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Abstract

Deep neural networks are vulnerable to adversarial ex-

amples, which becomes one of the most important research

problems in the development of deep learning. While a lot of

efforts have been made in recent years, it is of great signif-

icance to perform correct and complete evaluations of the

adversarial attack and defense algorithms. In this paper, we

establish a comprehensive, rigorous, and coherent bench-

mark to evaluate adversarial robustness on image classifi-

cation tasks. After briefly reviewing plenty of representative

attack and defense methods, we perform large-scale exper-

iments with two robustness curves as the fair-minded eval-

uation criteria to fully understand the performance of these

methods. Based on the evaluation results, we draw several

important findings that can provide insights for future re-

search, including: 1) The relative robustness between mod-

els can change across different attack configurations, thus it

is encouraged to adopt the robustness curves to evaluate ad-

versarial robustness; 2) As one of the most effective defense

techniques, adversarial training can generalize across dif-

ferent threat models; 3) Randomization-based defenses are

more robust to query-based black-box attacks.

1. Introduction

Deep learning (DL) models are vulnerable to adversarial

examples [53, 19], which are maliciously generated to in-

duce erroneous predictions. As DL models have been inte-

grated into various security-sensitive applications (e.g., au-

tonomous driving, healthcare, and finance), the study of the

adversarial robustness issue has attracted increasing atten-

tion with an enormous number of adversarial attack and de-

fense methods proposed. Therefore, it is crucial to conduct

correct and rigorous evaluations of these methods for under-

standing their pros and cons, comparing their performance,

and providing insights for building new methods [5].

The research on adversarial robustness is faced with an

“arms race” between attacks and defenses, i.e., a defense

∗Hang Su and Jun Zhu are corresponding authors.

method proposed to prevent the existing attacks was soon

evaded by new attacks, and vice versa [6, 7, 22, 1, 55, 65].

For instance, defensive distillation [41] was proposed to im-

prove adversarial robustness, but was later shown to be inef-

fective against a strong attack [7]. Many methods were in-

troduced to build robust models by causing obfuscated gra-

dients, which can be defeated by the adaptive ones [1, 55].

As a result, it is particularly challenging to understand their

effects, identify the real progress, and advance the field.

Moreover, the current attacks and defenses are often

evaluated incompletely. First, most defenses are only tested

against a small set of attacks under limited threat models,

and many attacks are evaluated on a few models or defenses.

Second, the robustness evaluation metrics are too simple to

show the performance of these methods. The accuracy of

a defense against an attack for a given perturbation bud-

get [29] and the minimum distance of the adversarial pertur-

bation [4] are used as the primary evaluation metrics, which

are often insufficient to totally characterize the behaviour

of the attacks and defenses. Consequently, the incomplete

evaluation cannot provide a comprehensive understanding

of the strengths and limitations of these methods.

In this paper, we establish a comprehensive, rigorous,

and coherent benchmark to evaluate adversarial robustness,

which can provide a detailed understanding of the effects

of the existing methods under different scenarios, with a

hope to facilitate future research. In particular, we focus on

the robustness of image classifiers under the ℓp norm threat

models where a large body of works have been devoted. We

incorporate a lot of typical and state-of-the-art attack and

defense methods for robustness evaluation, including 15 at-

tack methods and 16 defense models—8 on CIFAR-10 [27]

and 8 on ImageNet [46]. To fully demonstrate the perfor-

mance of these methods, we adopt two complementary ro-

bustness curves as the major evaluation metrics to present

the results. Then, we carry out large-scale experiments on

the cross evaluation of the attack and defense methods un-

der complete threat models, including 1) untargeted and tar-

geted attacks; 2) ℓ∞ and ℓ2 attacks; 3) white-box, transfer-

based, score-based, and decision-based attacks.
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By analyzing the quantitative results, we have some im-

portant findings. First, the relative robustness between de-

fenses against an attack can be different under varying per-

turbation budgets or attack iterations. Thus it is hard to con-

clude that a defense is more robust than another against an

attack by using a specific configuration. However, it is com-

mon in previous works. Second, although various defense

techniques have been proposed, the most robust defenses

are still the adversarially trained models. Their robustness

can also generalize to other threat models, under which they

are not trained to be robust. Third, defenses based on ran-

domization are generally more robust to query-based black-

box attacks. More discussions can be found in Sec. 5.3.

We develop a new adversarial robustness platform called

RealSafe1 to conduct all evaluation experiments, since the

existing platforms (e.g., CleverHans [39] and Foolbox [44])

cannot fully support our evaluations (see Appendix A). We

hope that our platform could continuously incorporate and

evaluate more methods, and be helpful for future works.

