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Figure 1: Semantic Image Manipulation. Given an image, we predict a semantic scene graph. The user interacts with the

graph by making changes on the nodes and edges. Then, we generate a modified version of the source image, which respects

the constellations in the modified graph.

Abstract

Image manipulation can be considered a special case

of image generation where the image to be produced is a

modification of an existing image. Image generation and

manipulation have been, for the most part, tasks that operate

on raw pixels. However, the remarkable progress in learning

rich image and object representations has opened the way

for tasks such as text-to-image or layout-to-image generation

that are mainly driven by semantics. In our work, we address

the novel problem of image manipulation from scene graphs,

in which a user can edit images by merely applying changes

in the nodes or edges of a semantic graph that is generated

from the image. Our goal is to encode image information

in a given constellation and from there on generate new

constellations, such as replacing objects or even changing

relationships between objects, while respecting the semantics

and style from the original image. We introduce a spatio-

semantic scene graph network that does not require direct

supervision for constellation changes or image edits. This

makes it possible to train the system from existing real-world

datasets with no additional annotation effort.

∗The first two authors contributed equally to this work

Project page: https://he-dhamo.github.io/SIMSG/

1. Introduction

The goal of image understanding is to extract rich and

meaningful information from an image. Recent techniques

based on deep representations are continuously pushing

the boundaries of performance in recognizing objects [37]

and their relationships [27] or producing image descriptions

[18]. Understanding is also necessary for image synthesis,

e.g. to generate natural looking images from an abstract

semantic canvas [4, 44, 57] or even from language descrip-

tions [11, 24, 36, 53, 55]. High-level image manipulation,

however, has received less attention. Image manipulation

is still typically done at pixel level via photo editing soft-

ware and low-level tools such as in-painting. Instances of

higher-level manipulation are usually object-centric, such as

facial modifications or reenactment. A more abstract way of

manipulating an image from its semantics, which includes

objects, their relationships and attributes, could make image

editing easier with less manual effort from the user.

In this work, we present a method to perform semantic

editing of an image by modifying a scene graph, which is

a representation of the objects, attributes and interactions

in the image (Figure 1). As we show later, this formulation

allows the user to choose among different editing functions.

For example, instead of manually segmenting, deleting and

in-painting unwanted tourists in a holiday photo, the user
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can directly manipulate the scene graph and delete selected

<person> nodes. Similarly, graph nodes can be easily

replaced with different semantic categories, for example

replacing <clouds> with <sky>. It is also possible to

re-arrange the spatial composition of the image by swapping

people or object nodes on the image canvas. To the best of

our knowledge, this is the first approach to image editing

that also enables semantic relationship changes, for example

changing “a person walking in front of the sunset” to “a

person jogging in front of the sunset” to create a more scenic

image. The capability to reason and manipulate a scene

graph is not only useful for photo editing. The field of

robotics can also benefit from this kind of task, e.g. a robot

tasked to tidy up a room can — prior to acting — manipulate

the scene graph of the perceived scene by moving objects

to their designated spaces, changing their relationships and

attributes: “clothes lying on the floor” to “folded clothes on

a shelf ”, to obtain a realistic future view of the room.

Much previous work has focused either on generating a

scene graph from an image [25, 29] or an image from a graph

[1, 16]. Here we face challenges unique to the combined

problem. For example, if the user changes a relationship at-

tribute — e.g. <boy, sitting on, grass> to <boy,

standing on, grass>, the system needs to generate

an image that contains the same boy, thus preserving the

identity as well as the content of the rest of the scene. Col-

lecting a fully supervised data set, i.e. a data set of “before”

and “after” pairs together with the associated scene graph,

poses major challenges. As we discuss below, this is not ne-

cessary. It is in fact possible to learn how to modify images

using only training pairs of images and scenes graphs, which

is data already available.

