural high-dimensional representation that has gar-

nered some traction in vision is the point cloud representa-

tion. Point clouds are the natural representation of objects if

one is using sensors such as depth cameras or LiDAR, and

they require far less memory than voxels. Qi et al. [53, 55]

used point clouds as a representation for discriminative deep

learning tasks. Hoppe et al. [30] used point clouds for sur-

face mesh reconstruction (see also [3] for a survey of other

techniques). Fan et. al. [19] and Lin et. al. [37] used point

clouds for 3D reconstruction using deep learning. How-

ever, these approaches require additional non-trivial post-

processing steps to generate the final 3D mesh.

Primitives. Far more common is to approximate the input

shape by set of volumetric primitives. With this perspective

in mind, representing shapes as voxels will be a special case,

where the primitives are unit cubes in a lattice. Another

fundamental way to describe 3D shapes is via Constructive

Solid Geometry [33]. Sherma et. al. [60] presents a model

that will output a program (i.e. set of Boolean operations on

shape primitives) that generate the input image or shape. In

general, this is a fairly difficult task. Some of the classical

primitives used in graphics and computer vision are blocks

world [59], generalized cylinders [5], geons [4], and even

Lego pieces [70]. In [68], a deep CNN is used to interpret

a shape as a union of simple rectangular prisms. They also

note that their model provides a consistent parsing across

shapes (i.e. the head is captured by the same primitive),

allowing some interpretability of the output. In [50], they

extended cuboids to superquadrics, showing that the extra

flexibility will result in better reconstructions.

Implicit surfaces. If one generalizes the shape primitives to

analytic surfaces (i.e. level sets of analytic functions), then

new analytic tools become available for generating shapes.

In [44, 15], for instance, they train a model to discrimi-

nate inside coordinates from outside coordinates (referred

to as an occupancy function in the paper, and as an indica-

tor function in the graphics community). Park et. al. [49]

used the signed distance function to the surface of the shape

to achieve the same goal. One disadvantage of the implicit

description of the shape is that most of the interpretability

is missing from the final answer. In [21], they take a more

geometric approach and restrict to level sets of axis-aligned

Gaussians. Partly due to the restrictions of these functions,

their representation struggles on shapes with angled parts,

but they do recover the interpretability that [68] offers.
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Figure 2. From {hyperplanes} to occupancy – A collection of hyperplane parameters for an image specifies the indicator function of

a convex. The soft-max allows gradients to propagate through all hyperplanes and allows for the generation of smooth convex, while the

sigmoid parameter controls the slope of the transition in the generated indicator – note that our soft-max function is a LogSumExp.

Convex decomposition. In graphics, a common method

to represent shapes is to describe them as a collection of

convex objects. Several methods for convex decomposi-

tion of meshes have been proposed [25, 52]. In machine

learning, however, we only find early attempts to approach

convex hull computation via neural networks [34]. Split-

ting the meshes into exactly convexes generally produces

too many pieces [13]. As such, it is more prudent to

seek small number of convexes that approximate the input

shape [22, 36, 38, 41, 40]. Recently [66] also extended con-

vex decomposition to the spatio-temporal domain, by con-

sidering moving geometry. Our method is most related to

[68] and [21], in that we train an occupancy function. How-

ever, we choose our space of functions so that their level sets

are approximately convex, and use these as building blocks.

3. Method – CvxNet

Our object is represented via an indicator O : R3 → [0, 1],
and with ∂O = {x ∈ R3 | O(x) = 0.5} we indicate the

surface of the object. The indicator function is defined such

that {x ∈ R3 | O(x) = 0} defines the outside of the object

and {x ∈ R3 | O(x) = 1} the inside. Given an input (e.g.

an image, point cloud, or voxel grid) an encoder estimates

the parameters {βk} of our template representation Ô(·)
with K primitives (indexed by k). We then evaluate the

template at random sample points x, and our training loss

ensures Ô(x) ≈ O(x). In the discussion below, without

loss of generality, we use 2D illustrative examples where

O : R2→ [0, 1]. Our representation is a differentiable con-

vex decomposition, which is used to train an image encoder

in an end-to-end fashion. We begin by describing a differen-

tiable representation of a single convex object (Section 3.1).

