
Photometric Stereo via Discrete Hypothesis-and-Test Search

Kenji Enomoto1 Michael Waechter1 Kiriakos N. Kutulakos2 Yasuyuki Matsushita1

1Osaka University 2University of Toronto

Abstract

In this paper, we consider the problem of estimating

surface normals of a scene with spatially varying, general

BRDFs observed by a static camera under varying, known,

distant illumination. Unlike previous approaches that are

mostly based on continuous local optimization, we cast the

problem as a discrete hypothesis-and-test search problem

over the discretized space of surface normals. While a naı̈ve

search requires a significant amount of time, we show that

the expensive computation block can be precomputed in a

scene-independent manner, resulting in accelerated infer-

ence for new scenes. It allows us to perform a full search

over the finely discretized space of surface normals to de-

termine the globally optimal surface normal for each scene

point. We show that our method can accurately estimate

surface normals of scenes with spatially varying different

reflectances in a reasonable amount of time.

1. Introduction

Photometric stereo recovers fine surface details in the

form of surface normals from images taken by a static cam-

era under varying lightings. While traditional photometric

stereo methods [25] assume Lambertian reflectance or sim-

plified parametric reflectance models, it is understood that

their deviation from real-world reflectances introduces er-

rors in surface normal estimates. In the past, other studies

used more sophisticated reflectance models [1, 15, 21, 13, 4]

for more accurate surface normal recovery; however, they

generally encounter an issue of non-convex optimization in

determining the surface normals. The problem is rooted in

the fact that these methods frame the estimation problem as

a continuous optimization problem.

In this paper, we cast surface normal estimation as a dis-

crete hypothesis-and-test search problem. Instead of treat-

ing surface normals to be estimated as a continuous quan-

tity, our method finely discretizes the space of surface nor-

mals and finds the best surface normal by a hypothesis-and-

test search. Since a surface normal vector has only two de-

grees of freedom (a unit 3D vector) represented by its az-

imuth and elevation angles in a hemisphere, discretization
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Figure 1: An overview of our approach. We hypothesize

a surface normal and test whether it can explain the target

measurements. By conducting the hypothesis-and-test for

all possible surface normals, our method is able to find a

globally optimal surface normal.

results in a relatively small number of surface normal can-

didates. For example, even if we discretize the angles in

one-degree intervals, it results in 32, 400 = 360×90 normal

candidates. Our method uses each surface normal candidate

as hypothesis and tests its suitability to the image formation

model; thus, we call it a hypothesis-and-test search strat-

egy. In this manner, our method searches for the globally

optimal surface normal from all (discretized) possible ones.

To alleviate the issue of computing cost in our discrete

search, we developed a precomputation method that per-

forms expensive computations in a scene-independent man-

ner prior to the inference for a new scene. To deal with

a diverse set of reflectances, we use a non-parametric, dis-

crete table of bidirectional reflectance distribution functions

(BRDFs), whose axes are the space of surface normals, light

directions, and materials, for a fixed viewing direction. The

table of BRDFs, which we call a BRDF tensor, can contain

an arbitrary number of materials, and importantly, the num-

ber of reference materials considered in the BRDF tensor

does not influence the computation time during inference.

Our method is motivated by the success of example-

based [9] and virtual exemplar-based [11] approaches.

However, unlike example-based methods, we do not require
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placing a reference object in the scene. Also, unlike the vir-

tual exemplar-based method that performs a continuous lo-

cal search using a non-convex objective function, we treat

the problem as a discrete search problem and perform an

exhaustive search over the discretized space. It enables us

to find a globally optimal surface normal within the bounds

of our objective function.

The chief contributions of this paper are twofold. First,

we propose a discrete hypothesis-and-test search strategy

for photometric stereo. By finely discretizing the space of

surface normals, our method finds the globally optimal sur-

face normal through exhaustive search. Second, we show

that expensive computation can be performed prior to the

surface normal estimation, allowing the global hypothesis-

and-test search to work in a reasonable amount of time. We

assess the accuracy of the proposed method using both syn-

thetic and real-world data and show its favorable perfor-

mance in determining surface normals of a scene. In par-

ticular, the proposed method achieves a stable estimate, i.e.,

superior average/variance of mean angular error over a di-

verse set of materials.

2. Related work

Calibrated photometric stereo methods for diverse mate-

rials can be roughly divided into three categories; model-

based, learning-based, and example-based approaches. In

the following, we discuss the corresponding related works.