In summary, we present a novel task; given an image,

we manipulate it using the respective scene graph. Our con-

tribution is a method to address this problem that does not

require full supervision, i.e. image pairs that contain scene

changes. Our approach can be seen as semi-automatic, since

the user does not need to manually edit the image but indir-

ectly interacts with it through the nodes and edges of the

graph. In this way, it is possible to make modifications with

respect to visual entities in the image and the way they in-

teract with each other, both spatially and semantically. Most

prominently, we achieve various types of edits with a single

model, including semantic relationship changes between ob-

jects. The resulting image preserves the original content, but

allows the user to flexibly change and/or integrate new or

modified content as desired.

2. Related Work

Conditional image generation The success of deep gen-

erative models [8, 20, 35, 42, 43] has significantly contrib-

uted to advances in (un)conditional image synthesis. Con-

ditional image generation methods model the conditional

distribution of images given some prior information. For

example, several practical tasks such as denoising or inpaint-

ing can be seen as generation from noisy or partial input.

Conditional models have been studied in literature for a

variety of use cases, conditioning the generation process

on image labels [28, 30], attributes [46], lower resolution

images [23], semantic segmentation maps [4, 44], natural

language descriptions [24, 36, 53, 55] or generally translat-

ing from one image domain to another using paired [13]

or unpaired data [60]. Most relevant to our approach are

methods that generate natural scenes from layout [11, 57] or

scene graphs [16].

Image manipulation Unconditional image synthesis is

still an open challenge when it comes to complex scenes.

Image manipulation, on the other hand, focuses on image

parts in a more constrained way that allows to generate better

quality samples. Image manipulation based on semantics

has been mostly restricted to object-centric scenarios; for ex-

ample, editing faces automatically using attributes [5, 22, 56]

or via manual edits with a paintbrush and scribbles [3, 59].

Also related is image composition which also makes use of

individual objects [2] and faces the challenge of decoupling

appearance and geometry [52].

On the level of scenes, the most common examples based

on generative models are inpainting [33], in particular condi-

tioned on semantics [49] or user-specified contents [15, 58],

as well as object removal [7, 40]. Image generation from se-

mantics also supports interactive editing by applying changes

to the semantic map [44]. Differently, we follow a semi-

automatic approach to address all these scenarios using a

single general-purpose model and incorporating edits by

means of a scene graph. On another line, Hu et al. [12] pro-

pose a hand-crafted image editing approach, which uses

graphs to carry out library-driven replacement of image

patches. While [12] focuses on copy-paste tasks, our frame-

work allows for high-level semantic edits and deals with ob-

ject deformations. Our method is trained by reconstructing

the input image so it does not require paired data. A similar

idea is explored by Yao et al. [48] for 3D-aware modification

of a scene (i.e. 3D object pose) by disentangling semantics

and geometry. However, this approach is limited to a specific

type of scenes (streets) and target objects (cars) and requires

CAD models. Instead, our approach addresses semantic

changes of objects and their relationships in natural scenes,

which is made possible using scene graphs.

Images and scene graphs Scene graphs provide abstract,

structured representations of image content. Johnson et

al. [19] first defined a scene graph as a directed graph rep-

resentation that contains objects and their attributes and

relationships, i.e. how they interact with each other. Fol-

lowing this graph representation paradigm, different meth-
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Figure 2: Overview of the training strategy. Top: Given an image, we predict its scene graph and reconstruct the input from

a masked representation. a) The graph nodes oi (blue) are enriched with bounding boxes xi (green) and visual features φi
(violet) from cropped objects. We randomly mask boxes xi, object visual features φi and the source image; the model then

reconstructs the same graph and image utilizing the remaining information. b) The per-node feature vectors are projected to

2D space, using the bounding box predictions from SGN.

ods have been proposed to generate scene graphs from im-

ages [9, 25, 26, 29, 34, 45, 47, 51]. By definition, scene

graph generation mainly relies on successfully detecting

visual entities in the image (object detection) [37] and re-

cognizing how these entities interact with each other (visual

relationship detection) [6, 14, 27, 38, 50].