Then we introduce an auto-encoder architecture to create

a low-dimensional family of approximate convexes (Sec-

tion 3.2). These allow us to represent objects as spatial

compositions of convexes (Section 3.4). We then describe

the losses used to train our networks (Section 3.5) and men-

tion a few implementation details (Section 3.6).

3.1. Differentiable convex indicator – Figure 2

We define a decoder that given a collection of (unordered)

half-space constraints constructs the indicator function of

a single convex object; such a function can be evaluated

at any point x ∈ R3. We define Hh(x) = nh · x + dh
as the signed distance of the point x from the h-th plane

with normal nh and offset dh. Given a sufficiently large

number H of half-planes the signed distance function of

any convex object can be approximated by taking the max
of the signed distance functions of the planes. To facilitate

gradient learning, instead of maximum, we use the smooth

maximum function LogSumExp and define the approximate

signed distance function, Φ(x):

Φ(x) = LogSumExp{δHh(x)}, (1)

Note this is an approximate SDF, as the property

‖∇Φ(x)‖ = 1 is not necessarily satisfied ∀x. We then

convert the signed distance function to an indicator func-

tion C : R3→ [0, 1]:

C(x|β) = Sigmoid(−σΦ(x)), (2)

We denote the collection of hyperplane parameters as h =
{(nh, dh)}, and the overall set of parameters for a convex

as β = [h, σ]. We treat σ as a hyperparameter, and con-

sider the rest as the learnable parameters of our representa-

tion. As illustrated in Figure 2, the parameter δ controls the

smoothness of the generated convex, while σ controls the

sharpness of the transition of the indicator function. Simi-

lar to the smooth maximum function, the soft classification

boundary created by Sigmoid facilitates training.

In summary, given a collection of hyperplane parameters,

this differentiable module generates a function that can be

evaluated at any position x.

3.2. Convex encoder/decoder – Figure 3

A sufficiently large set of hyperplanes can represent any

convex object, but one may ask whether it would be pos-
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Figure 3. Convex auto-encoder – The encoder E creates a low dimensional latent vector representation λ, decoded into a collection of

hyperplanes by the decoder D. The training loss involves reconstructing the value of the input image at random pixels x.

sible to discover some form of correlation between their pa-

rameters. Towards this goal, we employ an auto-encoder

architecture illustrated in Figure 3. Given an input, the en-

coder E derives a bottleneck representation λ from the in-

put. Then, a decoder D derives the collection of hyperplane

parameters. While in theory permuting the H hyperplanes

generates the same convex, the decoder D correlates a par-

ticular hyperplane with a corresponding orientation. This is

visible in Figure 4, where we color-code different 2D hyper-

planes and indicate their orientation distribution in a simple

2D auto-encoding task for a collection of axis-aligned ellip-

soids. As ellipsoids and oriented cuboids are convexes, we

argue that the architecture in Figure 3 allows us to general-

ize the core geometric primitives proposed in VP [68] and

SIF [21]; we verify this claim in Figure 5.

Figure 4. Correlation – While the

description of a convex, {(nh,dh)},

is permutation invariant we employ an

encoder/decoder that implicitly estab-

lishes an ordering. Our visualization

reveals how a particular hyperplane

typically represents a particular subset

of orientations.

Figure 5. Interpolation – We com-

pute latent code of shapes in the cor-

ners using CvxNet. We then lin-

early interpolate latent codes to syn-

thesize shapes in-between. Our prim-

itives generalize the shape space of

VP [68] (boxes) and SIF [21] (ellip-

soids) so we can interpolate between

them smoothly.