Model-based photometric stereo Model-based ap-

proaches use parametric expressions for BRDFs and

the model parameters including the surface normal are

estimated, typically, via optimization. Key for these

model-based methods is the choice of a parametric BRDF

model. Woodham’s original work [25] assumed Lambert-

ian reflectance, which allows using convex least-squares

optimization to determine surface normals and albedos.

Parametric modeling of non-Lambertian BRDFs is actively

studied, particularly in the graphics community. For

example, the Blinn-Phong model [23], the Torrance-

Sparrow model [7], the Ward model [6], the specular spike

model [5, 26], and a microfacet BRDF with ellipsoidal

normal distributions [4] have been developed. However,

each of these models is limited to a class of materials, and

such models are highly nonlinear, resulting in non-convex

photometric stereo problems. Thus, some recent methods

use a bivariate function instead. For representing low-

frequency reflectances, Shi et al. [21] use a bi-polynomial

function and Ikehata and Aizawa [13] use a sum of lobes

with unknown center directions. Although these model-

based approaches can be used in a relatively wide range of

materials, there are always problematic materials.

Learning-based photometric stereo Recently, deep

learning-based photometric stereo methods have been pro-

posed. They learn a mapping from measured intensities

under known lightings to surface normals using a neu-

ral network [19, 3, 13]. These methods showed promis-

ing results on various scenes owing to the network being

trained with diverse shapes and materials. Santo et al. [19]

and Chen et al. [3] created a training dataset by render-

ing the Blobby [14] and Sculpture [24] shape datasets with

100 BRDFs from the MERL dataset [16]. Ikehata [12]

also introduced a training dataset for calibrated photometric

stereo, called CyclesPS dataset, containing several objects

with a diverse set of materials rendered using Disney’s prin-

cipled BSDF [2]. Learning-based methods require a large

number of shapes & BRDFs for training. When they are

applied to new scenes with shapes & BRDFs that are very

different from the training data, it is necessary to do costly

re-training of the network.

Example-based photometric stereo Example-based

photometric stereo relies on the concept of orientation-

consistency [9], i.e., two surfaces with the same surface

normal and BRDF will have the same appearance under

the same illumination. An early work along this direction

is found in Horn and Ikeuchi [10]. In example-based

approaches, a reference object with known surface normals

is placed in a target scene. Further, the BRDF of the

reference object is assumed to be the same as that of the

target object. Then, a surface normal is recovered for each

point of the target object by searching the corresponding

pixel intensity of the reference object that best matches the

target’s appearance. To relax the assumption of identical

BRDF between reference and target, Hertzmann and

Seitz [9] introduced two reference objects, a diffuse and a

specular sphere, placed in the target scene, and approximate

the target BRDF by a non-negative linear combination

of the reference BRDFs. Although this approach makes

example-based photometric stereo applicable to more

diverse materials, it is still inaccurate to approximate a

diverse set of materials by a linear combination of two

BRDFs. In addition, in many practical applications it is

undesirable to place reference objects in a target scene.

Hui and Sankaranarayanan [11] introduced virtual

exemplar-based photometric stereo that performs example-

based photometric stereo without actually introducing ref-

erence objects into a target scene. They render virtual

reference spheres under the target scene illumination with

MERL BRDFs [16] and assume that the target BRDF lies in

the non-negative span of the MERL BRDFs. In the virtual

exemplar-based approach, however, there are many time-

consuming processes such as rendering virtual spheres,

an iterative optimization for solving a non-negative least

squares problem, and searching over all possible surface
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normals. To reduce the computation cost, they proposed

an efficient search algorithm which however eliminates the

guarantee of finding the optimal solution.

Our method shares the assumption that the target BRDF

can be represented by a combination of several reference

BRDFs. However, we cast the problem as a discrete

hypothesis-and-test search problem, which gives a guar-

antee of reaching the globally optimal solution within the

bound of the objective function. Additionally, our method

enables search all surface normal candidates in reasonable

time owing to an efficient precomputation.

3. Image formation and problem statement

Suppose a surface point with a unit surface normal

n ∈ S2 ⊂ R
3 is illuminated by an incoming directional

light l ∈ S2, without ambient lighting or global illumina-

tion effects such as cast shadows or inter-reflections. When

this surface point is observed by a camera with linear re-

sponse, the measured intensity m ∈ R+ can be written as

m ∝ ρ(n, l)max(n⊤
l, 0), (1)

where ρ(n, l) : S2 × S2 → R+ is a general isotropic bidi-

rectional reflectance distribution function (BRDF).