The reverse and under-constrained problem is to generate

an image from its scene graph, which has been recently ad-

dressed by Johnson et al. using a graph convolution network

(GCN) to decode the graph into a layout and consecutively

translate it into image [16]. We build on this architecture

and propose additional mechanisms for information transfer

from an image that act as conditioning for the system, when

the goal is image editing and not free-form generation. Also

related is image generation directly from layouts [57]. Very

recent related work focuses on interactive image generation

from scene graphs [1] or layout [41]. These methods dif-

fer from ours in two aspects. First, while [1, 41] process

a graph/layout to generate multiple variants of an image,

our method manipulates an existing image. Second, we

present complex semantic relationship editing, while they

use graphs with simplified spatial relations — e.g. relative

object positions such as left of or above in [1] — or

without relations at all, as is the case for the layout-only

approach in [41].

3. Method

The focus of this work is to perform semantic manipu-

lation of images without direct supervision for image edits,

i.e. without paired data of original and modified content.

Starting from an input image I , we generate its scene graph

G that serves as the means of interaction with a user. We

then generate a new image I ′ from the user-modified graph

representation G̃ and the original content of I . An overview

of the method is shown in Figure 1. Our method can be

split into three interconnected parts. The first step is scene

graph generation, where we encode the image contents in a

spatio-semantic scene graph, designed so that it can easily

be manipulated by a user. Second, during inference, the user

manipulates the scene graph by modifying object categor-

ies, locations or relations by directly acting on the nodes

and edges of the graph. Finally, the output image is gen-

erated from the modified graph. Figure 2 shows the three

components and how they are connected.

A particular challenge in this problem is the difficulty

in obtaining training data, i.e. matching pairs of source and

target images together with their corresponding scene graphs.

To overcome these limitations, we demonstrate a method that

learns the task by image reconstruction in an unsupervised

way. Due to readily available training data, graph prediction

instead is learned with full supervision.

3.1. Graph Generation

Generating a scene graph from an image is a well-

researched problem [25, 29, 45, 51] and amounts to describ-

ing the image with a directed graph G = (O,R) of objects

O (nodes) and their relations R (edges). We use a state-

of-the-art method for scene graph prediction (F-Net) [25]

and build on its output. Since the output of the system is

a generated image, our goal is to encode as much image
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information in the scene graph as possible — additional to

semantic relationships. We thus define objects as triplets

oi = (ci, φi, xi) ∈ O, where ci ∈ R
d is a d-dimensional,

learned embedding of the i-th object category and xi ∈ R
4

represents the four values defining the object’s bounding

box. φi ∈ R
n is a visual feature encoding of the object

which can be obtained from a convolutional neural network

(CNN) pre-trained for image classification. Analogously, for

a given relationship between two objects i and j, we learn

an embedding ρij of the relation class rij ∈ R.

One can also see this graph representation as an aug-

mentation of a simple graph—that only contains object and

predicate categories—with image features and spatial loca-

tions. Our graph contains sufficient information to preserve

the identity and appearance of objects even when the corres-

ponding locations and/or relationships are modified.

3.2. Spatio­semantic Scene Graph Network

At the heart of our method lies the spatio-semantic scene

graph network (SGN) that operates on the (user-) modi-

fied graph. The network learns a graph transformation that

allows information to flow between objects, along their re-

lationships. The task of the SGN is to learn robust object

representations that will be then used to reconstruct the im-

age. This is done by a series of convolutional operations on

the graph structure.

The graph convolutions are implemented by an operation

τe on edges of the graph

(α
(t+1)
ij , ρ

(t+1)
ij , β

(t+1)
ij ) = τe

(

ν
(t)
i , ρ

(t)
ij , ν

(t)
j

)

, (1)

with ν
(0)
i = oi, where t represents the layer of the SGN and

τe is implemented as a multi-layer perceptron (MLP). Since

nodes can appear in several edges, the new node feature

ν
(t+1)
i is computed by averaging the results from the edge-

wise transformation, followed by another projection τn

ν
(t+1)
i = τn

(

1

Ni

(

∑

j|(i,j)∈R

α
(t+1)
ij +

∑

k|(k,i)∈R

β
(t+1)
ki

)

)

(2)

where Ni represents the number of edges that start or end

in node i. After T graph convolutional layers, the last

layer predicts one latent representation per node, i.e. per

object. This output object representation consists of pre-

dicted bounding box coordinates x̂i ∈ R
4, a spatial binary

mask m̂i ∈ R
M×M and a node feature vector ψi ∈ R

s.