2. Threat Models

Precisely defining threat models is fundamental to per-

form adversarial robustness evaluations. According to [5],

a threat model specifies the adversary’s goals, capabilities,

and knowledge under which an attack is performed and a

defense is built to be robust. We first define the notations

and then illustrate the three aspects of a threat model.

A classifier can be denoted as C(x) : X → Y , where

x ∈ X ⊂ R
d is the input, and Y = {1, 2, ..., L} with L

being the number of classes. Let y denote the ground-truth

label of x, and x
adv denote an adversarial example for x.

2.1. Adversary’s Goals

An adversary can have different goals of generating ad-

versarial examples. We study the untargeted and targeted

adversarial examples in this paper. An untargeted adversar-

ial example aims to cause misclassification of the classifier,

as C(xadv) 6= y. A targeted one is crafted to be misclassi-

fied as the adversary-desired target class by the classifier, as

C(xadv) = y∗, where y∗ is the target class.

2.2. Adversary’s Capabilities

As adversarial examples are usually assumed to be indis-

tinguishable from the corresponding original ones to human

eyes [53, 19], the adversary can only make small changes

to the inputs. In this paper, we study the well-defined and

widely used ℓp norm threat models, although there also exist

other threat models [58, 51, 18]. Under the ℓp norm threat

models, the adversary is allowed to add a small perturbation

measured by the ℓp norm to the original input. Specifically,

we consider the ℓ∞ and ℓ2 norms.

1Code released at: https://github.com/thu-ml/realsafe.

To achieve the adversary’s goal, two strategies could be

adopted to craft adversarial examples with small perturba-

tions. The first seeks to craft an adversarial example x
adv

that satisfies ‖xadv − x‖p ≤ ǫ, where ǫ is the perturbation

budget, while misleads the model. This can be achieved by

solving a constrained optimization problem. For instance,

the adversary can get an untargeted adversarial example by

maximizing a loss function J (e.g., the cross-entropy loss)

in the restricted region as

x
adv = argmax

x
′:‖x′−x‖p≤ǫ

J (x′, y). (1)

We call it the adversarial example with a constrained per-

turbation. The second strategy is generating an adversarial

example by finding the minimum perturbation as

x
adv = argmin

x
′:x′is adversarial

‖x′ − x‖p. (2)

We call it the adversarial example with an optimized pertur-

bation. However, it is usually intractable to solve Eq. (1) or

Eq. (2) exactly, and thus various attack methods have been

proposed to get an approximate solution.

2.3. Adversary’s Knowledge

An adversary can have different levels of knowledge of

the target model, from white-box access to the model archi-

tectures and parameters, to black-box access to the training

data or model predictions. Based on the different knowl-

edge of the model, we consider four attack scenarios, in-

cluding white-box attacks, transfer-based, score-based, and

decision-based black-box attacks.

White-box attacks rely on detailed information of the tar-

get model, including architecture, parameters, and gradient

of the loss w.r.t. the input. For defenses, the adversary can

design adaptive attacks by considering the specific defense

mechanisms. Transfer-based black-box attacks are based on

the adversarial transferability [40], which assume the avail-

ability of training data. It is used to train a substitute model

from which the adversarial examples are generated. Score-

based black-box attacks can only acquire the output prob-

abilities by querying the target model. And decision-based

black-box attacks solely rely on the predicted classes of the

queries. Score-based and decision-based attacks are also re-

stricted by a limited number of queries to the target model.

3. Attacks and Defenses

In this section, we summarize the typical adversarial at-

tack and defense methods.

3.1. Attack Methods

White-box Attacks: Most white-box attacks craft ad-

versarial examples based on the input gradient. For solv-

ing Eq. (1), the fast gradient sign method (FGSM) [19] lin-

earizes the loss function in the input space and generates
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an adversarial example by an one-step update. The basic

iterative method (BIM) [28] extends FGSM by iteratively

taking multiple small gradient steps. Similar to BIM, the

projected gradient descent method (PGD) [34] acts as a uni-

versal first-order adversary with random starts. For solving

Eq. (2), DeepFool [35] has been proposed to generate an

adversarial example with the minimum perturbation. The

Carlini & Wagner’s method (C&W) [7] takes a Lagrangian

form and adopts Adam [26] for optimization. However,

some defenses can be robust against these gradient-based

attacks by causing obfuscated gradients [1]. To circumvent

them, the adversary can use BPDA [1] to provide an ap-

proximate gradient when the true gradient is unavailable or

useless, or EOT [2] when the gradient is random.