3.3. Explicit interpretation – Figure 6

What is significantly different from other methods that em-

ploy indicator functions as trainable representations of 3D

geometry, is that convexes generated by our network ad-

mit an explicit interpretation: they can be easily converted

into polygonal meshes. This is in striking contrast to

[49, 15, 21, 44], where a computationally intensive iso-

surfacing operation needs to be executed to extract their

surface (e.g. Marching Cubes [39]). More specifically, iso-

surfacing techniques typically suffer the curse of dimen-

sionality, with a performance that scales as 1/εd, where ε
the desired spatial resolution and d is usually 3. Conversely,

as we illustrate in Figure 6, we only require the execution

of two duality transforms, and the computations of two con-

vex hulls of H points. The complexity of these operations

is clearly independent of any resolution parameter ε.

Figure 6. From {hyperplanes} to polygonal meshes – The

polygonal mesh corresponding to a set of hyperplanes (a) can be

computed by transforming planes into points via a duality trans-

form (b), the computation of a convex hull (c), a second duality

transform (d), and a final convex hull execution (e). The output of

this operation is a polygonal mesh. Note this operation is efficient,

output sensitive, and, most importantly does not suffer the curse

of dimensionality. Note that, for illustration purposes, the duality

coordinates in this figure are fictitious.

3.4. Multi convex decomposition – Figure 7

Having a learnable pipeline for a single convex object, we

can now expand the expressivity of our model by repre-

senting generic non-convex objects as compositions of con-

vexes [66]. To achieve this task an encoder E outputs a low-
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Figure 7. Multi-convex auto-encoder – Our network approximates input geometry as a composition of convex elements. Note that

this network does not prescribe how the final image is generated, but merely output the shape {βk} and pose {Tk} parameters of the

abstraction. Note that this is an illustration where the parameters {β
k
}, {T k} have been directly optimized via SGD with a preset δ.

dimensional bottleneck representation of all K convexes λ

that D decodes into a collection of K parameter tuples.

Each tuple (indexed by k) is comprised of a shape code βk,

and corresponding transformation Tk(x) = x + ck that

transforms the point from world coordinates to local coor-

dinates. ck is the predicted translation vector (Figure 7).

3.5. Training losses

First and foremost, we want the (ground truth) indicator

function of our object O to be well approximated:

Lapprox(ω) = E
x∼R3‖Ô(x)−O(x)‖2, (3)

where Ô(x) = maxk{Ck(x)}, and Ck(x) = C(Tk(x)|βk).
The application of the max operator produces a perfect

union of convexes. While constructive solid geometry typ-

ically applies the min operator to compute the union of

signed distance functions, note that we apply the max op-

erator to indicator functions instead with the same effect;

see Section 6 in the supplementary material for more de-

tails. We couple the approximation loss with several auxil-

iary losses that enforce the desired properties of our decom-

position.

Decomposition loss (auxiliary). We seek a parsimonious

decomposition of an object akin to Tulsiani et al. [68].

Hence, overlap between elements should be discouraged:

Ldecomp(ω) = E
x∼R3‖relu(sum

k

{Ck(x)} − τ)‖2, (4)

where we use a permissive τ = 2, and note how the ReLU

activates the loss only when an overlap occurs.

Unique parameterization loss (auxiliary). While each

convex is parameterized with respect to the origin, there is

a nullspace of solutions – we can move the origin to an-

other location within the convex, and update offsets {dh}
and transformation T accordingly – see Figure 8(left). To

remove such a null-space, we simply regularize the magni-

tudes of the offsets for each of the K elements:

Lunique(ω) =
1

H

∑

h

‖dh‖
2 (5)

In the supplementary material, we prove that minimizing

Lunique leads to a unique solution and centers the convex

body to the origin. This loss further ensures that “inactive”

hyperplane constraints can be readily re-activated during

learning. Because they fit tightly around the surface they

are therefore sensitive to shape changes.