In calibrated photometric stereo, a static camera records

multiple, say L′, measurements {m1, . . .mL′} for each sur-

face point under various light directions {l1, . . . lL′}. Then,

Eq. (1) can be written in matrix form as






m1

...

mL′






︸ ︷︷ ︸

m

∝






max(n⊤
l1, 0) 0

. . .

0 max(n⊤
lL′ , 0)






︸ ︷︷ ︸

E






ρ(n, l1)
...

ρ(n, lL′)






︸ ︷︷ ︸

ρ

,

where m is a measurement vector, E is a diagonal irradi-

ance matrix, and ρ is a reflectance vector. We model the

reflectance ρ by a linear combination of BRDF basis vec-

tors in a similar manner to Hertzmann et al. [9], and Hui

and Sankaranarayanan [11]. By stacking M known BRDF

basis vectors in a BRDF basis matrix B, ρ can be written as

ρ =






ρ1(n, l1) . . . ρM (n, l1)
...

. . .
...

ρ1(n, lL′) . . . ρM (n, lL′)






︸ ︷︷ ︸

B

c,

where c = [c1, . . . , cM ]⊤ is a BRDF coefficient vector.

With this, the image formation model can be simplified to

m = EBc. (2)

Problem statement Our goal is to find the optimal sur-

face normal n and BRDF coefficients c for each surface

BRDF tensor 𝒯 ∈ ℝ+𝑁×𝐿×𝑀

hypothesized normal 𝒏𝑖

…

sampled BRDF

matrix 𝑩𝑖 ∈ ℝ𝐿′×𝑀

surface normal 𝒏
light 𝒍

material

known 

light 

directions

material

light 𝒍

Figure 2: Starting from the BRDF tensor T that represents

reflectances for a comprehensive set of light directions, sur-

face normals and materials (BRDFs), we slice out a sampled

BRDF matrix Bi for a set of known light directions and a

hypothesized surface normal ni. The column space of Bi is

the space of reflectances over all possible materials for the

hypothesized normal under the known light directions.

point, given observations m and associated light directions

{l1, . . . lL′} based on the model of Eq. (2). The irradiance

matrix E and BRDF matrix B are functions of the surface

normal n.

4. Proposed method

Our method casts the photometric stereo problem as

a discrete search where the space of surface normals is

discretized. We hypothesize a surface normal n and test

whether it (approximately) satisfies the image formation

model of Eq. (2). By conducting this hypothesis-and-test

for all possible surface normals, our method is able to find a

globally optimal surface normal n and the associated BRDF

coefficients c that best satisfy Eq. (2).

4.1. Hypothesis­and­test strategy

Let N = {ni | i = 1, . . . , N} be the discretized space

of surface normals, which we call a set of surface normal

candidates. We prepare a tensor representation for diverse

BRDFs whose axes are (1) surface normals, (2) light di-

rections, and (3) materials. Suppose the spaces of surface

normals and light directions are discretized into N and L
bins, respectively, and there are M distinct BRDFs. Then,

the BRDF tensor T can be defined as T ∈ R
N×L×M
+ (see

the left of Fig. 2).

For simplicity, let us assume that the BRDF tensor con-

tains the actual light directions of the observed scene. If we

hypothesize a certain surface normal ni ∈ N for a scene

point, using L′ ≤ L known light directions, we can slice a

sampled BRDF matrix Bi ∈ R
L′×M
+ from the BRDF tensor

T along the hypothesized surface normal ni and a set of L′

known light directions as illustrated in Fig. 2. We can also
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form an irradiance matrix Ei for the hypothesized surface

normal ni. Using Bi and Ei instead of B and E, Eq. (2)

becomes

m ≃ EiBic
def= Dic,

where Di(= EiBi) ∈ R
L′×M . For the overdetermined

case L′ > M , the least-squares solution for the BRDF co-

efficients c that best explains the measurements, is

c
∗ =

(
D

⊤
D
)−1

D
⊤
m = D

†
im,

where D
†
i is Di’s pseudo-inverse. The estimated BRDF co-

efficients c∗ are least-squares optimal for the hypothesized

normal ni and the space of sampled BRDFs Bi. We can

test the validity of the hypothesized ni by evaluating the ℓ2
reconstruction error as

ei = ‖m−Dic
∗‖2

2
. (3)

Therefore, the optimal surface normal n∗ can be found as

the minimizer of the following objective

n
∗ = ni∗ , i∗ = argmin

i∈{1,...,N}

ei. (4)

A naı̈ve implementation may require a significant computa-

tion effort for solving this problem. We therefore introduce

an efficient precomputation strategy now.