Transfer-based Black-box Attacks: Transfer-based at-

tacks craft adversarial examples against a substitute model,

which are probable to fool black-box models based on the

transferability. Several methods have been proposed to im-

prove the transferability. The momentum iterative method

(MIM) [14] integrates a momentum term into BIM to stabi-

lize the update direction during the attack iterations. The di-

verse inputs method (DIM) [62] applies the gradient of the

randomly resized and padded input for adversarial exam-

ple generation. The translation-invariant method (TI) [15]

further improves the transferability for defense models.

Score-based Black-box Attacks: Under this setting, al-

though the white-box access to the model gradient is un-

available, it can be estimated by the gradient-free methods

through queries. ZOO [8] estimates the gradient at each co-

ordinate by finite differences and adopts C&W for attacks

based on the estimated gradient. NES [24] and SPSA [55]

can give the full gradient estimation based on drawing ran-

dom samples and acquiring the corresponding loss values.

Prior-guided random gradient free method (P-RGF) [10]

estimates the gradient more accurately with a transfer-based

prior. NATTACK [30] does not estimate the gradient but

learns a Gaussian distribution centered around the input

such that a sample drawn from it is likely adversarial.

Decision-based Black-box Attacks: This setting is

more challenging since the model only provides discrete

hard-label predictions. The Boundary attack [3] is the first

method in this setting based on random walk on the deci-

sion boundary. An optimization-based method [9] formu-

lates this problem as a continuous optimization problem and

estimates the gradient to solve it. The evolutionary attack

method [16] is further proposed to improve the query effi-

ciency based on the evolution strategy.

3.2. Defenses

Due to the threat of adversarial examples, extensive re-

search has been conducted on building robust models to de-

fend against adversarial attacks. In this paper, we roughly

classify the defense techniques into five categories, includ-

ing robust training, input transformation, randomization,

model ensemble, and certified defenses. Note that these de-

fense categories are not exclusive, i.e., a defense can belong

to many categories. Below we introduce each category.

Robust Training: The basic principle of robust training

is to make the classifier robust against small noises inter-

nally. One line of work is adversarial training [19, 54, 34,

25, 66], which augments the training data by adversarial ex-

amples. Another line of work trains robust models by other

losses or regularizations, including variants on the network

Lipschitz constant [11], input gradients [23, 45], perturba-

tion norm [64], or the Max-Mahalanobis center loss [36].

Input Transformation: Several defenses transform the

inputs before feeding them to the classifier, including JPEG

compression [17], bit-depth reduction [63], total variance

minimization [20], autoencoder-based denoising [31], and

projecting adversarial examples onto the data distribution

through generative models [47, 50]. However, these de-

fenses can cause shattered gradients or vanishing/exploding

gradients [1], which can be evaded by adaptive attacks.

Randomization: The classifiers can be made random to

mitigate adversarial effects. The randomness can be added

to either the input [60, 38] or the model [13, 32]. The

randomness can also be modeled by Bayesian neural net-

works [33]. These methods partially rely on random gra-

dients to prevent adversarial attacks, and can be defeated

by attacks that take the expectation over the random gradi-

ents [22, 1].

Model Ensemble: An effective defense strategy in prac-

tice is to construct an ensemble of individual models [29].

Besides aggregating the output of each model in the ensem-

ble, some different ensemble strategies have been proposed.

Random self-ensemble [32] averages the predictions over

random noises injected to the model, which is equivalent

to ensemble an infinite number of noisy models. Pang et

al. [37] propose to promote the diversity among the predic-

tions of different models, and introduce an adaptive diver-

sity promoting regularizer to achieve this.

Certified Defenses: There are a lot of works [42, 49,

56, 57, 43, 59] on training certified defenses, which are

provably guaranteed to be robust against adversarial pertur-

bations under some threat models. Recently, certified de-

fenses [67, 12] can apply to ImageNet [46], showing the

scalability of this type of defenses.

4. Evaluation Methodology

With the growing number of adversarial attacks and de-

fenses being proposed, the correct and rigorous evaluation

of these methods becomes increasingly important to help

us better understand the strengths and limitations of these

methods. However, there still lacks a comprehensive under-

standing of the effects of these methods due to the incorrect

or incomplete evaluations. To address this issue and further
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CIFAR-10 [27] ImageNet [46]

Defense Model Category Intended Threat Acc. Defense Model Category Intended Threat Acc.

