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Abstract

Deep neural networks (DNNs) are known to be vulner-

able to adversarial examples. Existing works have mostly

focused on either digital adversarial examples created via

small and imperceptible perturbations, or physical-world

adversarial examples created with large and less realistic

distortions that are easily identified by human observers. In

this paper, we propose a novel approach, called Adversarial

Camouflage (AdvCam), to craft and camouflage physical-

world adversarial examples into natural styles that appear

legitimate to human observers. Specifically, AdvCam trans-

fers large adversarial perturbations into customized styles,

which are then “hidden” on-target object or off-target back-

ground. Experimental evaluation shows that, in both digital

and physical-world scenarios, adversarial examples crafted

by AdvCam are well camouflaged and highly stealthy, while

remaining effective in fooling state-of-the-art DNN image

classifiers. Hence, AdvCam is a flexible approach that

can help craft stealthy attacks to evaluate the robustness of

DNNs. AdvCam can also be used to protect private infor-

mation from being detected by deep learning systems. code

1. Introduction

Deep neural networks (DNNs) are a family of powerful

models that have been widely used in various AI systems,

and they have achieved a great success across many applica-

tions, such as image classification [13], speech recognition

[26], natural language processing [33], and autonomous

driving [6]. However, DNNs are known to be vulnera-

ble to adversarial examples (or attacks) that are crafted by

adding carefully designed perturbations on normal exam-

ples [25, 12, 20, 2, 27, 28]. This raises serious concerns for

security-critical applications [23, 8, 10, 15, 21]. For exam-

ple, as shown in Figure 1, the addition of a carefully crafted

perturbation that resembles stain, snow and discoloration on

the surface of a stop sign. A self-driving car equipped with

state-of-the-art classifier detects the modified stop sign as

other objects with very high confidence (we will examine

how this perturbation was created later).

†Correspondence to: Xingjun Ma (xingjun.ma@unimelb.edu.au)

Figure 1: Camouflaged adversarial examples crafted by

proposed AdvCam attack. Given a target image in (a), an

adversary can choose different camouflage styles from (b)

to craft adversarial examples in (c) that appear naturally oc-

curring, yet can fool a DNN classifier to make incorrect pre-

dictions with high confidence.

Adversarial attacks can be applied in two different set-

tings: 1) digital setting, where the attacker can feed in-

put digital images directly into the DNN classifier; and 2)

physical-world setting, where the DNN classifier only ac-

cepts inputs from a camera and the attacker can only present

adversarial images to the camera. There are three properties

which may be used to characterize adversarial attack: 1)

adversarial strength, which represents the ability to fool

DNNs; 2) adversarial stealthiness, which is about whether

the adversarial perturbations can be detected by human ob-

servers; and 3) camouflage flexibility, which is the degree

to which the attacker can control the appearance of adver-

sarial image.

Most attacking methods have been developed for the dig-

ital setting, such as Projected Gradient Decent (PGD) [22],

Carlini and Wagner (CW) attack [4] and adversarial ex-

amples crafted using generative adversarial networks (Ad-

vGAN) [30]. For digital attacks, small perturbations are

often sufficient. However, physical-world attacks require

large or even unrestricted perturbations [17, 1], since small

perturbations are too subtle to be captured by cameras in

complex physical-world environments. There already exist
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(a) RP2 (b) AdvCam (c) AdvPatch (d) AdvCam

Figure 2: Examples of successful physical-world attacks.

AdvCam refers to our proposed adversarial camouflage.

several attacking methods that go beyond small perturba-

tions, such as adversarial patch (AdvPatch) [3] and robust

physical perturbations (RP2) [10]. The properties of ex-

isting attacks are summarized in Table 1, where ⋆⋆ means

better than ⋆. To summarize, stealthiness can be achieved

with small perturbations, which are only useful in digital

setting. Also, existing attacks require exact perturbation

size to achieve stealthiness, while it is difficult to decide a

proper perturbation size for both visual imperceptibility and

adversarial strength, especially in the physical setting. Be-

sides, the generation process of current methods is difficult

to control, e.g., an attacker cannot decide the appearance of

adversarial examples. As such, the camouflage flexibility of

these methods is rather limited. A flexible (yet strong and

stealthy) camouflage mechanism for large perturbations is

still an open problem that needs to be addressed.