Predicting coordinates for each object is a form of recon-

struction, since object locations are known and are already

encoded in the input oi. As we show later, this is needed

when modifying the graph, for example for a new node to

be added. The predicted object representation will be then

reassembled into the spatial configuration of an image, as

the scene layout.

3.3. Scene Layout

The next component is responsible for transforming the

graph-structured representations predicted by the SGN back

into a 2D spatial arrangement of features, which can then

be decoded into an image. To this end, we use the predicted

bounding box coordinates x̂i to project the masks m̂i in the

proper region of a 2D representation of the same resolution

as the input image. We concatenate the original visual feature

φi with the node features ψi to obtain a final node feature.

The projected mask region is then filled with the respective

features, while the remaining area is padded with zeros. This

process is repeated for all objects, resulting in |O| tensors of

dimensions (n+s)×H×W , which are aggregated through

summation into a single layout for the image. The output

of this component is an intermediate representation of the

scene, which is rich enough to reconstruct an image.

3.4. Image Synthesis

The last part of the pipeline is the task of synthesizing

a target image from the information in the source image I

and the layout prediction. For this task, we employ two dif-

ferent decoder architectures, cascaded refinement networks

(CRN) [4] (similar to [16]), as well as SPADE [32], origin-

ally proposed for image synthesis from a semantic segment-

ation map. We condition the image synthesis on the source

image by concatenating the predicted layout with extracted

low-level features from the source image. In practice, prior

to feature extraction, regions of I are occluded using a mech-

anism explained in Section 3.5. We fill these regions with

Gaussian noise to introduce stochasticity for the generator.

3.5. Training

Training the model with full supervision would require

annotations in the form of quadruplets (I,G,G′, I ′) where

an image I is annotated with a scene graph G, a modified

graph G′ and the resulting modified image I ′. Since ac-

quiring ground truth (I ′,G′) is difficult, our goal is to train

a model supervised only by (I,G) through reconstruction.

Thus, we generate annotation quadruplets (Ĩ , G̃,G, I) using

the available data (I,G) as the target supervision and simu-

late (Ĩ , G̃) via a random masking procedure that operates on

object instances. During training, an object’s visual features

φi are masked with probability pφ. Independently, we mask

the bounding box xi with probability px. When “hiding” in-

put information, image regions corresponding to the hidden

nodes are also occluded prior to feature extraction.

Effectively, this masking mechanism transforms the edit-

ing task into a reconstruction problem. At run time, a real

user can directly edit the nodes or edges of the scene graph.

Given the edit, the image regions subject to modification are

occluded, and the network, having learned to reconstruct the

image from the scene graph, will create a plausible modified

image. Consider the example of a person riding a horse
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(Figure 1). The user wishes to apply a change in the way the

two entities interact, modifying the predicate from riding

to beside. Since we expect the spatial arrangement to

change, we also discard the localization xi of these entities

in the original image; their new positions x̂i will be estim-

ated given the layout of the rest of the scene (e.g. grass, trees).

To encourage this change, the system should automatically

mask the original image regions related to the target objects.

However, to ensure that the visual identities of horse and

rider are preserved through the change, their visual feature

encodings φi must remain unchanged.

We use a combination of loss terms to train the model.

The bounding box prediction is trained by minimizing theL1-

norm: Lb = ‖xi − x̂i‖
1
1, with weighting term λb. The image

generation task is learned by adversarial training with two

discriminators. A local discriminator Dobj operates on each

reconstructed region to ensure that the generated patches

look realistic. We also apply an auxiliary classifier loss [31]

to ensure that Dobj is able to classify the generated objects

into their real labels. A global discriminator Dglobal encour-

ages consistency over the entire image. Finally, we apply a

photometric loss term Lr = ‖I − I ′‖1 to enforce the image

content to stay the same in regions that are not subject to

change. The total synthesis loss is then

Lsynthesis = Lr + λg min
G

max
D

LGAN,global

+ λo min
G

max
D

LGAN,obj + λaLaux,obj,
(3)