Res-56 [21] natural training - 92.6 Inc-v3 [52] natural training - 78.0

PGD-AT [34] robust training ℓ∞ (ǫ = 8/255) 87.3 Ens-AT [54] robust training ℓ∞ (ǫ = 16/255) 73.5

DeepDefense [64] robust training ℓ2 79.7 ALP [25] robust training ℓ∞ (ǫ = 16/255) 49.0

TRADES [66] robust training ℓ∞ (ǫ = 0.031) 84.9 FD [61] robust training ℓ∞ (ǫ = 16/255) 64.3

Convex [57] (certified) robust training ℓ∞ (ǫ = 2/255) 66.3 JPEG [17] input transformation General 77.3

JPEG [17] input transformation General 80.9 Bit-Red [63] input transformation General 61.8

RSE [32] rand. & ensemble ℓ2 86.1 R&P [60] (input) rand. General 77.0

ADP [37] ensemble General 94.1 RandMix [67] (certified input) rand. General 52.4

Table 1: We show the defense models that are incorporated into our benchmark for adversarial robustness evaluation. We also show the defense type, original intended threat

model (i.e., the threat model under which the defense is trained to be robust or evaluated in the original paper; ‘General’ means the defense can be used for any threat model), and

accuracy (%) on clean data of each method. The accuracy is re-calculated by ourselves. More details about their model architectures are shown in Appendix B.

advance the field, we establish a comprehensive, rigorous,

and coherent benchmark to evaluate adversarial robustness

empirically. We incorporate 15 attack methods and 16 de-

fense models on two image datasets in our benchmark for

robustness evaluation. We also adopt two complementary

robustness curves as the fair-minded evaluation metrics.

4.1. Evaluation Metrics

Given an attack method Aǫ,p that generates an adversar-

ial example x
adv = Aǫ,p(x) for an input x with perturba-

tion budget ǫ under the ℓp norm2, and a (defense) classifier

C defined in Sec. 2, the accuracy of the classifier against the

attack is defined as

Acc(C,Aǫ,p) =
1

N

N
∑

i=1

1
(

C(Aǫ,p(xi)) = yi
)

,

where {xi, yi}Ni=1
is the test set, 1(·) is the indicator func-

tion. The attack success rate of an untargeted attack on the

classifier is defined as

Asr(Aǫ,p, C) =
1

M

N
∑

i=1

1
(

C(xi) = yi∧C(Aǫ,p(xi)) 6= yi
)

,

where M =
∑N

i=1
1
(

C(xi) = yi
)

, while the attack success

rate of a targeted attack is defined as

Asr(Aǫ,p, C) =
1

N

N
∑

i=1

1
(

C(Aǫ,p(xi)) = y∗i
)

.

where y∗i is the target class corresponding to xi.

The previous methods usually report the point-wise ac-

curacy or attack success rate for some chosen perturbation

budgets ǫ, which may not reflect their behaviour totally. In

this paper, we adopt two complementary robustness curves

to clearly and thoroughly show the robustness and resis-

tance of the classifier against the attack, as well as the ef-

fectiveness and efficiency of the attack on the classifier.

The first one is the accuracy (attack success rate) vs. per-

turbation budget curve, which can give a global understand-

ing of the robustness of the classifier and the effectiveness

2For attacks that find minimum perturbations, e.g., DeepFool, C&W,

we let Aǫ,p(x) = x if the ℓp norm of the perturbation is larger than ǫ.

Attack Method Knowledge Goals Capability Distance

FGSM [19] white & transfer un. & tar. constrained ℓ∞, ℓ2
BIM [28] white & transfer un. & tar. constrained ℓ∞, ℓ2
MIM [14] white & transfer un. & tar. constrained ℓ∞, ℓ2

DeepFool [35] white un. optimized ℓ∞, ℓ2
C&W [7] white un. & tar. optimized ℓ2
DIM [62] transfer un. & tar. constrained ℓ∞, ℓ2
ZOO [8] score un. & tar. optimized ℓ2
NES [24] score un. & tar. constrained ℓ∞, ℓ2

SPSA [55] score un. & tar. constrained ℓ∞, ℓ2
NATTACK [30] score un. & tar. constrained ℓ∞, ℓ2

Boundary [3] decision un. & tar. optimized ℓ2
Evolutionary [16] decision un. & tar. optimized ℓ2

Table 2: We show the attack methods that are implemented in our benchmark for ad-

versarial robustness evaluation. We also show the adversary’s knowledge (white-box,

transfer-based, score-based, or decision-based), goals (‘un.’ stands for untargeted;

‘tar.’ stands for targeted), capability (constrained or optimized perturbations), and

distance metrics of each attack method.

of the attack. To generate such a curve, we need to calculate

the accuracy or attack success rate for all values of ǫ. This

can be efficiently done for attacks that find the minimum

perturbations, by counting the number of the adversarial ex-

amples, the ℓp norm of whose perturbations is smaller than

each ǫ. For attacks that craft adversarial examples with con-

strained perturbations, we perform a binary search on ǫ to

find its minimum value that enables the generated adversar-

ial example to fulfill the adversary’s goal.