4.2. Precomputation

The reconstruction error ei for the hypothesized surface

normal ni in Eq. (3) can be further simplified as

ei = ‖m−Dic
∗‖2

2
=

∥
∥
∥m−DiD

†
im

∥
∥
∥

2

2

=
∥
∥
∥

(

I−DiD
†
i

)

m

∥
∥
∥

2

2

def= ‖Zim‖22 , (5)

where Zi(= I−DiD
†
i ) ∈ R

L′×L′

is uniquely determined

given a hypothesized normal ni. We can precompute a set

of {Zi} for all normal candidates in N and at test time we

simply need to assess the magnitude of Zim for all i.
This precomputation happens only once and the result

can be used for any new scene as long as the light configu-

ration is unchanged.

4.3. Dimensionality reduction of Di

In principle, minimizing Eq. (4) gives us a correct so-

lution for the surface normal n. In practice, however, we

need to pay attention to the dimension and range of matrix

Di ∈ R
L′×M . Specifically, when L′ < M or m ∈ ran(Di)

(the range of Di) for all Di, there exists one or more BRDF

coefficient vectors c
∗ that makes all reconstruction errors

{ei} zero.

𝐦

𝐙
# 𝐦

𝐙 $
𝐦

ran(𝐃#)
ran(𝐃$)

𝐧#𝐧$

Ω ⊂ ℝ,-

Figure 3: Geometric interpretation of the reconstruction er-

ror. The reconstruction error of measurements ‖Zim‖22 can

be seen as distance between the measurement vector m and

the subspace spanned by Di in the L′-dimensional space Ω.

As illustrated in Fig. 3, a measurement vector m ex-

ists in an L′-dimensional space Ω. The column vectors

of Di span a rank(Di)-dimensional subspace in Ω, and

the measurement reconstructions Dic
∗ = DiD

†
im reside

in this subspace. Thus, geometrically, the reconstruction

error ‖Zim‖22 can be considered as the distance between

the measurement vector m and the subspace spanned by

Di. From this perspective, if rank(Di) = L′, the columns

of Di span the entire Ω; therefore, the reconstruction error

becomes always zero regardless of the correctness of the

hypothesized surface normal n.

To avoid such a situation, we reduce the column dimen-

sion of Di from M to M ′ < L′ if L′ < M . Specifically,

we apply singular value decomposition (SVD) to Di as

Di = USV
⊤,

and reduce the dimensionality of Di using the first M ′ sin-

gular vectors / values as

Di ← UM ′SM ′V
⊤
M ′ ,

where UM ′ , SM ′ , and V
⊤
M ′ are the truncated singular vec-

tors / values.

We empirically found that the proper value of M ′ is re-

lated to the noise level in the observations. In Sec. 5.4,

we examine the accuracy of surface normal estimation with

varying M ′ and discuss the choices for M ′.

5. Experiments

This section describes the results of experiments with

synthetic and real-world data. We further discuss the com-

putation time, the effect of dimensionality reduction and the

discretization of the space of light directions. We begin with

describing the construction of the BRDF tensor and the syn-

thetic and real-world datasets that we use for evaluation.

BRDF tensor: The BRDF tensor is constructed from

three components; materials, surface normal candidates,

and light directions. As materials, we used the MERL

BRDF dataset [16] which consists of 100 distinct BRDFs
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Figure 4: Evaluation on the MERL sphere dataset. We compared our method against a model-based method [13] and a

CNN-based method [12]. The average/variance of the mean angular errors over all materials are as follows: Ours: 2.23/3.24,

model-based method [13]: 4.31/29.43, CNN-based method [12]: 3.15/9.19.

including diffuse, specular, and metallic materials. For

surface normal candidate sampling we followed Hui’s

method [11] and obtained 20001 candidates by 0.5◦ equian-

gular sampling over the hemisphere [8]. In all experiments

of this paper, we assume that the BRDF tensor contains the

known light directions.