Guidance loss (auxiliary). As we will describe in Sec-

tion 3.6, we use offline sampling to speed-up training. How-

ever, this can cause severe issues. In particular, when a con-

vex “falls within the cracks” of sampling (i.e. ∄x | C(x)>
0.5), it can be effectively removed from the learning pro-

cess. This can easily happen when the convex enters a de-

generate state (i.e. dh=0 ∀h). Unfortunately these degen-

erate configurations are encouraged by the loss (5). We can

prevent collapses by ensuring that each of them represents

Figure 8. Auxiliary losses – Our Lunique loss (left) prevents the ex-

istence of a null-space in the specification of convexes, and (mid-

dle) ensures inactive hyperplanes can be easily activated during

training. (right) Our Lguide move convexes towards the representa-

tion of samples drawn from within the object x ∈ O.
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a certain amount of information (i.e. samples):

Lguide(ω) =
1

K

∑

k

1

N

∑

x∈NN

k

‖Ck(x)−O(x)‖2, (6)

where NN

k
is the subset of N samples from the set

x ∼ {O} with the smallest distance value Φk(x) from Ck.

In other words, each convex is responsible for representing

at least the N closest interior samples.

Localization loss (auxiliary). When a convex is far from

interior points, the loss in (6) suffers from vanishing gradi-

ents due to the sigmoid function. We overcome this problem

by adding a loss with respect to ck, the translation vector of

the k-th convex:

Lloc(ω) =
1

K

∑

x∈N 1

k

‖ck − x‖2 (7)

Observations. Note that we supervise the indicator func-

tion C rather than Φ, as the latter does not represent the

signed distance function of a convex (e.g. ‖∇Φ(x)‖ 6= 1).

Also note how the loss in (4) is reminiscent of SIF [21,

Eq.1], where the overall surface is modeled as a sum

of meta-ball implicit functions [7] – which the authors

call “structuring”. The core difference lies in the fact

that SIF [21] models the surface of the object ∂O as an iso-

level of the function post structuring – therefore, in most

cases, the iso-surface of the individual primitives do not ap-

proximate the target surface, resulting in a slight loss of in-

terpretability in the generated representation.

3.6. Implementation details

To increase training speed, we sample a set of points on

the ground-truth shape offline, precompute the ground truth

quantities, and then randomly sub-sample from this set dur-

ing our training loop. For volumetric samples, we use the

samples from OccNet [44], while for surface samples we

employ the “near-surface” sampling described in SIF [21].

Following SIF [21], we also tune down Lapprox of “near-

surface” samples by 0.1. We draw 100k random samples

from the bounding box of O and 100k samples from each

of ∂O to construct the points samples and labels. We use a

sub-sample set (at training time) with 1024 points for both

sample sources. Although Mescheder et al. [44] claims that

using uniform volumetric samples are more effective than

surface samples, we find that balancing these two strategies

yields the best performance – this can be attributed to the

complementary effect of the losses in (3) and (4).

Architecture details. In all our experiments, we use the

same architecture while varying the number of convexes

and hyperplanes. For the {Depth}-to-3D task, we use 50

convexes each with 50 hyperplanes. For the RGB-to-3D

task, we use 50 convexes each with 25 hyperplanes. Sim-

ilar to OccNet [44], we use ResNet18 as the encoder E
for both the {Depth}-to-3D and the RGB-to-3D experi-

ments. A fully connected layer then generates the latent

code λ ∈ R256 that is provided as input to the decoder D.

For the decoder D we use a sequential model with four hid-

den layers with (1024, 1024, 2048, |H|) units respectively.

The output dimension is |H| = K(4 + 3H) where for each

of the K elements we specify a translation (3 DOFs) and

a smoothness (1 DOFs). Each hyperplane is specified by

the (unit) normal and the offset from the origin (3H DOFs).

In all our experiments, we use a batch of size 32 and train

with Adam with a learning rate of 10−4, β1 = .9, and

β2 = .999. As determined by grid-search on the validation

set, we set the weight for our losses {Lapprox : 1.0,Ldecomp :
0.1,Lunique : 0.001,Lguide : 0.01,Lloc : 1.0} and σ = 75.