The second curve is the accuracy (attack success rate)

vs. attack strength curve, where the attack strength is de-

fined as the number of iterations or model queries based on

different attack methods. This curve can show the efficiency

of the attack, as well as the resistance of the classifier to the

attack, e.g., a defense whose accuracy drops to zero against

an attack with 100 iterations is considered to be more resis-

tant to this attack than another defense that is totally broken

by the same attack with 10 iterations, although the worst-

case accuracy of both models is zero.

4.2. Evaluated Datasets and Algorithms

Datasets: We use the CIFAR-10 [27] and ImageNet [46]

datasets to perform adversarial robustness evaluation in this

paper. We use the test set containing 10, 000 images of

CIFAR-10, and randomly choose 1, 000 images from the

ImageNet validation set for evaluation. For each image, we

select a target class uniformly over all other classes except
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Attack Res-56 PGD-AT DeepDefense TRADES Convex JPEG RSE ADP

White

FGSM 0.005/21.6% 0.039/56.0% 0.001/9.2% 0.047/60.9% 0.017/36.6% 0.012/31.2% 0.020/29.0% 0.037/56.0%
BIM 0.002/0.0% 0.030/48.3% 0.001/0.0% 0.037/56.8% 0.016/34.3% 0.008/3.2% 0.018/23.5% 0.008/12.2%
MIM 0.003/0.0% 0.032/50.9% 0.001/0.0% 0.040/58.1% 0.016/34.9% 0.008/6.1% 0.019/25.1% 0.010/16.7%

DeepFool 0.003/0.0% 0.040/56.5% 0.001/0.0% 0.047/60.6% 0.015/32.9% 0.007/3.1% 0.021/35.9% 0.016/28.7%

Transfer

FGSM 0.067/72.9% 0.067/71.3% 0.048/62.1% 0.087/73.6% 0.050/57.5% 0.051/62.8% 0.048/62.0% 0.066/73.4%
BIM 0.049/70.3% 0.055/70.2% 0.041/58.8% 0.069/72.2% 0.044/56.7% 0.039/58.9% 0.041/60.0% 0.048/71.4%
MIM 0.052/71.5% 0.056/70.4% 0.041/59.4% 0.067/72.2% 0.045/56.6% 0.041/59.9% 0.043/59.8% 0.050/70.4%
DIM 0.052/73.3% 0.056/70.0% 0.043/58.8% 0.063/70.5% 0.044/55.3% 0.043/61.1% 0.043/60.2% 0.051/73.4%

Score

NES 0.004/0.0% 0.048/65.5% 0.002/0.0% 0.055/66.7% 0.025/44.0% 0.001/2.1% 0.293/79.7% 0.007/12.1%
SPSA 0.003/0.0% 0.042/61.1% 0.002/0.0% 0.049/64.9% 0.021/39.7% 0.001/2.1% 0.208/78.7% 0.007/9.7%

NATTACK 0.002/0.0% 0.030/48.6% 0.001/0.0% 0.037/55.8% 0.016/33.1% 0.000/0.0% 0.031/48.6% 0.005/2.4%

Table 3: The point-wise results of the 8 models on CIFAR-10 against untargeted attacks under the ℓ∞ norm given by the previous evaluation criteria. Each entry shows the

median ℓ∞ distance of the minimum adversarial perturbations across all samples (left) as well as the model’s accuracy for the fixed ǫ = 8/255 (right).

its true class at random, which is used for targeted attacks.

Defense Models: For fair evaluation, we test 16 repre-

sentative defense models whose original source codes and

pre-trained models are publicly available. These models

cover all defense categories and include the state-of-the-

art models in each category. On CIFAR-10, we choose

8 models—naturally trained ResNet-56 (Res-56) [21],

PGD-based adversarial training (PGD-AT) [34], DeepDe-

fense [64], TRADES [66], convex outer polytope (Con-

vex) [57], JPEG compression [17], random self-ensemble

(RSE) [32], and adaptive diversity promoting (ADP) [37].