Table 1: Summary of existing attacks and our AdvCam.

Attack Digital Physical Stealthiness Flexibility

PGD
√

× ⋆⋆ ⋆

AdvPatch ×
√

⋆ ⋆

RP2 ×
√

⋆ ⋆

AdvCam
√ √

⋆⋆ ⋆⋆

To address this gap, in this paper, we propose a novel ad-

versarial camouflage approach (AdvCam) to craft and cam-

ouflage adversarial examples into natural styles using style

transfer techniques. The style of an image is an abstract

concept that generally refers to its visual appearance such

as color and texture, in contrast to its structure information

[16]. In AdvCam, the camouflage style and attack region

can be customized by the attacker according to different

attacking scenarios. For example, Figure 1 shows several

adversarial traffic signs crafted by our AdvCam attack. A

quick visual comparison of AdvCam to existing physical-

world attacks can be found in Figure 2. While all the ad-

versarial examples in Figure 2 attack DNNs successfully,

we can see that AdvCam is able to generate adversaial per-

turbation on stop sign with natural stains compared to ar-

tificial graffiti created by RP2, or a camouflaged product

label compared to a patch with obtrusive pattern generated

by AdvPatch. Our proposed AdvCam is capable of generat-

ing highly stealthy adversarial examples, which are robust

to various physical-world conditions at the same time.

In summary, AdvCam is not a perturbation-restricted at-

tack and therefore is not inherently subjected to the limited

amount of perturbation which is typically required in exist-

ing perturbation-restricted techniques. We define a flexible

mechanism that induces perturbation appearing in natural-

looking, which is a totally different paradigm from previous

attacks. It is such an intrinsic difference of the working prin-

ciples that makes AdvCam to produce more realistic images

than existing methods.

Our key contributions in this paper are:

• We propose a flexible adversarial camouflage ap-

proach, AdvCam, to craft and camouflage adversarial

examples.

• AdvCam allows the generation of large perturbations,

customizable attack regions and camouflage styles. It

is very flexible and useful for vulnerability evalua-

tion of DNNs against large perturbations for physical-

world attacks.

• Experiments on both digital and physical-world sce-

narios show that adversarial examples camouflaged by

AdvCam are highly stealthy, while remaining effective

in fooling state-of-the-art DNN image classifiers.

2. Related Work

2.1. Adversarial Attack

Adversarial attack is to generate adversarial examples by

maximizing the classification error of the target model (the

model to attack) [25]. There are targeted and untargeted at-

tacks. Targeted attack is to fool the network to misclassify

the adversarial example into the class that attacker expects,

while untargeted attack is to fool the network to misclas-

sify the adversarial example into any incorrect classes [12].

Adversarial attacks can be applied either in a digital setting

directly on the target model, or in a physical-world setting,

where recaptured photos of adversarial examples are fed to

the target model [17].

2.1.1 Digital attacks

Adversarial examples can be crafted by one or more steps

of perturbation following the direction of adversarial gradi-

ents. This includes the classic Fast Gradient Sign Method

(FGSM) [12], the Basic Iterative Method (BIM) [17],

the strongest first-order method Projected Gradient Decent

(PGD) [22], and the Skip Gradient Method (SGD) [29] for

transferable attacks. These attacks can either be targeted or

untargeted, and their perturbations are bounded by a small

norm-ball ‖·‖p ≤ ǫ with L2 and L∞ being the most com-

monly used norms. Optimization-based attacks, such as

Carlini and Wagner (CW) attack [4] and elastic-net (EAD)

attack [7], directly minimize the perturbations as part of the

adversarial loss.
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There also exist several unrestricted adversarial attacks.

These attacks search for modifications on substitutable

components (attributes) of an image such as color [14], tex-

ture and physical parameters [34, 18] while preserving crit-

ical components of images. However, these attacks either

produce large unnatural distortions or rely on training data

that has semantic annotations. Moreover, these attacks can-

not generate complex adversarial patterns and thus are quite

limited for complicated real scenarios. Adversarial exam-

ples can also be generated by generative adversarial net-

works (GANs) [30, 24]. However, it is difficult to craft

targeted attacks for a given test image with GANs, since

the generation process is hard to control.