4. Experiments

We use the ShapeNet [12] dataset in our experiments. We

use the same voxelization, renderings, and data split as

in Choy et. al. [16]. Moreover, we use the same multi-

view depth renderings as [21] for our {Depth}-to-3D ex-

periments, where we render each example from cameras

placed on the vertices of a dodecahedron. Note that this

problem is a harder problem than 3D auto-encoding with

point cloud input as proposed by OccNet [44] and resem-

bles more closely the single view reconstruction problem.

At training time we need ground truth inside/outside labels,

so we employ the watertight meshes from [44] – this also

ensures a fair comparison to this method. For the quanti-

tative evaluation of semantic decomposition, we use labels

from PartNet [45] and exploit the overlap with ShapeNet.

Methods. We quantitatively compare our method to a

number of self-supervised algorithms with different char-

acteristics. First, we consider VP [68] that learns a par-

simonious approximation of the input via (the union of)

oriented boxes. We also compare to the Structured Im-

plicit Function SIF [21] method that represents solid ge-

ometry as an iso-level of a sum of weighted Gaussians;

like VP [68], and in contrast to OccNet [44], this meth-

ods provides an interpretable encoding of geometry. Fi-

nally, from the class of techniques that directly learn non-

interpretable representations of implicit functions, we se-

lect OccNet [44], P2M [71], and AtlasNet [26]; in contrast

to the previous methods, these solutions do not provide any

form of shape decomposition. As OccNet [44] only report

results on RGB-to-3D tasks, we extend the original code-

base to also solve {Depth}-to-3D tasks. We follow the same

data pre-processing used by SIF [21].

Metrics. With Ô and ∂Ô we respectively indicate the indi-

cator and the surface of the union of our primitives. We then
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Figure 9. Analysis of accuracy vs. # primitives – (left) The ground truth object to be reconstructed and the single shape-abstraction

generated by VP [68]. (middle) Quantitative evaluation (ShapeNet/Multi) of abstraction performance with an increase number of primitives

– the closer the curve is to the top-left, the better. (right) A qualitative visualization of the primitives and corresponding reconstructions.

use three quantitative metrics to evaluate the performance of

3D reconstruction: 1© The Volumetric IoU; note that with

100K uniform samples to estimate this metric, our estima-

tion is more accurate than the 323 voxel grid estimation used

by [16]. 2© The Chamfer-L1 distance, a smooth relaxation

of the symmetric Hausdorff distance measuring the average

between reconstruction accuracy Eo∼∂O[min
ô∈∂Ô

‖o−ô‖]
and completeness E

ô∼∂Ô
[mino∈∂O ‖ô − o‖] [18]. 3© Fol-

lowing the arguments presented in [65], we also employ F-

score to quantitatively assess performance. It can be under-

stood as “the percentage of correctly reconstructed surface”.

Figure 10. Part based retrieval – Two inputs (left) are first en-

coded into our CvxNet representation (middle-left), from which

a user can select a subset of parts (middle-right). We then use

the concatenated latent code as an (incomplete) geometric lookup

function, and retrieve the closest decomposition in the training

database (right).

Part
Accuracy

CvxNet BAE BAE*

back 91.50% 86.36% 91.81%

arm 38.94% 65.75% 71.32%

base 71.95% 88.46% 91.75%

seat 90.63% 73.66% 92.91%

Figure 11. Abstraction – (left) The distribution of partnet labels

within each convex ID (4 out of 50). (right) The classification ac-

curacy for each semantic part when using the convex ID to label

each point. BAE [14] is a baseline for unsupervised part segmen-

tation. Finally, BAE* is the supervised version of BAE.