On ImageNet, we also choose 8 models—naturally trained

Inception v3 (Inc-v3) [52], ensemble adversarial training

(Ens-AT) [54], adversarial logit pairing (ALP) [25], fea-

ture denoising (FD) [61], JPEG compression [17], bit-depth

reduction (Bit-Red) [63], random resizing and padding

(R&P) [60], and RandMix [67]. We use the natural mod-

els as the backbone classifiers for defenses based on in-

put transformation (e.g., JPEG). Table 1 shows the defense

details. The reason why we choose many weak defenses

based on randomization or input transformation, which are

already broken [1], is that we want to show their behaviour

under various threat models comprehensively, and we in-

deed draw some findings for these defenses.

Attacks: We implement 15 typical and widely used

attack methods in our benchmark, including 5 white-

box attacks—FGSM, BIM, MIM, DeepFool, and C&W, 4
transfer-based attacks—FGSM, BIM, MIM, and DIM, 4
score-based attacks—ZOO, NES, SPSA, and NATTACK,

and 2 decision-based attacks—Boundary and Evolutionary.

More details of these attacks are outlined in Table 2. Note

that 1) we do not evaluate PGD since PGD and BIM are

very similar and often result in similar performance; 2)

for transfer-based attacks, we craft adversarial examples by

those white-box methods on a substitute model; 3) for de-

fenses that rely on obfuscated gradients, we implement the

white-box attacks adaptively by replacing the true gradient

with an approximate one when it is unavailable or an ex-

pected one when it is random, such that the white-box at-

tacks can identify the worst-case robustness of the models.

Platform: All attacks and defenses are implemented on

a new adversarial robustness platform—RealSafe. We also

conduct the experiments based on the platform. Our plat-

form takes a modular implementation, which is easily ex-

tendable, as detailed in Appendix A. We acknowledge that

many works are not included in our current benchmark. We

hope that our platform could continuously incorporate and

evaluate more methods, and be helpful for future works.

5. Evaluation Results

We present the evaluation results on CIFAR-10 in

Sec. 5.1, and ImageNet in Sec. 5.2. Due to the space limita-

tion, we mainly provide the accuracy vs. perturbation bud-

get and attack strength curves of the defense models against

untargeted attacks under the ℓ∞ norm in this section, and

leave the full experimental results (including targeted at-

tacks under the ℓ∞ norm, untargeted and targeted attacks

under the ℓ2 norm, and attack success rate curves) in Ap-

pendix C. We also report some key findings in Sec. 5.3.

5.1. Evaluation Results on CIFAR­10

In this section, we show the accuracy of the 8 models on

CIFAR-10 against white-box, transfer-based, score-based,

and decision-based attacks . To get the accuracy vs. pertur-

bation budget curves, we fix the attack strength (i.e., attack

iterations or queries) for different budgets. To generate the

accuracy vs. attack strength curves, we use a fixed pertur-

bation budget as ǫ = 8/255 for ℓ∞ attacks and ǫ = 1.0 for

ℓ2 attacks, with images in [0, 1]. The detailed parameters of

each attack are provided in Appendix B. We let the attack

parameters be the same for evaluating all defense models,

and leave the study of attack parameters on robustness per-

formance in future works. To better show the superiority of

the robustness curves adopted in this paper compared with

the previous evaluation criteria (i.e., the median distance of

the minimum adversarial perturbations [4] and the accuracy

of a model against an attack for a given perturbation bud-

get [29]), we show the evaluation results based on the pre-

vious evaluation criteria in Table 3.

White-box Attacks: We show the accuracy vs. pertur-

bation budget curves of the 8 models against untargeted

FGSM, BIM, MIM, and DeepFool attacks under the ℓ∞
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Figure 1: The accuracy vs. perturbation budget curves of the 8 models on CIFAR-10 against untargeted white-box attacks under the ℓ∞ norm.

Figure 2: The accuracy vs. perturbation budget curves of the 8 models on CIFAR-10 against untargeted transfer-based attacks under the ℓ∞ norm.

Figure 3: The accuracy vs. perturbation budget curves of the 8 models on CIFAR-10 against untar-

geted score-based attacks under the ℓ∞ norm.
Figure 4: The accuracy vs. perturbation budget curves of the 8 models on

CIFAR-10 against untargeted decision-based attacks under the ℓ2 norm.

Figure 5: The accuracy vs. attack strength curves of the 8 models on CIFAR-10 against untargeted

score-based attacks under the ℓ∞ norm.