Most existing attacks achieve stealthiness by either craft-

ing small perturbations or modifying semantic attributes of

the target image. However, a flexible camouflage mech-

anism that can effectively hide adversarial examples with

natural styles is still missing from the literature. In this pa-

per, we address this gap by proposing one such approach.

2.1.2 Physical-world attacks

A study has shown that, by printing and recapturing using a

cell-phone camera, digital adversarial examples can still be

effective [17]. However, follow-up works have found that

such attacks are not easy to realize under physical-world

conditions, due to viewpoint shifts, camera noise, and other

natural transformations [1]. Thus, strong physical-world at-

tacks require large perturbations, and specific adaptations

over a distribution of transformations including lighting, ro-

tation, perspective projection etc. The AdvPatch attack al-

lows large perturbations and is immune to scaling or rota-

tion, thus being directly applicable as a physical-world at-

tack [3]. Adversarial stickers and graffiti have also been

used to attack such as traffic sign classifiers and ImageNet

classifiers in physical-world scenarios [10]. Other physical-

world attacks include adversarial eye-glass frames [23], ve-

hicles [35], or t-shirts [32] that can fool face recognition

systems or object detectors. All these physical-world at-

tacks generate large perturbations to increase adversarial

strength, which inevitably results in large and unrealistic

distortions. This greatly reduces their stealthiness, as shown

in Figure 2.

2.2. Neural Style Transfer

Neural style transfer evolves from the problem of tex-

ture transfer, for which the goal is to transfer the texture

of a source image to a target image while preserving the

structural information of the target image. Traditional tex-

ture transfer methods mainly focus on non-parametric al-

gorithms that resample pixels from the source texture [9].

However, these methods suffer from the fundamental lim-

itation of pixel replacement, i.e., they cannot handle com-

plex styles. Neural style transfer demonstrates remarkable

results for image stylization [11]. In it, the content and style

information of an image can be separated from its feature

representations learned by a convolutional neural network

(CNN). Then, the style information of the style image can

be recombined into the target image to achieve style trans-

fer. This technique has attracted several follow-up works

for different aspects of improvement [5, 19]. In this paper,

we will exploit these techniques for the camouflage of ad-

versarial examples.

3. Our Adversarial Camouflage Approach

In this section, we first give an overview of the adversar-

ial attack problem and our proposed camouflage approach.

We then introduce the loss functions used by our proposed

approach, and adaptations for physical world conditions.

3.1. Overview

Given a test image x ∈ R
m with class label y, a DNN

classifier F : Rm → {1, · · · , k} mapping image pixels to

a discrete label set, and a target class yadv 6= y, adversarial

attack is to find an adversarial example x′ for target image

x by solving the following optimization problem:

minimize D(x, x′) + λ · Ladv(x
′)

such that x′ ∈ [0, 255]m,
(1)

where D(x, x′) is a distance metric that defines the stealth-

iness property of the adversarial example, Ladv is the ad-

versarial loss, [0, 255] indicates the valid pixel values, λ
is a parameter that adjusts the adversarial strength. Note

that there is a trade-off between stealthiness and adversarial

strength. In the whole experiments, we fix all other param-

eters as constants [19], and only adjust adversarial strength

parameter λ.

Our goal is to develop a mechanism that crafts and cam-

ouflages adversarial examples with large perturbations into

customized styles, and either attack area or style can be de-

fined by attacker flexibly. We use style transfer techniques

to achieve the goal of camouflage and adversarial attack

techniques to achieve adversarial strength. The final loss

is a combination of an adversarial loss Ladv for adversar-

ial strength, a style loss Ls for style generation, a content

loss Lc to preserve the content of the source image and a

smoothness loss Lm to generate locally smooth regions. We

denote this final loss as the adversarial camouflage loss:

L = (Ls + Lc + Lm) + λ · Ladv, (2)

where the three loss functions in brackets together serve the

purpose of camouflage. The overview of our approach is il-

lustrated in Figure 3. An attacker defines target image, tar-

get attack region and expected target style. Our proposed

AdvCam then generates adversarial perturbation with ex-

pected style on the expected area as shown on the right of
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Figure 3: Overview of the proposed approach.