MERL sphere: We created a MERL sphere dataset,

which is synthetic data rendered with 100 isotropic BRDFs

from the MERL BRDF database [16]. We generated im-

ages of a sphere object illuminated from 20, 40, 60, 80, 100
different known directions1, respectively. We also created a

noisy MERL sphere dataset by adding signal-independent

and signal-dependent noise [17] to the MERL sphere

dataset. The noise model is m̃ = m+ (µ+ λ
√
m)X where

m̃ and m are image signals with and without noise, µ
and λ are weighting factors for signal-independent and

signal-dependent noise, respectively, and X is a N (0, 1)-
distributed random variable.

MERL bunny: We rendered the Stanford bunny with

spatially varying materials using 11 distinct MERL BRDFs

as test BRDFs and 80 different known light directions.

Real-world benchmark: We took an existing real-world

dataset, the DiLiGenT dataset [20], which contains 10 real

objects of general reflectance illuminated from 96 differ-

ent known directions. This dataset provides ground truth

surface normal maps for all objects measured by high-

precision laser scanning, enabling quantitative evaluation.

1We used the generalized spiral points algorithm for uniformly dis-

tributing lights on the hemisphere [18]. See the supplementary material

for details of the light distributions.

5.1. Evaluation on synthetic data

We performed experiments on synthetic data to confirm

that our method works with diverse materials. Since there

is no global illumination in the MERL sphere & bunny

dataset, we can evaluate only the ability of our method to

adapt to diverse materials. To support that our method is

applicable to a more diverse set of materials than exist-

ing methods, we compared it against a model-based [13], a

CNN-based [12], and a dictionary-based method [11]. Ad-

ditionally, we investigated the accuracy of our method with

varying surface normal candidates and lights, and compared

it to the dictionary-based method [11]. All following exper-

iments were performed in the 80 lights setting unless other-

wise specified.

MERL sphere: We performed a comparative experiment

between our method, the model-based method [13], and the

CNN-based method [12], and verified that our method is

more accurate and stable on diverse material data. For the

materials we used a leave-one-out scheme, testing it on one

MERL BRDF while constructing the BRDF tensor from the

remaining 99 BRDFs.2

The results are shown in Fig. 4. The average/variance of

the mean angular errors over all materials are 2.23/3.24 for

our method, 4.31/29.43 for the model-based method [13],

and 3.15/9.19 for the CNN-based method [12]. This result

suggests that our method is more accurate and stable than

existing methods on most materials in the MERL database.

2Due to the high computational costs of the dictionary-based

method [11], a leave-one-out scheme on it with the author’s implemen-

tation cannot be performed in a reasonable amount of time. We do a com-

parison with it in the following experiments.
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Figure 5: Visual comparison for the Stanford bunny with spatially varying materials. We show estimated normals and angular

error maps of our and 3 comparison methods. Values under the error maps indicate the mean/variance of angular errors.

MERL bunny: We evaluated our method, the model-

based [13], the CNN-based [12], and the dictionary-based

method [11] on the Stanford bunny with spatially vary-

ing materials. Our BRDF tensor and the BRDF dictio-

nary of the dictionary-based method are constructed from

80 MERL BRDFs that do not include the 11 test BRDFs

mentioned above.

In Fig. 5 we show each method’s estimated surface nor-

mals and angular error map. The values under the error

maps indicate the mean/variance of their angular errors.

This result suggests that our method can be applied to ma-

terials that are difficult for the CNN-based and the model-

based method. Additionally, from the low variance of an-

gular errors we can see that our method is more stable than

the existing methods on diverse materials.

Varying number of surface normal candidates and

lights: We investigate the angular errors of the estimated

surface normals for varying numbers of surface normal

candidates and lights, and compare our method to the ex-

isting search-based method [11]. In the experiment with

a varying number of surface normal candidates, we use

20001, 10001, 1501, 251 surface normal candidates yielded

by 0.5◦, 1◦, 3◦, 5◦ equiangular sampling, respectively. In

the experiment with a varying number of lights, we use the

MERL sphere dataset with 20, 40, 60, 80, 100 lights. Due

to the high computational costs of the existing dictionary-

based method [11], we perform a 5-fold cross-validation,

using 80 BRDFs for computing our method’s BRDF tensor

and the dictionary method’s material dictionary [11], and

testing on the MERL sphere dataset with the remaining 20
BRDFs.