Figure 6: The accuracy vs. attack strength curves of the 8 models on

CIFAR-10 against untargeted decision-based attacks under the ℓ2 norm.

norm in Fig. 1 and leave the accuracy vs. attack strength

curves in Appendix C. The accuracy of the models drops

to zero against iterative attacks with the increasing pertur-

bation budget. Based on the results, we observe that un-

der white-box attacks, the adversarially trained models (i.e.,

PGD-AT, TRADES) are more robust than other models, be-

cause they are trained on the worst-case adversarial exam-

ples. We also observe that the relative robustness between

two models against an attack could be different under differ-

ent perturbation budgets or attack iterations (shown in Ap-

pendix C). For instance, the accuracy of TRADES is higher

than that of PGD-AT against white-box attacks when the

perturbation budget is small (e.g., ǫ = 0.05), but is lower

when it is large (e.g., ǫ = 0.15). This finding implies that

the comparison between the defense models at a chosen per-

turbation budget or attack iteration, which is common in

previous works, cannot fully demonstrate the performance

of a model. But the robustness curves adopted in this pa-

per can better show the global behaviour of these methods,

compared with the point-wise evaluation results in Table 3.

Transfer-based Black-box Attacks: We show the accu-

racy vs. perturbation budget curves of the 8 models against

untargeted transfer-based FGSM, BIM, MIM, and DIM at-

tacks under the ℓ∞ norm in Fig. 2, and leave the accuracy

vs. attack strength curves in Appendix C. In this experi-

ment, we choose TRADES as the substitute model to at-

tack the others, and use PGD-AT to attack TRADES, since

these two models demonstrate superior white-box robust-

ness compared with the other models, and thus the adver-

sarial examples generated on the other models can rarely

transfer to TRADES and PGD-AT. From the results, the ac-

curacy of the defenses also drops with the increasing per-
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Figure 7: The accuracy vs. perturbation budget curves of the 8 models on ImageNet against untargeted white-box attacks under the ℓ∞ norm.

Figure 8: The accuracy vs. perturbation budget curves of the 8 models on ImageNet against untargeted transfer-based attacks under the ℓ∞ norm.

turbation budget. We also observe that the recent attacks

(e.g., MIM, DIM) for improving the transferability do not

actually perform better than the baseline BIM method.

Score-based Black-box Attacks: We show the curves

of the accuracy vs. perturbation budget and accuracy vs.

attack strength (queries) of the 8 models against untargeted

score-based NES, SPSA, and NATTACK under the ℓ∞
norm in Fig. 3 and Fig. 5. We set the maximum number of

queries as 20, 000 in these attack methods. The accuracy of

the defenses also decreases along with the increasing pertur-

bation budget or the number of queries. NATTACK is more

effective as can be seen from the figures. From the results,

we notice that RSE is quite resistant to score-based attacks,

especially NES and SPSA. We think that the randomness of

the predictions given by RSE makes the estimated gradients

of NES and SPSA useless for attacks.

Decision-based Black-box Attacks: Since the decision-

based Boundary and Evolutionary attack methods can be

only used for ℓ2 attacks, we present the accuracy curves of

the 8 models against untargeted Boundary and Evolution-

ary attacks under the ℓ2 norm in Fig. 4 and Fig. 6. The

behaviour of the defenses is similar to that of the score-

based attacks. It can be observed that RSE is also resistant

to decision-based attacks compared with the other defenses

due to the randomness of the predictions.

5.2. Evaluation Results on ImageNet

We present the experimental results on ImageNet in this

section. We use the same settings with those on CIFAR-10

to get the evaluation curves. Since the input image size is

different for the ImageNet defenses, we adopt the normal-

ized ℓ2 distance defined as ℓ̄2(a) = ‖a‖2/
√
d as the measure-

ment for ℓ2 attacks, where d is the dimension of a vector a.

To get the accuracy (attack success rate) vs. attack strength

curves, we fix the perturbation budget as ǫ = 16/255 for

ℓ∞ attacks and ǫ =
√
0.001 for ℓ2 attacks.

White-box Attacks: We show the accuracy vs. pertur-

bation budget curves of the 8 models on ImageNet against

untargeted FGSM, BIM, and MIM under the ℓ∞ norm in

Fig. 7. We also leave the accuracy vs. attack strength curves

in Appendix C. We find that FD exhibits superior perfor-

mance over all other models. FD is also trained by the ad-

versarial training method in [34], demonstrating the effec-

tiveness of PGD-based adversarial training on ImageNet.