Figure 3. To make adverarial example robust to various en-

vironment conditions, including lighting, rotation, etc., we

add an extra physical adaptation training for generated x′ in

each step.

3.2. Adversarial Camouflage Loss

3.2.1 Style loss

For traditional attacks, the stealthiness metric is defined by

D(x, x′) = ‖x− x′‖p, where ‖·‖p is the Lp norm and L2

and L∞ are typically used. This is to constrain the pertur-

bations to be “small”. For our proposed camouflage, the

stealthiness is defined by a style metric between adversar-

ial example x′ and a style reference image xs. The style

distance between two images can be defined by their differ-

ences in style representations:

Ds =
∑

l∈Sl

∥∥∥G(F̃l(x
s))− G(F̃l(x

′))
∥∥∥
2

2

, (3)

where F̃ is a feature extractor (such as a public DNN model)

that can be different from the target model, and G is the

Gram matrix of deep features extracted at a set of style lay-

ers of F̃ [11]. As different styles can be learned at different

layers, we use all convolutional layers of the network as the

style layers. To generate stylized perturbation in expected

area of the target image, we denote the masks that define

the attack and non-attack regions by M and M respectively.

After each step in generation process, we mask the adver-

sarial image x′ by M to make only attack region modifiable

with non-attack area unchanged (x masked by M ).

3.2.2 Content loss

The above style loss can craft an adversarial image in the

reference style, however, the content of the adversarial im-

age may appear very different to that of the original image.

The content of the original image can be preserved by a

content preservation loss:

Lc =
∑

l∈Cl

∥∥∥F̃l(x)− F̃l(x
′)
∥∥∥
2

2

, (4)

where Cl represents the set of content layers used for ex-

tracting content representations. This is to ensure that the

adversarial image has very similar content to the original

image in the deep representation space. We use deeper lay-

ers of the feature extractor network as the content layers.

Note that the content loss is optional when the attack

only occurs in a small region that does not contain any par-

ticular content. However, if the attack region contains se-

mantic content, the content loss can help reduce the seman-

tic difference between the adversarial image and its original

version.

3.2.3 Smoothness loss

The smoothness of the adversarial image can be improved

by reducing the variations between adjacent pixels. For an

adversarial image x′, the smoothness loss is defined as:

Lm =
∑

((x′
i,j − xi+1,j)

2 + (x′
i,j − xi,j+1)

2)
1

2 , (5)

where x′
i,j is the pixel at coordinate (i, j) of image x′. Intu-

itively, this will encourage the image to have low-variance

(e.g. smooth) local patches. We note that the smooth-

ness loss is limited in improving stealthiness if the surface

of both the target image and the style image are already

smooth. But we still recommend adding it in physical set-

ting, as Sharif et al. pointed out [23], the smoothness term is

useful for improving the robustness of adversarial examples

in physical environment.
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3.2.4 Adversarial loss

For the adversarial loss, we use the following cross-entropy

loss:

Ladv =

{
log(pyadv

(x′)), for targeted attack

− log(py(x
′)), for untargeted attack,

(6)

where pyadv
() is the probability output (softmax on logits)

of the target model F with respect to class yadv . We note

that the proposed camouflage attack is not restricted to the

particular form of the adversarial loss, and can be used in

combination with existing attacking methods.

3.3. Adaptation for Physicalworld Conditions

To make adversaries generated by AdvCam physically

realizable, we model physical conditions in the process of

generating camouflaged adversaries. As the physical-world

environment often involves condition fluctuations such as

viewpoint shifts, camera noise, and other natural transfor-

mations [1], we use a series of adaptations to accommodate

such varying conditions. In particular, we adapt a technique

similar to Expectation Over Transformation (EOT) [1] but

without expectation. In Xie’s work [31], they also adapted

EOT to improve the transferability of adversarial exam-

ples. However, we aim to improve the adaptation of ad-

versarial examples under various physical conditions. Thus

we consider the transformations for simulation of physical-

world condition fluctuations, including rotation, scale re-

size, color shift (to simulate lightening change) and random

background.

min
x′

(
(Ls + Lc + Lm) + max

T∈T
λ · Ladv(o+ T (x′)

)
, (7)

where o represents a random background image that we

sample in the physical world, and T represents a random

transformation of rotation, resize and color shift.