4.1. Abstraction – Figure 9, 10, 11

As our convex decomposition is learnt on a shape collec-

tion, the convexes produced by our decoder are in natural

correspondence – e.g. we expect the same k-th convex to

represent the leg of a chair in the chairs dataset. We ana-

lyze this quantitatively on the PartNet dataset [45]. We do

so by verifying whether the k-th component is consistently

mapped to the same PartNet part label; see Figure 11 (left)

for the distribution of PartNet labels within each compo-

nent. We can then assign the most commonly associated

label to a given convex to segment the PartNet point cloud,

achieving a relatively high accuracy; see Figure 11 (right).

This reveals how our representation captures the semantic

structure in the dataset. We also evaluate our shape abstrac-

tion capabilities by varying the number of components and

evaluating the trade-off between representation parsimony

and reconstruction accuracy; we visualize this via Pareto-

optimal curves in the plot of Figure 9. We compare with

SIF [21], and note that thanks to the generalized shape space

of our model, our curve dominates theirs regardless of the

number of primitives chosen. We further investigate the use

of natural correspondence in a part-based retrieval task. We

first encode an input into our representation, allow a user to

select a few parts of interest, and then use this (incomplete)

shape-code to fetch the elements in the training set with the

closest (partial) shape-code; see Figure 10.

4.2. Reconstruction – Table 1 and Figure 12

We quantitatively evaluate the reconstruction performance

against a number of state-of-the-art methods given inputs

as multiple depth map images ({Depth}-to-3D) and a sin-

gle color image (RGB-to-3D); see Table 1. A few quali-

tative examples are displayed in Figure 12. We find that

CvxNet is: 1© consistently better than other part decompo-

sition methods (SIF, VP, and SQ) which share the common

goal of learning shape elements; 2© in general compara-

ble to the state-of-the-art reconstruction methods; 3© better

than the leading technique (OccNet [44]) when evaluated

in terms of F-score, and tested on multi-view depth input.
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Figure 12. ShapeNet/Multi – Qualitative comparisons to SIF [21], AtlasNet [26], OccNet [44], VP [68] and SQ [50]; on RGB Input,

while VP uses voxelized, and SQ uses a point-cloud input. (∗Note that the OccNet [44] results are post-processed with smoothing).

Category
IoU Chamfer-L1 F-Score

OccNet SIF Ours OccNet SIF Ours OccNet SIF Ours

airplane 0.728 0.662 0.739 0.031 0.044 0.025 79.52 71.40 84.68

bench 0.655 0.533 0.631 0.041 0.082 0.043 71.98 58.35 77.68

cabinet 0.848 0.783 0.830 0.138 0.110 0.048 71.31 59.26 76.09

car 0.830 0.772 0.826 0.071 0.108 0.031 69.64 56.58 77.75

chair 0.696 0.572 0.681 0.124 0.154 0.115 63.14 42.37 65.39

display 0.763 0.693 0.762 0.087 0.097 0.065 63.76 56.26 71.41

lamp 0.538 0.417 0.494 0.678 0.342 0.352 51.60 35.01 51.37

speaker 0.806 0.742 0.784 0.440 0.199 0.112 58.09 47.39 60.24

rifle 0.666 0.604 0.684 0.033 0.042 0.023 78.52 70.01 83.63

sofa 0.836 0.760 0.828 0.052 0.080 0.036 69.66 55.22 75.44

table 0.699 0.572 0.660 0.152 0.157 0.121 68.80 55.66 71.73

phone 0.885 0.831 0.869 0.022 0.039 0.018 85.60 81.82 89.28

vessel 0.719 0.643 0.708 0.070 0.078 0.052 66.48 54.15 70.77

mean 0.744 0.660 0.731 0.149 0.118 0.080 69.08 59.02 73.49

{Depth}-to-3D

Category
IoU Chamfer-L1 F-Score

P2M AtlasNet OccNet SIF Ours P2M AtlasNet OccNet SIF Ours AtlasNet OccNet SIF Ours

airplane 0.420 - 0.571 0.530 0.598 0.187 0.104 0.147 0.167 0.093 67.24 62.87 52.81 68.16