Transfer-based Black-box Attacks: We use a ResNet-

152 model [21] as the substitute model. The accuracy vs.

perturbation budget curves of the defenses against untar-

geted transfer-based FGSM, BIM, MIM, and DIM under

the ℓ∞ norm are shown in Fig. 8. Different from the results

on CIFAR-10, MIM and DIM improve the transferability

of adversarial examples over FGSM and BIM, resulting in

lower accuracy of the black-box models. A potential reason

is that the image size of ImageNet is much larger, and the

adversarial examples crafted by BIM can “overfit” the sub-

stitute model [14], making them hard to transfer to others.

Score-based and Decision-based Attacks: Fig. 9 and

Fig. 11 show the accuracy vs. perturbation budget and ac-

curacy vs. attack strength (queries) curves of the defense

models on ImageNet against untargeted score-based attacks

under the ℓ∞ norm, while Fig. 10 and Fig. 12 show the two

sets of curves for untargeted decision-based attacks under

the ℓ2 norm. Similar to the results on CIFAR-10, we find

that the two defenses based on randomization, i.e., R&P

and RandMix, have higher accuracy than the other meth-

ods in most cases. JPEG and Bit-Red that are based on

input transformations also improve the robustness over the

baseline model (i.e., Inc-v3).
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Figure 9: The accuracy vs. perturbation budget curves of the 8 models on ImageNet against untar-

geted score-based attacks under the ℓ∞ norm.

Figure 10: The accuracy vs. perturbation budget curves of the 8 models

on ImageNet against untargeted decision-based attacks under the ℓ2 norm.

Figure 11: The accuracy vs. attack strength curves of the 8 models on ImageNet against untargeted

score-based attacks under the ℓ∞ norm.

Figure 12: The accuracy vs. attack strength curves of the 8 models on

ImageNet against untargeted decision-based attacks under the ℓ2 norm.

5.3. Discussions

Based on the above results and more results in Ap-

pendix C, we highlight some key findings.

First, the relative robustness between defenses against

the same attack can be different under varying attack pa-

rameters, such as the perturbation budget or the number

of attack iterations. Not only the results of PGD-AT and

TRADES in Fig. 1 can prove it, but also the results in many

different scenarios show the similar phenomenon. Given

this observation, the comparison between defenses at a spe-

cific attack configuration cannot fully demonstrate the su-

periority of a method upon another. We therefore strongly

advise the researchers to adopt the robustness curves as the

major evaluation metrics to present the robustness results.

Second, among the defenses studied in this paper, we

find that the most robust models are obtained by PGD-based

adversarial training. Their robustness not only is good for

the threat model under which they are trained (i.e., the ℓ∞
threat model), but can also generalize to other threat models

(e.g., the ℓ2 threat model). However, adversarial training

usually leads to a reduction of natural accuracy and high

training cost. A research direction is to develop new meth-

ods that maintain the natural accuracy or reduce the training

cost. And we have seen several works [48] in this direction.

Third, we observe that the defenses based on random-

ization are quite resistant to score-based and decision-based

attacks, which rely on the query feedback of the black-box

models. We argue that the robustness of the randomization-

based defenses against these attacks is due to the random

predictions given by the models, making the estimated gra-

dients or search directions unreliable for attacks. A poten-

tial research direction is to develop more powerful score-

based and decision-based attacks that can efficiently evade

the randomization-based defenses.

Fourth, the defenses based on input transformations

(e.g., JPEG, Bit-Red) sightly improve the robustness over

undefended ones, and sometimes get much higher accuracy

against score-based and decision-based attacks. Since these

methods are quite simple, they may be combined with other

types of defenses to build more powerful defenses.

Fifth, we find that different transfer-based attack meth-

ods exhibit similar performance on CIFAR-10, while the

recent methods (e.g., MIM, DIM) can improve the trans-

ferability of adversarial examples over BIM on ImageNet.

One potential reason is that the input dimension of the mod-

els on ImageNet is much higher than that on CIFAR-10, and

thus the adversarial examples generated by BIM can easily

“overfit” the substitute model [14], resulting in poor trans-

ferability. The recent methods proposed to solve this issue

can generate more transferable adversarial examples.

6. Conclusion

In this paper, we established a comprehensive, rigor-

ous, and coherent benchmark to evaluate adversarial robust-

ness of image classifiers. We performed large-scale experi-

ments with two robustness curves as the fair-minded evalua-

tion criteria to facilitate a better understanding of the repre-

sentative and state-of-the-art adversarial attack and defense

methods. We drew some key findings based on the evalua-

tion results, which may be helpful for future research.
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