In principle, “vision” is the main sense of perception for

both human observers and DNN models. By adjusting the

style reference image xs according to the original image x
and the background image o, the proposed camouflage at-

tack can craft highly stealthy adversarial examples that can

deceive both human observers and DNN models.

4. Experimental Evaluation

In this section, we first outline the experimental setup.

Then we analyze our AdvCam attack via an ablation study.

Afterwords, we evaluate camouflage performance of Ad-

vCam by human perception study for digital attacks, and

also present several adversarial examples of high stealth-

iness crafted by AdvCam. We further perform physical-

world attacks at last.

4.1. Experimental Setup

4.1.1 Baseline attacks

we compare our AdvCam attack with two existing repre-

sentative methods: PGD [22] and adversarial patch (Adv-

Patch) [3]. PGD represents the digital attacks, which is the

strongest first-order attack. And AdvPatch represents the

unrestricted attacks that can directly applied to the physical-

world setting. Some other physical-world attacks such as

RP2 require case-by-case manual design, thus are limited

for mass production. We compare the methods in terms of

attack success rate and visual effect. For AdvCam attack,

we use the same layers of the network as used in [19] to

extract style and content (where necessary) representations.

4.1.2 Threat model

We test both targeted and untargeted attacks in both dig-

ital and physical-world settings. The threat model adopts

a gray-box setting: the source and target networks are both

VGG-19 networks but were trained separately on ImageNet.

For a physical-world test, we first use a Google Pixel2

smartphone to take a photo of the target object, then craft an

adversarial image in the digital setting attacking the source

network, after which we print out the adversarial image to

replace or place it on the target object, then we re-photo the

object using the same smartphone from various viewing an-

gles and distances. The physical-word attack success rate is

measured by the prediction accuracy of the target network

on the re-photoed adversarial images.

4.2. Ablation Study

Here, we conduct a series of experiments on ImageNet

to analyze the following aspects of our AdvCam attack: 1)

shape and location of camouflage region, 2) camouflage

losses (e.g. style loss, content loss and smoothness loss),

and 3) adversarial strength parameter λ and region size.

4.2.1 Camouflage region: shape and location

Here, we show how the selection of camouflage region in

terms of shape and location impacts the adversarial strength

of the crafted adversarial example. Given a selected attack-

ing region with shape and size, we increase strength param-

eter λ from 1000 to 10000 with interval 1000 until the at-

tack succeeds. The range is selected according to extensive

experiments, [1000, 10000] is an effective range to find ad-

versary with both high adversarial strength and stealthiness.

Figure 4 shows camouflaged adversarial examples crafted

with different regions. We find that either the camouflage

region is at the center or away from the center of the target

object, attacks can succeed with high confidence. We will

show in the last part of this subsection that attacks can be

camouflaged into an area that is even off the target object,

secretly hidden in the background.
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(a) (b) (c) (d) (e)

Figure 4: Ablation of region shape and size, on two targeted attacks: “backpack” → “tank” (top row) and “poncho” → “traffic

light”. (a): original clean image with intended style (bottom left corner). (b) - (e): left: selected attack region, right: crafted

camouflage adversarial example with top-1 prediction (“predicted class, confidence”) given at the bottom of the image.

(a) Original (b) Ls (c) Ls+Lc (d) All

Figure 5: Ablation of the 3 camouflage losses: (a): original

images with intended camouflage style at the bottom right

corner; (b) - (d): camouflaged adversarial examples using

different loss functions.