Table 1: Mean angular errors for estimated surface normals

in degrees for varying numbers of normal candidates.

number of normal candidates N
20001 10001 1501 251

Ours 2.25 2.31 2.86 4.62

HS17 [11] 2.34 2.41 3.00 4.68

Table 2: Mean angular errors for estimated surface normals

in degrees for varying numbers of lights.

number of lights L′

100 80 60 40 20

Ours 2.22 2.25 2.28 2.35 2.69

HS17 [11] 2.30 2.34 2.39 2.49 2.81

Tables 1 and 2 show the experimental results for vary-

ing numbers of surface normal candidates and lights, re-

spectively. Both results suggest that our method consis-

tently estimates surface normals more accurately than the

existing method. One of the reasons is a difference in the

search strategies. Hui and Sankaranarayanan [11] proposed

a search strategy that avoids searching parts of the surface

normal space since their method is computationally expen-

sive due to iterative optimization. In contrast, our method

searches over all surface normal candidates in reasonable

computation time facilitated by the precomputation.

5.2. Evaluation on real­world data

We show quantitative comparisons on the DiLiGenT

dataset in Tab. 3 where we compare our method with ex-

isting methods in terms of mean angular error. Here, our
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Table 3: Comparisons on the DiLiGenT dataset. We apply a least-squares method as baseline. The values represent mean

angular error (MAE).

Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg.

Ours 1.58 6.38 13.69 6.30 7.80 11.42 18.74 6.67 7.26 15.49 9.53

SI18 [12] 2.20 4.10 7.90 4.60 7.90 7.30 13.90 5.40 6.00 12.60 7.20

HS18 [11] 1.33 5.58 8.48 4.88 8.23 7.57 15.80 5.16 6.41 12.08 7.55

CH18 [3] 2.80 7.60 7.90 6.20 7.30 8.60 15.90 7.10 7.30 13.30 8.40

TM18 [22] 1.47 5.79 10.36 5.44 6.32 11.47 22.59 6.09 7.76 11.03 8.83

ST14 [21] 1.74 6.12 10.60 6.21 13.90 10.10 25.40 6.51 8.78 13.60 10.30

IA14 [13] 3.34 7.11 10.50 6.74 13.10 9.71 26.00 6.64 8.77 14.20 10.60

Baseline 4.10 8.39 14.90 8.41 25.60 18.50 30.60 8.89 14.70 19.80 15.40
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Figure 6: Visual comparison for the non-convex objects Cat and Reading. We show estimated normals and angular error

maps of our method and a state-of-the-art CNN-based method [12].

method does not achieve the best results. This is considered

to be due to factors not modeled in our method, namely

cast shadows or inter-reflections. Figure 6 shows visual

comparisons between our method and Ikehata’s CNN-based

method [12] for two non-convex objects with cast shad-

ows and inter-reflections. Our method causes a large an-

gular error in pixels where cast shadows or inter-reflections

are likely to occur. However, in convex parts our method

outperforms the CNN-based state-of-the-art method and es-

timates the surface normals well for the Reading object’s

complex specular material. We show more visual compar-

isons in the supplementary material.

5.3. Computation cost

For inference, our method evaluates the reconstruction

error ‖Zim‖22 in Eq. (5) for each surface normal candidate

ni ∈ N . All matrices Zi are precomputed; therefore, at

inference time we only need to evaluate the reconstruction

error of each ni and find the minimizer. The dimension of

matrix Zi ∈ R
L′×L′

only depends on the number of lights

L′, but not the number of materials. Table 4 summarizes

Table 4: Computation time in seconds for surface normal

estimation of one pixel with 20001 surface normal candi-

dates, measured on one core of an Intel Xeon CPU E5-2680

v4 @ 2.40GHz.

number of lights L′

100 80 60 40 20

Time [sec.] 0.31 0.21 0.15 0.062 0.024

the computation time per pixel for 20001 surface normal

candidates and a varying number of lights L′. The compu-

tation is highly parallelizable, e.g., by pixel-wise or normal

candidate-wise parallelization.

5.4. Choice of dimension M ′ for noisy data

It is difficult to avoid imaging noise in real-world data

and it must therefore always be considered. We empirically

observed that M ′ is related to our method’s robustness to-

wards noise. Thus, we determine an optimal M ′ by a vali-

dation on the noisy MERL sphere dataset.
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Table 5: Surface normal estimation with varying M ′ on the noisy MERL sphere dataset under three sets of lights, (a) 60 lights,

(b) 80 lights, and (c) DiLiGenT’s 96 lights. Values indicate mean angular errors in degrees.