bench 0.323 - 0.485 0.333 0.461 0.201 0.138 0.155 0.261 0.133 54.50 56.91 37.31 54.64

cabinet 0.664 - 0.733 0.648 0.709 0.196 0.175 0.167 0.233 0.160 46.43 61.79 31.68 46.09

car 0.552 - 0.737 0.657 0.675 0.180 0.141 0.159 0.161 0.103 51.51 56.91 37.66 47.33

chair 0.396 - 0.501 0.389 0.491 0.265 0.209 0.228 0.380 0.337 38.89 42.41 26.90 38.49

display 0.490 - 0.471 0.491 0.576 0.239 0.198 0.278 0.401 0.223 42.79 38.96 27.22 40.69

lamp 0.323 - 0.371 0.260 0.311 0.308 0.305 0.479 1.096 0.795 33.04 38.35 20.59 31.41

speaker 0.599 - 0.647 0.577 0.620 0.285 0.245 0.300 0.554 0.462 35.75 42.48 22.42 29.45

rifle 0.402 - 0.474 0.463 0.515 0.164 0.115 0.141 0.193 0.106 64.22 56.52 53.20 63.74

sofa 0.613 - 0.680 0.606 0.677 0.212 0.177 0.194 0.272 0.164 43.46 48.62 30.94 42.11

table 0.395 - 0.506 0.372 0.473 0.218 0.190 0.189 0.454 0.358 44.93 58.49 30.78 48.10

phone 0.661 - 0.720 0.658 0.719 0.149 0.128 0.140 0.159 0.083 58.85 66.09 45.61 59.64

vessel 0.397 - 0.530 0.502 0.552 0.212 0.151 0.218 0.208 0.173 49.87 42.37 36.04 45.88

mean 0.480 - 0.571 0.499 0.567 0.216 0.175 0.215 0.349 0.245 48.57 51.75 34.86 47.36

RGB-to-3D

Table 1. Reconstruction performance on ShapeNet/Multi – We evaluate our method against P2M [71], AtlasNet [26], OccNet [44] and

SIF [21]. We provide in input either (left) a collection of depth maps or (right) a single color image. For AtlasNet [26], note that IoU

cannot be measured as the meshes are not watertight. We omit VP [68], as it only produces a very rough shape decomposition.

Note that SIF [21] first trains for the template parameters on

({Depth}-to-3D) with a reconstruction loss, and then trains

the RGB-to-3D image encoder with a parameter regression

loss; conversely, our method trains both encoder and de-

coder of the RGB-to-3D task from scratch.

4.3. Ablation studies

We summarize here the results of several ablation stud-

ies found in the supplementary material. Our analysis

reveals that the method is relatively insensitive to the di-

mensionality of the bottleneck |λ|. We also investigate

the effect of varying the number of convexes K and num-

ber of hyperplanes H in terms of reconstruction accuracy

and inference/training time. Moreover, we quantitatively

demonstrate that using signed distance as supervision for

Lapprox produces significantly worse results and at the cost

of slightly worse performance we can collapse Lguide and

Lloc into one. Finally, we perform an ablation study with

respect to our losses, and verify that each is beneficial to-

wards effective learning.

5. Conclusions

We propose a differentiable representation of convex prim-

itives that is amenable to learning. The inferred repre-

sentations are directly usable in graphics/physics pipelines;

see Figure 1. Our self-supervised technique provides more

detailed reconstructions than very recently proposed part-

based techniques (SIF [21] in Figure 9), and even consis-

tently outperforms the leading reconstruction technique on

multi-view input (OccNet [44] in Table 1). In the future

we would like to generalize the model to be able to pre-

dict a variable number of parts [68], understand symmetries

and modeling hierarchies [76], and include the modeling

of rotations [68]. Leveraging the invariance of hyperplane

ordering, it would be interesting to investigate the effect of

permutation-invariant encoders [63], or remove encoders al-

together in favor of auto-decoder architectures [49].
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