4.2.2 Camouflage losses (Ls, Lc, Lm)

Figure 5 illustrates three groups of adversarial examples

camouflaged with or without the two optional enhance-

ments (content preservation Lc and smoothness enhance-

ment Lm). When incorporating one enhancement, its loss

function is directly added to the final object by following

Eq. (2) (λ in Ladv was set to 2000). As can be observed,

the content preservation can help preserve the original con-

tent as in the “traffic sign” example (third column), while

smoothness enhancement can help produce a smooth ob-

ject surface. These enhancements are optional because they

improve the visual appearance only slightly for some ad-

versarial examples, for example, content preservation in the

“table lamp”example (third row) or smoothness enhance-

ment in all examples.

4.2.3 Adversarial strength (λ) and region size

We craft both targeted and untargeted camouflage attacks

on randomly selected 2000 ImageNet test images from 50

categories with varying λ ∈ [1000, 10000]. For targeted at-

Figure 6: Ablation of adversarial strength λ and region size:

success rate of untargeted (left) and targeted attack (right).

tack, the target class is randomly selected and is different to

the true class. To also test the influence of λ under different

attack regions, here we also vary the size of the region from

40*40 to 120*120. Figure 6 illustrates the top-1/5 success

rates, which are measured by whether the target class is in

the top-1/5 classes. As shown in the figure, when the region

is fixed, larger adversarial strength λ can increase success

rate by up to 20%; and when λ is fixed, larger attack region

can improve success rate by up to 40%. Compared to tar-

geted attacks, untargeted attacks are much easier to succeed.

Between top-1 and top-5 success rates, top-1 targeted at-

tacks are more difficult to achieve (solid lines are lower than

dashed lines). The standard errors with respect to different

adversarial strengths and region sizes are between 0.07%

and 1.13%. Note that in these experiments, the camouflage

styles and locations of attack region are selected randomly,

which may decrease the camouflage effect and success rate.

However, this does not affect the conclusion that larger λ
and region size can help craft stronger attacks.

4.3. Digital Attacks

4.3.1 Attack setting

We randomly select 150 clean images from 5 categories

of ImageNet ILSVRC2012 test set. We then apply the
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three methods (PGD, AdvPatch and our AdvCam) to craft

a targeted adversarial example for each clean image. The

pairs of selected source and target classes are: “ashcan” →
“robin”, “backpack” → “water jug”, “cannon” → “folklift”,

“jersey” → “horizontal bar”, “mailbox” → “entertainment

center”. For PGD and AdvCam, we attack the main ob-

ject region obtained via manual selection, while for Adv-

Patch, we further select a circular attack area inside of the

object region. For PGD, we use maximum perturbation

ǫ = 16/255 (denoted as PGD-16). For AdvCam, we ran-

domly select a second image from the same category as the

style image, and gradually increase λ from 1000 to 10000

until an adversarial example is found. For fair comparison,

we filter out the failed adversarial examples. Finally, we

collect 132, 101, 122 adversarial examples for PGD, Ad-

vPatch and AdvCam respectively. Figure 7 shows a few

crafted adversarial examples by the three methods that we

used to perform human perception study.

(a) Original (b) PGD-16 (c) AdvPatch (d) AdvCam

Figure 7: The original and adversarial images crafted by

PGD-16, AdvPatch and our AdvCam attack.

4.3.2 Human perception study results

We set up a human perception study on Amazon Mechani-

cal Turk (AMT) to ask human evaluators to choose whether

a shown image is “natural and realistic” or “not natural or

realistic”. To simulate adversarial examples in a real world

scenario, we present users with three types of adversar-

ial images in random order and individually rather than in

pairs. Finally, we collected 1953 selections from 130 par-

ticipants. AdvPatch was chosen as “natural and realistic”

19.0 ± 1.68% of the time, PGD was chosen 77.3 ± 1.53%
of the time, while our AdvCam was chosen 80.7 ± 1.53%
of the time. We summarize these statistics as stealthiness

scores for the three methods and show in Figure 8. This con-

firms that our proposed AdvCam attack is capable of craft-

ing adversarial examples that are as stealthy as the small

perturbation PGD-16 method, although the perturbations of

AdvCam attacks are unrestricted in size.

Figure 8: Stealthiness of AdvPatch, PGD-16 and AdvCam.