where λg , λo, λa are weighting factors and

LGAN = E
q∼preal

logD(q) + E
q∼pfake

log(1−D(q)), (4)

where preal corresponds to the ground truth distribution (of

each object or the whole image) and pfake is the distribution

of generated (edited) images or objects, while q is the input

to the discriminator which is sampled from the real or fake

distributions. When using SPADE, we additionally employ

a perceptual loss term λpLp and a GAN feature loss term

λfLf following the original implementation [32]. Moreover,

Dglobal becomes a multi-scale discriminator.

Full implementation details regarding the architectures,

hyper-parameters and training can be found in the Appendix.

4. Experiments

We evaluate our method quantitatively and qualitatively

on two datasets, CLEVR [17] and Visual Genome [21], with

two different motivations. As CLEVR is a synthetic dataset,

obtaining ground truth pairs for image editing is possible,

which allows quantitative evaluation of our method. On the

other hand, experiments on Visual Genome (VG) show the

performance of our method in a real, much less constrained,

scenario. In absence of source-target image pairs in VG, we

Method
All pixels RoI only

MAE ↓ SSIM ↑ LPIPS ↓ FID ↓ MAE ↓ SSIM ↑

Full-sup 6.75 97.07 0.035 3.35 9.34 93.49

Ours (CRN) 7.83 96.16 0.036 6.32 10.09 93.54

Ours (SPADE) 5.47 96.51 0.035 4.73 7.22 94.98

Table 1: Image manipulation on CLEVR. We compare our

method with a fully-supervised baseline. Detailed results for

all modification types are reported in the Appendix.

evaluate an image in-painting proxy task and compare to a

baseline based on sg2im [16]. We report results for standard

image reconstruction metrics: the structural similarity index

(SSIM), mean absolute error (MAE) and perceptual error

(LPIPS) [54]. To assess the image generation quality and

diversity, we report the commonly used inception score (IS)

[39] and the FID [10] metric.

Conditional sg2im baseline (Cond-sg2im). We modify

the model of [16] to serve as a baseline. Since their method

generates images directly from scene graphs without a source

image, we condition their image synthesis network on the

input image by concatenating it with the layout component

(instead of noise in the original work). To be comparable to

our approach, we mask image regions corresponding to the

target objects prior to concatenation.

Modification types. Since image editing using scene

graphs is a novel task, we define several modification modes,

depending on how the user interacts with the graph. Ob-

ject removal: A node is removed entirely from the graph

together with all the edges that connect this object with oth-

ers. The source image region corresponding to the object

is occluded. Object replacement: A node is assigned to a

different semantic category. We do not remove the full node;

however, the visual encoding φi of the original object is set

to zero, as it does not describe the novel object. The location

of the original entity is used to keep the new object in place,

while size comes from the bounding box estimated from

the SGN, to fit the new category. Relationship change:

This operation usually involves re-positioning of entities.

The goal is to keep the subject and object but change their

interaction, e.g. <sitting> to <standing>. Both the

original and novel appearance image regions are occluded, to

enable background in-painting and target object generation.

The visual encodings φi are used to condition the SGN and

maintain the visual identities of objects on re-appearance.

4.1. Synthetic Data

We use the CLEVR framework [17] to generate a dataset

(for details please see the Appendix) of image and scene
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blue sphere                   red cylinder

source editedtarget source edited source edited

red sphere                      cyan cube

right of                       front of

front of                        behind

a) relationship change b) object removal c) attribute change d) object addition

source edited

brown sphere  

red sphere  

Figure 3: Image manipulation on CLEVR We compare different changes in the scene including changing the relationship

between two objects, node removal and changing a node (corresponding to attribute changing).

graph editing pairs (I,G,G′, I ′), to evaluate our method

with exact ground truth.

We train our model without making use of image pairs and

compare our approach to a fully-supervised setting. When

training with full supervision the complete source image and

target graph are given to the model and the model is trained

by minimizing the L1 loss to the ground truth target image

instead of the proposed masking scheme.