(a)

µ/λ
M ′ 0/0 5/30 30/5 30/30

3 2.21 3.99 3.65 4.37

5 1.83 4.10 3.52 4.50

10 1.71 4.29 3.53 4.71

20 1.75 4.95 3.84 5.33

(b)

µ/λ
M ′ 0/0 5/30 30/5 30/30

3 2.18 3.99 3.83 4.43

5 1.76 4.12 3.71 4.57

10 1.62 4.30 3.72 4.77

20 1.62 4.68 3.88 5.12

(c)

µ/λ
M ′ 0/0 5/30 30/5 30/30

3 2.59 5.60 5.15 6.22

5 2.38 6.19 5.20 6.75

10 2.33 7.08 5.39 7.62

20 2.37 8.07 5.70 8.65

Setup: We apply 5-fold cross-validation on the MERL

BRDFs; the 100 MERL BRDFs are divided into 80
BRDFs for the BRDF tensor and 20 BRDFs for test-

ing. We test varying M ′ = {3, 5, 10, 20} and varying noise

µ/λ = {0/0, 5/30, 30/5, 30/30} under three sets of lights:

60 lights, 80 lights, and DiLiGenT’s 96 lights.

Results: Table 5 shows mean angular errors of estimated

surface normals in degrees for varying M ′. In the noiseless

cases (µ= λ=0), a larger M ′ performs better. Contrarily,

in most of the noisy cases, M ′ = 3 produces lower angular

errors, indicating that M ′ = 3 is most robust to noise. For

this reason, we apply M ′ = 3 in all following experiments.

5.5. Discretized light directions

In all experiments so far, we assumed that the BRDF

tensor contains the known light directions. In practice, the

BRDF tensor rarely contains all of the known light direc-

tions and we should use pre-defined light directions closest

to the known light directions instead. Here, we examine

how the surface normal estimation accuracy is affected by

the discretization of light directions.

Setup: As pre-defined light directions in the BRDF tensor

we used 20001 discretized directions from a 0.5◦ equiangu-

lar sampling over the hemisphere. When a set of known

light directions is given, as illustrated in Fig. 2, we can slice

out a sampled BRDF matrix for a hypothesized surface nor-

mal and the set of light directions that are closest to the

known light direction in terms of cosine distance. We can

then follow the same estimation process used so far. We

performed this experiments with 20, 40, 60, 80, 100 known

lights. We used the MERL sphere dataset and performed

5-fold cross-validation over the BRDFs.

Results: Table 6 shows surface normal estimation results

for exactly known and for discretized light directions in the

BRDF tensor. We observe that there are only slight dif-

ferences between both cases (< 0.1◦ in the mean angular

errors), which suggests that it is sufficient to precompute a

BRDF tensor for sufficiently finely discretized light direc-

tions and there is no need to recalculate the BRDF tensor

Table 6: The effect of discretizing the light directions and

picking the directions closest to a set of known directions.

The values indicate mean angular error in degrees.

number of lights L′

100 80 60 40 20

Using known lights 2.15 2.18 2.21 2.31 2.69

Using discretized lights 2.16 2.19 2.22 2.33 2.73

with known light directions each time one works with a new

light setup.

6. Discussion

In this paper, we have presented a photometric stereo

method based on discrete hypothesis-and-test search. The

proposed method can work with a diverse set of BRDFs that

are represented in a BRDF tensor and can determine surface

normals of a scene with spatially varying general BRDFs.

By putting most of the computation into a precomputation

step, we enabled a full search over all surface normal candi-

dates, leading to a solution guaranteed to be optimal within

the bounds of the objective function and the discretization.

The approach is also supported by the fact that with the con-

tinuing increase of computation power, memory size, and

the availability of many-core processors, the applicability

of the full search strategy is expanding. We are interested in

seeing more applications along the direction.

One interesting question to investigate in the future

would be how many BRDFs are needed to fully represent

real-world materials. Our BRDF tensor can hold an arbi-

trary number of BRDFs; therefore, we are interested in in-

creasing the number of BRDFs in the tensor to study this

question, while it may only be empirically understood.
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