4.3.3 Customized examples

Here, we show how AdvCam can craft extremely stealthy

camouflages, especially off-target ones. Figure 9 illustrates

a few such examples. The first-row shows on-target camou-

flage examples, and the second-row shows off-target cam-

ouflages, which are crafted by attacking a carefully chosen

background area. For on-target ones, AdvCam generates

natural and stealthy perturbation on the surface of the target

objects. For off-target ones, in the first off-target example

(left two images in the second row), we hide the attack into

the price tag to fool a VGG-19 classifier to misclassify a

revolver into a toilet tissue. In the second example (mid-

dle two images in the second row), AdvCam successfully

camouflages a blenheim spaniel into a bearskin by adding

flowers in the background. In the third example (right two

images in the second row), we camouflage the attack into

the wall posters in the background which causes a minivan

parked in front of the wall to be misrecognized as a traffic

light. These examples not only demonstrate the stealthiness

and flexibility of our AdvCam attack, but also indicate that

threats to deep learning systems are ubiquitous, and in many

cases, may hardly be noticeable even to human observers.

4.4. Physicalworld Attacks

We further design three physical-world attacking scenar-

ios to test the camouflage power of our AdvCam attack.

We also perform AdvPatch and PGD attacks for compari-

son. For PGD attack, we test different ǫ in (16/255, 32/255,

64/255, 128/255) and show successful adversarial examples

with the least ǫ. We print out the adversarial patterns on a

A3 or A4 paper, then take 20 photos at various viewing an-

gles and distances.

The fist scenario is to camouflage a wild pattern into

a street sign, which could cause problems for self-driving

cars. The top row in Figure 10 illustrates some success-

ful patterns crafted by PGD-128 (ǫ = 128/255), AdvPatch

and AdvCam. As can be seen, the attack is perfectly cam-

ouflaged by AdvCam into the texture of the tree. Although

PGD is highly stealthy in digital setting, it requires large

perturbation (ǫ = 128/255) in physical environment. Thus

the adversarial pattern is much less stealthy than AdvCam,

same as AdvPatch. The second scenario is to protect the

identity of a person wearing a jersey. We simulate such a
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Figure 9: Camouflaged adversarial images crafted by our AdvCam attack and their original versions.

(a) AdvPatch (b) PGD-128 (c) AdvCam

Figure 10: Top: Adversarial wood texture recognized as

street sign. Bottom: Adversarial logo on t-shirt.

Figure 11: Adversarial traffic sign with 3 styles of stains.

scenario by attacking the jersey using a camouflaged fash-

ion logo “pikachu” (see bottom row in Figure 10). All the

three attacks perform the “jersey” to “Irish terrier” attack.

Note that PGD failed the attack even with the largest per-

turbation tested. This shows the high flexibility of AdvCam

with customized camouflage styles, providing a flexible cre-

ation of stealthiness satisfying various attacking scenarios.

We also perform a “street sign” to “barbershop” attack

using AdvCam with three different natural styles (see Figure

11). The patterns of AdvCam are smooth and natural that

can hardly be detected by human observers, but deceive the

classifier with high confidence successfully. To summarize,

with high stealthiness of adversaries generated by AdvCam,

it poses ubiquitous threats for current DNNs-based systems.

Thus AdvCam can be a useful tool to evaluate the robustness

of DNNs employed in the physical-world.

5. Conclusion and Future Work

In this paper, we have investigated the stealthiness of ad-

versarial examples, and propose a novel approach called

adversarial camouflage (AdvCam), which combines neu-

ral style transfer and adversarial attack techniques, to craft

and camouflage adversarial examples into stealthy natural-

looking styles. AdvCam is a flexible approach that can

help craft stealthy attacks for robustness evaluation of DNN

models. Apart from the view of attack, the proposed Adv-

Cam can be a meaningful camouflage technique to protect

objects or human being detected by both human observers

and DNN based equipments.

The proposed AdvCam currently still requires the at-

tacker to manually specify the attack region and target style,

where we plan to explore semantic segmentation techniques

to automatically achieve this in our future work. Also, we

will explore to apply AdvCam on other computer vision

tasks including object detection and segmentation. More-

over, effective defense strategies against camouflaged at-

tacks will be another crucial and promising direction.
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