Table 1 reports the mean SSIM, MAE, LPIPS and FID

on CLEVR for the manipulation task (replacement, removal,

relationship change and addition). Our method performs

better or on par with the fully-supervised setting, on the

reconstruction metrics, which shows the capability of syn-

thesizing meaningful changes. The FID results suggest that

additional supervision for pairs, if available, would lead to

improvement in the visual quality. Figure 3 shows qualitat-

ive results of our model on CLEVR. At test time, we apply

changes to the scene graph in four different modes: chan-

ging relationships, removing an object, adding an object or

changing its identity. We highlight the modification with a

bounding box drawn around the selected object.

4.2. Real Images

We evaluate our method on Visual Genome [21] to show

its performance on natural images. Since there is no ground

truth for modifications, we formulate the quantitative eval-

uation as image reconstruction. In this case, objects are oc-

cluded from the original image and we measure the quality

of the reconstruction. The qualitative results better illustrate

the full potential of our method.

Feature encoding. First, we quantify the role of the visual

feature φi in encoding visual appearance. For a given im-

age and its graph, we use all the associated object locations

xi and visual features (w/ φi) to condition the SGN. How-

ever, the region of the conditioning image corresponding to

a candidate node is masked. The task can be interpreted as

conditional in-painting. We test our approach in two scen-

co
nd

iti
on

al
sg

2i
m

ou
rs

 C
RN

gt

Figure 4: Visual feature encoding. Comparison between

the baseline (top) and our method (center). The scene graph

remains unchanged; an object in the image is occluded, while

φi and xi are active. Our latent features φi preserve appear-

ance when the objects are masked from the image.

arios; using ground truth graphs (GT) and graphs predicted

from the input images (P). We evaluate over all objects in

the test set and report the results in Table 2, measuring the

reconstruction error a) over all pixels and b) in the target

area only (RoI). We compare to the same model without

using visual features (w/o φi) but only the object category

to condition the SGN. Naturally, in all cases, including the

missing region’s visual features improves the reconstruction

metrics (MAE, SSIM, LPIPS). In contrast, inception score

and FID remain similar, as these metrics do not consider

similarity between direct corresponding pairs of generated

and ground truth images. From Table 2 one can observe

that while both decoders perform similarly in reconstruction

metrics (CRN is slightly better), SPADE dominates for the

FID and inception score, indicating higher visual quality.

To evaluate our method in a fully generative setting, we

mask the whole image and only use the encoded features

φi for each object. We compare against the state of the art

in interactive scene generation (ISG) [1], evaluated in the

same setting. Since our main focus is on semantically rich

relations, we trained [1] on Visual Genome, utilizing their

publicly available code. Table 2 shows comparable recon-
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Method Decoder
All pixels RoI only

MAE ↓ SSIM ↑ LPIPS ↓ FID ↓ IS ↑ MAE ↓ SSIM ↑

ISG [1] (Generative, GT) Pix2pixHD 46.44 28.10 0.32 58.73 6.64±0.07 - -

Ours (Generative, GT) CRN 41.57 33.9 0.34 89.55 6.03±0.17 - -

Ours (Generative, GT) SPADE 41.88 34.89 0.27 44.27 7.86±0.49 - -

Cond-sg2im [16] (GT) CRN 14.25 84.42 0.081 13.40 11.14±0.80 29.05 52.51

Ours (GT) w/o φi CRN 9.83 86.52 0.073 10.62 11.45±0.61 27.16 52.01

Ours (GT) w/ φi CRN 7.43 88.29 0.058 11.03 11.22±0.52 20.37 60.03

Ours (GT) w/o φi SPADE 10.36 86.67 0.069 8.09 12.05±0.80 27.10 54.38

Ours (GT) w/ φi SPADE 8.53 87.57 0.051 7.54 12.07±0.97 21.56 58.60

Ours (P) w/o φi CRN 9.24 87.01 0.075 18.09 10.67±0.43 29.08 48.62

Ours (P) w/ φi CRN 7.62 88.31 0.063 19.49 10.18±0.27 22.89 55.07

Ours (P) w/o φi SPADE 13.16 84.61 0.083 16.12 10.45±0.15 32.24 47.25

Ours (P) w/ φi SPADE 13.82 83.98 0.077 16.69 10.61±0.37 28.82 49.34

Table 2: Image reconstruction on Visual Genome. We report the results using ground truth scene graphs (GT) and predicted

scene graphs (P). (Generative) indicates experiments in full generative setting, i.e. the whole input image is masked out.

"sand" to "ocean"

a) object replacement

"riding" to "next to"

"sitting in" to "standing on"

b) relationship change
"near" to "on"

source ours CRNoriginal graph

c) object removal
remove "building"remove "bird"remove "tree"

ours SPADEsource ours CRNoriginal graph ours SPADE

"sheep" to "elephant"

"car" to "motorcycle"

Figure 5: Image manipulation Given the source image and the GT scene graph, we semantically edit the image by changing

the graph. a) object replacement, b) relationship changes, c) object removal. Green box indicates the changed node or edge.

struction errors for the generative task, while we clearly

outperform [1] when a source image is given. This motivates

our choice of directly manipulating an existing image, rather

than fusing different node features, as parts of the image
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� keep both query image query maskmask �
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Figure 6: Ablation of the method components We present all the different combinations in which the method operates - i.e.

masked vs. active bounding boxes xi and/or visual features φi. When using a query image, we extract visual features of the

object annotated with a red bounding box and update the node of an object of the same category in the original image.

need to be preserved. Inception score and FID mostly de-

pend on the decoder architecture, where SPADE outperforms

Pix2pixHD and CRN.

Figure 4 illustrates qualitative examples. It can be seen

that both our method and the cond-sg2im baseline, generate

plausible object categories and shapes. However, with our

approach, visual features from the original image can be suc-

cessfully transferred to the output. In practice, this property

is particularly useful when we want to re-position objects in

the image without changing their identity.

Main task: image editing. We illustrate visual results in

three different settings in Figure 5 — object removal, replace-

ment and relationship changes. All image modifications are

made by the user at test time, by changing nodes or edges

in the graph. We show diverse replacements (a), from small

objects to background components. The novel entity adapts

to the image context, e.g. the ocean (second row) does not oc-

clude the person, which we would expect in standard image

inpainting. A more challenging scenario is to change the way

two objects interact, which typically involves re-positioning.

Figure 5 (b) shows that the model can differentiate between

semantic concepts, such as sitting vs. standing and

riding vs. next to. The objects are rearranged mean-

ingfully according to the change in relationship type. In

the case of object removal (c), the method performs well

for backgrounds with uniform texture, but can also handle

more complex structures, such as the background in the first

example. Interestingly, when the building on the rightmost

example is removed, the remaining sign is improvised stand-

ing in the bush. More results are shown in the Appendix.

Component ablation. In Figure 6 we qualitatively ablate

the components of our method. For a certain image, we mask

out a certain object instance which we aim to reconstruct.

We test the method under all the possible combinations of

masking bounding boxes xi and/or visual features φi from

the augmented graph representation. Since it might be of

interest to in-paint the region with a different object (chan-

ging either the category or style), we also experiment with

an additional setting, in which external visual features φ are

extracted from an image of the query object. Intuitively,

masking the box properties leads to a small shift in the loc-

ation and size of the reconstructed object, while masking

the object features can result in an object with a different

identity than that in the original image.

5. Conclusion

We have presented a novel task — semantic image ma-

nipulation using scene graphs — and have shown a novel

approach to tackle the learning problem in a way that does

not require training pairs of original and modified image con-

tent. The resulting system provides a way to change both the

content and relationships among scene entities by directly

interacting with the nodes and edges of the scene graph. We

have shown that the resulting system is competitive with

baselines built from existing image synthesis methods, and

qualitatively provides compelling evidence for its ability to

support modification of real-world images. Future work will

be devoted to further enhancing these results, and applying

them to both interactive editing and robotics applications.
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